Disordered ferromagnets with a domain structure that exhibit a hysteresis loop when driven by the external magnetic field are essential materials for modern technological applications.Therefore,the understanding and p...Disordered ferromagnets with a domain structure that exhibit a hysteresis loop when driven by the external magnetic field are essential materials for modern technological applications.Therefore,the understanding and potential for controlling the hysteresis phenomenon in thesematerials,especially concerning the disorder-induced critical behavior on the hysteresis loop,have attracted significant experimental,theoretical,and numerical research efforts.We review the challenges of the numerical modeling of physical phenomena behind the hysteresis loop critical behavior in disordered ferromagnetic systems related to the non-equilibriumstochastic dynamics of domain walls driven by external fields.Specifically,using the extended Random Field Ising Model,we present different simulation approaches and advanced numerical techniques that adequately describe the hysteresis loop shapes and the collective nature of the magnetization fluctuations associated with the criticality of the hysteresis loop for different sample shapes and varied parameters of disorder and rate of change of the external field,as well as the influence of thermal fluctuations and demagnetizing fields.The studied examples demonstrate how these numerical approaches reveal newphysical insights,providing quantitativemeasures of pertinent variables extracted from the systems’simulated or experimentally measured Barkhausen noise signals.The described computational techniques using inherent scale-invariance can be applied to the analysis of various complex systems,both quantum and classical,exhibiting non-equilibrium dynamical critical point or self-organized criticality.展开更多
Manipulating and braiding Majorana zero modes(MZM)are a critical step toward realizing topological quantum computing.The primary challenge is controlling the vortex,which hosts the MZM,within a superconducting film in...Manipulating and braiding Majorana zero modes(MZM)are a critical step toward realizing topological quantum computing.The primary challenge is controlling the vortex,which hosts the MZM,within a superconducting film in a spatially precise manner.To address this,we developed a magnetic force-based vortex control technology using the STM system with a self-designed four-electrode piezo-scanner tube and investigated vortex manipulation on the NbSe_(2) superconducting film.We employed ferromagnetic tips to control the movement of vortex array induced by the tip's remanent magnetism.A magnetic core solenoid device was integrated into the STM system and a strong magnetic tip demagnetization technique was developed,providing a viable technical solution for further enabling single vortex manipulation.展开更多
We present a study of magnetic transport and radiation properties during compression of a magnetized laboratory plasma.A theta pinch is used to produce a magnetized plasma column undergoing radial implosion,with plasm...We present a study of magnetic transport and radiation properties during compression of a magnetized laboratory plasma.A theta pinch is used to produce a magnetized plasma column undergoing radial implosion,with plasma parameters comprehensively measured through diverse diagnostic techniques.High-resolution observations show the implosion progressing through three stages:compression,expansion,and recompression.An anomalous demagnetization phenomenon is observed during the first compression stage,wherein the magnetic field at the plasma center is depleted as the density increases.We reveal the demagnetization mechanism and formulate a straightforward criterion for determining its occurrence,through analysis based on extended-magnetohydrodynamics theory and a generalized Ohm’s law.Additionally,we quantitatively evaluate the radiation losses and magnetic field variations during the two compression stages,providing experimental evidence that magnetic transport can influence the radiation properties by altering the plasma hydrodynamics.Furthermore,extrapolated results using our findings reveal direct relevance to magnetized inertial confinement fusion,space,and astrophysical plasma scenarios.展开更多
In this paper, we present a micromagnetic design for high field sensors. The hard layer of the sensors is L10-FePt which is magnetized perpendicularly to film plane and the sense layer is NiFe which is magnetized in t...In this paper, we present a micromagnetic design for high field sensors. The hard layer of the sensors is L10-FePt which is magnetized perpendicularly to film plane and the sense layer is NiFe which is magnetized in the film plane. The magnetization configurations of the hard and sense layers at different external magnetic fields have been simulated. In micromagnetic simulation, the sense field up to one tesla can be reached by using this sensor. We find that whether the sensor has a symmetric or an asymmetric field-sensing window is determined by the coercive field of the hard layer and the demagnetizing field of the sense layer.展开更多
In this paper, a novel arrangement for magnetic Barkhausen noise detection is introduced. Measurements have been performed using two low carbon steel plates of 1 mm thickness. The measurements were conducted along the...In this paper, a novel arrangement for magnetic Barkhausen noise detection is introduced. Measurements have been performed using two low carbon steel plates of 1 mm thickness. The measurements were conducted along the rolling and the transverse directions. The new arrangement includes a displacement of the detection coil in predetermined steps in while the magnetizing yoke is kept stationary introducing a cyclic magnetization in the rolling direction and transverse to it. In general, the intensity of the Barkhausen signals decreased as a function of coil displacement in both plates. In the temper rolled plate, Barkhausen noise profile shape changed from a single peak to a double peak one when coil has been displaced by 5 mm away in both magnetizing directions. Peaks are more apparent while magnetizing in the transverse direction. The appearance of two peaks profile in the temper rolled plate may be attributed to two stages of magnetization taking place at different times as a function of the applied field. Magnetization in the transverse direction results in a partition of the internal magnetizations into two main components perpendicular to each other. The internal components of magnetization involve the magnetic easy axes in the rolling direction and the forced magnetization in the transverse direction due to the applied field. Another assumption to interpret the findings may be due to the internal demagnetization field in the soft material below surface. The findings support this assumption in such a way that the demagnetizing field is strong enough in the transverse direction than in the rolling direction. This assumption is supported by the experiment on cold rolled plate. In the cold rolled plate, the resultant MBN profiles are composed of one peak throughout the test due to high dislocation density and hence a very weak demagnetizing field.展开更多
The correlation of microstructure and magnetic properties in Sm(Co_(bal)Fe_(0.1)Cu_(0.1)Zr_(0.033))_(6.93) magnets solution-treated at different temperatures was systematically investigated. It is found that the magne...The correlation of microstructure and magnetic properties in Sm(Co_(bal)Fe_(0.1)Cu_(0.1)Zr_(0.033))_(6.93) magnets solution-treated at different temperatures was systematically investigated. It is found that the magnets solution-treated at 1219℃ possess a single 1:7 H phase, exhibiting the homogeneous cellular structure during further aging treatment, leading to the optimum magnetic properties. However, for the magnets solution-treated at 1211 and 1223℃,2:17 H or 1:5 H secondary phase will also form besides 1:7 H main phase, which cannot transform into cellular structure,thus deteriorating the magnetic properties greatly. The irreversible magnetization investigations with recoil loops also propose a non-uniform pinning in the magnets induced by the secondary precipitates. At proper solution temperature, Zr is supposed to occupy the Fe-Fe dumbbell sites in the form of Zr-vacancy pairs, leading to the minimum c/a ratio and thus stabilizing the 1:7 H phase. Finally,Sm(Co_(bal)Fe_(0.1)Cu_(0.1)Zr_(0.033))_(6.93) magnets with the maximum energy product and intrinsic coercivity at 550℃ up to 60.73 kJ·m^(-3) and 553.88 kA·m^(-1) were prepared by powder metallurgy method.展开更多
Due to the harsh actual operating environment of the permanent magnet wind turbine,it is easy to break down and difficult to monitor.Therefore,the electromagnetic characteristics identification of major fault types of...Due to the harsh actual operating environment of the permanent magnet wind turbine,it is easy to break down and difficult to monitor.Therefore,the electromagnetic characteristics identification of major fault types of large-scale permanent magnet wind turbines is studied in this paper.The typical faults of rotor eccentricity,stator winding short circuit and permanent magnet demagnetization of permanent magnet wind turbines are analyzed theoretically.The wavelet analysis algorithm is used to decompose and reconstruct the abnormal electromagnetic signal waveform band,and the characteristic frequency of the electromagnetic signal is obtained when the fault occurs.In order to verify the effectiveness of the proposed method,a 3.680MW permanent magnet wind turbine was taken as the research object.Its physical simulation model was established,and an external circuit was built to carry out field co-simulation.The results show that the motor fault type can be determined by detecting the change rule of fault characteristic frequency in the spectrum diagram,and the electromagnetic characteristic analysis can be applied to the early monitoring of the permanent magnet wind turbine fault.展开更多
Taking the advantages of semiconducting properties and carrier-mediated ferromagnetism in(Ga,Mn)As,a giant modulation of magnetism via electric field in(Ga,Mn)As ultrathin film has been demonstrated.Specifically,huge ...Taking the advantages of semiconducting properties and carrier-mediated ferromagnetism in(Ga,Mn)As,a giant modulation of magnetism via electric field in(Ga,Mn)As ultrathin film has been demonstrated.Specifically,huge interfacial electric field is obtained by using ionic liquid as the gate dielectric.Both magnetization and transport measurements are employed to characterize the samples,while the transport data are used to analyze the electric filed effect on magnetism.Complete demagnetization of(Ga,Mn)As film is then realized by thinning its thickness down to ~2 nm,during which the degradation of ferromagnetism of(Ga,Mn)As ultrathin film induced by quantum confinement effect is suppressed by inserting a heavily-doped p-type GaAs buffer layer.The variation of the Curie temperature is more than 100 K,which is nearly 5-times larger than previous results.Our results provide a new pathway on the efficient electrical control of magnetism.展开更多
Individual grains with diverse dimensional parameters were introduced to investigate the magnetization reversals in anisotropic Nd2 Fe_(14)B magnets. The micromagnetic simulations were carried out via Object Oriented ...Individual grains with diverse dimensional parameters were introduced to investigate the magnetization reversals in anisotropic Nd2 Fe_(14)B magnets. The micromagnetic simulations were carried out via Object Oriented MicroMagnetic Framework(OOMMF). With the same bottom area and height, analysis results show that the coercive fields for different bottom shapes are of similar values. Designed as a cubic grain,the coercive field presents descending tendency as grain volume ascends. Under constant grain volume,with aspect ratio increasing, the coercive field decreases in the beginning and increases soon. Based on the demagnetization field vector, the effects of bottom shape, grain volume and aspect ratio on the coercive field can be explained. The nucleation point is chosen to discuss. Its synthetic field and reversal field are calculated by parallelogram law and inverse external field equation, respectively. The synthetic field equal to the reversal field is defined as critical field, which always shows the same tendency as the coercive field for all cases of this study. It can be concluded that critical field is qualified to be a reference index to measure the magnitude of coercive field.展开更多
The design and measuring potential of the latest generation of the magnetic scanner called Magscanner-Maglab System (MMS) was presented. It enabled the fast acquisition of 3D signals from magnetic sensors and their ...The design and measuring potential of the latest generation of the magnetic scanner called Magscanner-Maglab System (MMS) was presented. It enabled the fast acquisition of 3D signals from magnetic sensors and their visualization as digitalized mag- netic images. This system was used for monitoring of a thermal demagnetization process of permanent magnets. The original method and measurement devices were capable for examination of magnetic, mechanical and thermal defects in cylindrical rods made of NdFeB and non-rare earth components. Effectiveness of the method and device was tested for the reference demagnetized magnet dedicated for magnetostrictive actuators.展开更多
The permanent magnets will be irreversibly demagnetized under high temperature and high velocity during the electromagnetic buffering.In this study,the magnetic field induced by eddy currents and the self-demagnetizin...The permanent magnets will be irreversibly demagnetized under high temperature and high velocity during the electromagnetic buffering.In this study,the magnetic field induced by eddy currents and the self-demagnetizing field of permanent magnet are taken into consideration together for demagnetization analyse.The magnetic Reynolds number is used to express the eddy currents demagnetization.The correction coefficient being expressed as the index of the air-gap width,the inner cylinder thickness,iron pole axial length and the permanent magnet demagnetization coefficient is introduced by magnetic path analysis to represent the self-demagnetization effect and the demagnetization extent.The electromagnetic buffer(EMB)prototype is tested under intensive impact loads of different strengths at room temperature.The accuracy of the nonlinear irreversible demagnetization finite element model is verified by demagnetization on damping force,velocity and displacement.Finally,high-velocity demagnetization and high-temperature demagnetization are analysed in order to obtain the distribution law of irreversible demagnetization.展开更多
A category of permanent-magnet-shield(PM-shield)axial-field dual-rotor segmented switched reluctance machines(ADS-SRMs)are presented in this paper.These topologies are featured by using the magnetic material to shield...A category of permanent-magnet-shield(PM-shield)axial-field dual-rotor segmented switched reluctance machines(ADS-SRMs)are presented in this paper.These topologies are featured by using the magnetic material to shield the flux leakage in the stator and rotor parts.Besides,the deployed magnets weaken the magnetic saturation in the iron core,thus increasing the main flux.Hence,the torque-production capability can be increased effectively.All the PM-shield topologies are proposed and designed based on the magnetic equivalent circuit(MEC)model of ADS-SRM,which is the original design deploying no magnet.The features of all the PM-shield topologies are compared with the original design in terms of the magnetic field distributions,flux linkages,phase inductances,torque components,and followed by their motion-coupled analyses on the torque-production capabilities,copper losses,and efficiencies.Considering the cost reduction and the stable ferrite-magnet supply,an alternative proposal using the ferrite magnets is applied to the magnetic shielding.The magnet demagnetization analysis incorporated with the thermal behavior is performed for further verification of the motor performance.展开更多
Demagnetization behavior of Halbach magnetized compensated pulsed alternator(CPA)is studied by using finite element method(FEM)under the different demagnetization factors in this paper.The effect of armature reaction ...Demagnetization behavior of Halbach magnetized compensated pulsed alternator(CPA)is studied by using finite element method(FEM)under the different demagnetization factors in this paper.The effect of armature reaction magnetic field and thermal rise on demagnetization of PMs is analyzed.This paper investigates the effect of different demagnetization factors on magnetic field distribution,load current,and no-load phase voltage.A series of dynamic demagnetization points in Halbach array permanent magnet(PM)are evaluated to search the worst working point.Partial demagnetization risk can be represented by the worst working point,and the global demagnetization of the PM is represented by the no-load phase voltage characteristics after discharge.The research results demonstrated that the compensation shield with a certain thickness can increase the discharge current and weaken the demagnetization influence of armature reaction.The demagnetization effect of armature reaction on PMs at high temperatures will be strengthened.展开更多
The magnetic field stability of the PrFeB magnets is one of the key points which affect its application in such devices as cryogenic permanent magnet undulators. In this study, the magnetic properties and micro struct...The magnetic field stability of the PrFeB magnets is one of the key points which affect its application in such devices as cryogenic permanent magnet undulators. In this study, the magnetic properties and micro structure of PrFeB magnets, which were developed by the grain boundary diffusion, were examined. The demagnetizing field distribution of the cryogenic permanent magnet undulator made using the PrFeB magnets was simulated by Radia, and the change mechanism of the irreversible demagnetization following treatments at high temperatures was experimentally studied, The results show that the intrinsic coercivity of the PrFeB magnets can be increased by diffusion of Tb. Meanwhile, the remanence of the magnets displays almost no loss, and the increasing range is closely related to the orientation thickness of the PrFeB magnet, Therefore, the PrFeB magnets developed using grain boundary diffusion are found to have extremely high comprehensive magnetic properties, The irreversible demagnetization of the PrFeB magnets developed by grain boundary diffusion for the CPMU is determined to be significantly improved following high-temperature treatments.展开更多
In this paper,a novel intensifying-flux variable flux-leakage interior permanent magnet(IFVF-IPM)machine is proposed,in which flux barriers were designed deliberately between the adjacent poles to obtain intensifying-...In this paper,a novel intensifying-flux variable flux-leakage interior permanent magnet(IFVF-IPM)machine is proposed,in which flux barriers were designed deliberately between the adjacent poles to obtain intensifying-flux effect and variable flux-leakage property.The rotor topology and design principles of the proposed machine are also introduced.Then,a multi-objective optimization method is adopted based on the sensitivity analysis,and some design variables of IFVF-IPM machine with strong sensitivity are selected to optimization progress by using the non-dominated sorting genetic algorithm-Ⅱ(NSGA-Ⅱ).Moreover,the electromagnetic characteristics of conventional IPM machine,conventional IFVF-IPM machine(CIFVF-IPM)and the novel IFVF-IPM machine are compared based on the finite element analysis(FEA)method which includes flux linkage,inductances characteristic,torque-speed envelops and power characteristic,as well as evaluation of the risk of irreversible demagnetization.Finally,the experiment results show that the IFVF-IPM machine has a better performance in flux weakening capability for wide speed range and a lower risk of irreversible demagnetization,which indicates the validity and feasibility of the proposed machine.展开更多
As a auxiliary brake, Permanent Magnet Retarder (PMR) generates lots of energy and has greater temperature-rise when PMR works, so that it has a direct impact on PMR work performance and even causes demagnetization ...As a auxiliary brake, Permanent Magnet Retarder (PMR) generates lots of energy and has greater temperature-rise when PMR works, so that it has a direct impact on PMR work performance and even causes demagnetization seriously. In order to analyze permanent magnet (PM) demagnetization in high-temperature in PMR, PMR mathematical model is established firstly, and the boundary conditions of finite element analysis are determined. Then the eddy current field distribution in the rotor is determined by solving eddy current demagnetization field, and PM dynamic permeance coefficient is obtained. Combined with PM demagnetization curve analysis, PMR permanent magnet demagnetization properties are analyzed. The analysis result is validated by the bench test. It shows that part of PM is demagnetized when PRM continues working for about 15 minutes, and the braking performance is declined. Finally, three PMR optimization design methods are proposed.展开更多
This paper presents new converter for torque ripple minimization of three phases Switched Reluctance Motor (SRM). The proposed converter has basic passive circuit which includes two diodes and one capacitor to the fro...This paper presents new converter for torque ripple minimization of three phases Switched Reluctance Motor (SRM). The proposed converter has basic passive circuit which includes two diodes and one capacitor to the front end of an asymmetric converter with a specific end goal to get a high magnetization and demagnetization voltage. In view of this boost capacitor, the charge and demagnetization voltage are higher. Accordingly, it can reduce the negative torque generation from the tail current and enhance the output power. The proposed converter circuit is equipped for minimizing the SRM torque ripple furthermore enhancing the average torque when contrasted with traditional converter circuit. A three-phase SRM is modeled and the simulation output for no load and stacked condition depicts that the proposed converter has better performance when contrasted with traditional converter. It is appropriate for electric vehicle applications. The proposed framework is simulated by utilizing MATLAB/Simulink environment and their outcomes are examined extravagantly.展开更多
Effect of heat source sliding contact on the CoPtCr-based magnetic recording disk was investigated.A tribo-test of the disk with low load heat source and the scan of disk with magnetic head were sequentially carried o...Effect of heat source sliding contact on the CoPtCr-based magnetic recording disk was investigated.A tribo-test of the disk with low load heat source and the scan of disk with magnetic head were sequentially carried out.Then disk samples in the contact area were observed by atomic force microscopy(AFM)and magnetic force microscopy(MFM).A finite element model using thermomechanical coupling was developed to calculate the mechanical and thermal response of the disk under heat source sliding contact based on the experimental results.It was found that data loss load under sliding contact with a heat source was far less than that without a heat source,and mechanical scratches and demagnetization did not occur in the data loss area under the experimental conditions.The finite element analysis(FEA)results indicate that the thin surface DLC coating has more significant effect on the mechanical response than the thermal response of the magnetic layer.展开更多
The relationship between the microstructure and magnetic properties of Nd-Fe-B sintered magnet compressed by shock wave with 6.26 GPa≤p≤7.16 GPa was investigated.It reveals that Nd-Fe-B magnets show a demagnetizatio...The relationship between the microstructure and magnetic properties of Nd-Fe-B sintered magnet compressed by shock wave with 6.26 GPa≤p≤7.16 GPa was investigated.It reveals that Nd-Fe-B magnets show a demagnetization behavior after compressed by shock wave.The intergranular fracture is the main occurring phe-nomenon in the shock wave-compressed magnets.The coercivity of the shock wave-compressed Nd-Fe-B magnets could be recovered after repeating the annealing process.It suggests that only the morphology change just like the intergranular fracture occurs,and there is no structural change in the grain boundary phase in the shock wave-compressed magnet.Matrix phase grain interconnection,microcracks and pores,and alterant orientation relationship between matrix phase and grain boundaries phase are con-sidered as induced factors of demagnetization.展开更多
A three-dimentional finite element micromagnetic algorithm was developed to study the magnetization reversal of Pr2Fe14B single-phase nanocrystalline permanent magnets. A single-phase nanocrystalline Pr2Fe14B magnets ...A three-dimentional finite element micromagnetic algorithm was developed to study the magnetization reversal of Pr2Fe14B single-phase nanocrystalline permanent magnets. A single-phase nanocrystalline Pr2Fe14B magnets composed of 216 irregular shaped grains was built. The magnetic hysteresis loops were simulated by micromagnetic finite element method. The contribution of intergrain exchange coupling ment degree (IGEC) to remanence enhancement is considered related to the alignin oriented magnets, and decreased with improved grain alignment. For the magnets with perfectly crystallo- graphic alignment of grains, the contribution of IGEC to remanence enhancement is nearly zero. The shape of demagnetization curve is not only dependent on grain alignment degree but also on the strength of IGEC in magnets.展开更多
基金Djordje Spasojevic and Svetislav Mijatovic acknowledge the support from the Ministry of Science,TechnologicalDevelopment and Innovation of the Republic of Serbia(Agreement No.451-03-65/2024-03/200162)S.J.ibid.(Agreement No.451-03-65/2024-03/200122)Bosiljka Tadic from the Slovenian Research Agency(program P1-0044).
文摘Disordered ferromagnets with a domain structure that exhibit a hysteresis loop when driven by the external magnetic field are essential materials for modern technological applications.Therefore,the understanding and potential for controlling the hysteresis phenomenon in thesematerials,especially concerning the disorder-induced critical behavior on the hysteresis loop,have attracted significant experimental,theoretical,and numerical research efforts.We review the challenges of the numerical modeling of physical phenomena behind the hysteresis loop critical behavior in disordered ferromagnetic systems related to the non-equilibriumstochastic dynamics of domain walls driven by external fields.Specifically,using the extended Random Field Ising Model,we present different simulation approaches and advanced numerical techniques that adequately describe the hysteresis loop shapes and the collective nature of the magnetization fluctuations associated with the criticality of the hysteresis loop for different sample shapes and varied parameters of disorder and rate of change of the external field,as well as the influence of thermal fluctuations and demagnetizing fields.The studied examples demonstrate how these numerical approaches reveal newphysical insights,providing quantitativemeasures of pertinent variables extracted from the systems’simulated or experimentally measured Barkhausen noise signals.The described computational techniques using inherent scale-invariance can be applied to the analysis of various complex systems,both quantum and classical,exhibiting non-equilibrium dynamical critical point or self-organized criticality.
基金Project supported by the National Key Research&Development Program of China(Grant Nos.2019YFA0308600 and 2020YFA0309000)the National Natural Science Foundation of China(Grant Nos.92365302,92065201,22325203,92265105,12074247,12174252,52102336)+2 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB28000000)the Science and Technology Commission of Shanghai Municipality(Grant Nos.2019SHZDZX01,19JC1412701,20QA1405100,24LZ1401000,LZPY2024-04)financial support from the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0302500)。
文摘Manipulating and braiding Majorana zero modes(MZM)are a critical step toward realizing topological quantum computing.The primary challenge is controlling the vortex,which hosts the MZM,within a superconducting film in a spatially precise manner.To address this,we developed a magnetic force-based vortex control technology using the STM system with a self-designed four-electrode piezo-scanner tube and investigated vortex manipulation on the NbSe_(2) superconducting film.We employed ferromagnetic tips to control the movement of vortex array induced by the tip's remanent magnetism.A magnetic core solenoid device was integrated into the STM system and a strong magnetic tip demagnetization technique was developed,providing a viable technical solution for further enabling single vortex manipulation.
基金the State Key Development Program for Basic Research of China(Grant No.2022YFA1602503)the National Natural Science Foundation of China(Grant Nos.12120101005 and 12205247)
文摘We present a study of magnetic transport and radiation properties during compression of a magnetized laboratory plasma.A theta pinch is used to produce a magnetized plasma column undergoing radial implosion,with plasma parameters comprehensively measured through diverse diagnostic techniques.High-resolution observations show the implosion progressing through three stages:compression,expansion,and recompression.An anomalous demagnetization phenomenon is observed during the first compression stage,wherein the magnetic field at the plasma center is depleted as the density increases.We reveal the demagnetization mechanism and formulate a straightforward criterion for determining its occurrence,through analysis based on extended-magnetohydrodynamics theory and a generalized Ohm’s law.Additionally,we quantitatively evaluate the radiation losses and magnetic field variations during the two compression stages,providing experimental evidence that magnetic transport can influence the radiation properties by altering the plasma hydrodynamics.Furthermore,extrapolated results using our findings reveal direct relevance to magnetized inertial confinement fusion,space,and astrophysical plasma scenarios.
基金Project supported by the Nature Science Foundation of China (Grant No 10404019) and by the Science and Technology Committee of Shanghai (Grant No 05PJ14090).
文摘In this paper, we present a micromagnetic design for high field sensors. The hard layer of the sensors is L10-FePt which is magnetized perpendicularly to film plane and the sense layer is NiFe which is magnetized in the film plane. The magnetization configurations of the hard and sense layers at different external magnetic fields have been simulated. In micromagnetic simulation, the sense field up to one tesla can be reached by using this sensor. We find that whether the sensor has a symmetric or an asymmetric field-sensing window is determined by the coercive field of the hard layer and the demagnetizing field of the sense layer.
文摘In this paper, a novel arrangement for magnetic Barkhausen noise detection is introduced. Measurements have been performed using two low carbon steel plates of 1 mm thickness. The measurements were conducted along the rolling and the transverse directions. The new arrangement includes a displacement of the detection coil in predetermined steps in while the magnetizing yoke is kept stationary introducing a cyclic magnetization in the rolling direction and transverse to it. In general, the intensity of the Barkhausen signals decreased as a function of coil displacement in both plates. In the temper rolled plate, Barkhausen noise profile shape changed from a single peak to a double peak one when coil has been displaced by 5 mm away in both magnetizing directions. Peaks are more apparent while magnetizing in the transverse direction. The appearance of two peaks profile in the temper rolled plate may be attributed to two stages of magnetization taking place at different times as a function of the applied field. Magnetization in the transverse direction results in a partition of the internal magnetizations into two main components perpendicular to each other. The internal components of magnetization involve the magnetic easy axes in the rolling direction and the forced magnetization in the transverse direction due to the applied field. Another assumption to interpret the findings may be due to the internal demagnetization field in the soft material below surface. The findings support this assumption in such a way that the demagnetizing field is strong enough in the transverse direction than in the rolling direction. This assumption is supported by the experiment on cold rolled plate. In the cold rolled plate, the resultant MBN profiles are composed of one peak throughout the test due to high dislocation density and hence a very weak demagnetizing field.
基金financially supported by the National Natural Science Foundation of China(No. 51471016)the Natural Science Foundation of Beijing(No. 2151002)+1 种基金the BRICS STI Framework Program (Nos. 51761145026 and 17-52-80072)Department of Science and Technology,Govt of India, for supporting the work under DSTBRICS proposal reg.No 258
文摘The correlation of microstructure and magnetic properties in Sm(Co_(bal)Fe_(0.1)Cu_(0.1)Zr_(0.033))_(6.93) magnets solution-treated at different temperatures was systematically investigated. It is found that the magnets solution-treated at 1219℃ possess a single 1:7 H phase, exhibiting the homogeneous cellular structure during further aging treatment, leading to the optimum magnetic properties. However, for the magnets solution-treated at 1211 and 1223℃,2:17 H or 1:5 H secondary phase will also form besides 1:7 H main phase, which cannot transform into cellular structure,thus deteriorating the magnetic properties greatly. The irreversible magnetization investigations with recoil loops also propose a non-uniform pinning in the magnets induced by the secondary precipitates. At proper solution temperature, Zr is supposed to occupy the Fe-Fe dumbbell sites in the form of Zr-vacancy pairs, leading to the minimum c/a ratio and thus stabilizing the 1:7 H phase. Finally,Sm(Co_(bal)Fe_(0.1)Cu_(0.1)Zr_(0.033))_(6.93) magnets with the maximum energy product and intrinsic coercivity at 550℃ up to 60.73 kJ·m^(-3) and 553.88 kA·m^(-1) were prepared by powder metallurgy method.
基金supported by the National Natural Science Foundation of China(U22A20215 and 51537007)the Natural Science Foundation of LiaoNing Province(2021-YQ-09).
文摘Due to the harsh actual operating environment of the permanent magnet wind turbine,it is easy to break down and difficult to monitor.Therefore,the electromagnetic characteristics identification of major fault types of large-scale permanent magnet wind turbines is studied in this paper.The typical faults of rotor eccentricity,stator winding short circuit and permanent magnet demagnetization of permanent magnet wind turbines are analyzed theoretically.The wavelet analysis algorithm is used to decompose and reconstruct the abnormal electromagnetic signal waveform band,and the characteristic frequency of the electromagnetic signal is obtained when the fault occurs.In order to verify the effectiveness of the proposed method,a 3.680MW permanent magnet wind turbine was taken as the research object.Its physical simulation model was established,and an external circuit was built to carry out field co-simulation.The results show that the motor fault type can be determined by detecting the change rule of fault characteristic frequency in the spectrum diagram,and the electromagnetic characteristic analysis can be applied to the early monitoring of the permanent magnet wind turbine fault.
基金supported by MOST (Grant No. 2017YFB0405701)NSFC (Grants Nos. U1632264 and 11704374)the Key Research Project of Frontier Science of Chinese Academy of Science (Grant No. QYZDY-SSW-JSC015)
文摘Taking the advantages of semiconducting properties and carrier-mediated ferromagnetism in(Ga,Mn)As,a giant modulation of magnetism via electric field in(Ga,Mn)As ultrathin film has been demonstrated.Specifically,huge interfacial electric field is obtained by using ionic liquid as the gate dielectric.Both magnetization and transport measurements are employed to characterize the samples,while the transport data are used to analyze the electric filed effect on magnetism.Complete demagnetization of(Ga,Mn)As film is then realized by thinning its thickness down to ~2 nm,during which the degradation of ferromagnetism of(Ga,Mn)As ultrathin film induced by quantum confinement effect is suppressed by inserting a heavily-doped p-type GaAs buffer layer.The variation of the Curie temperature is more than 100 K,which is nearly 5-times larger than previous results.Our results provide a new pathway on the efficient electrical control of magnetism.
基金Project supported by the National Natural Science Foundation of China(51590882,51871063)
文摘Individual grains with diverse dimensional parameters were introduced to investigate the magnetization reversals in anisotropic Nd2 Fe_(14)B magnets. The micromagnetic simulations were carried out via Object Oriented MicroMagnetic Framework(OOMMF). With the same bottom area and height, analysis results show that the coercive fields for different bottom shapes are of similar values. Designed as a cubic grain,the coercive field presents descending tendency as grain volume ascends. Under constant grain volume,with aspect ratio increasing, the coercive field decreases in the beginning and increases soon. Based on the demagnetization field vector, the effects of bottom shape, grain volume and aspect ratio on the coercive field can be explained. The nucleation point is chosen to discuss. Its synthetic field and reversal field are calculated by parallelogram law and inverse external field equation, respectively. The synthetic field equal to the reversal field is defined as critical field, which always shows the same tendency as the coercive field for all cases of this study. It can be concluded that critical field is qualified to be a reference index to measure the magnitude of coercive field.
文摘The design and measuring potential of the latest generation of the magnetic scanner called Magscanner-Maglab System (MMS) was presented. It enabled the fast acquisition of 3D signals from magnetic sensors and their visualization as digitalized mag- netic images. This system was used for monitoring of a thermal demagnetization process of permanent magnets. The original method and measurement devices were capable for examination of magnetic, mechanical and thermal defects in cylindrical rods made of NdFeB and non-rare earth components. Effectiveness of the method and device was tested for the reference demagnetized magnet dedicated for magnetostrictive actuators.
基金primarily supported by the National Natural Science Foundation of China(grant number 301070603)。
文摘The permanent magnets will be irreversibly demagnetized under high temperature and high velocity during the electromagnetic buffering.In this study,the magnetic field induced by eddy currents and the self-demagnetizing field of permanent magnet are taken into consideration together for demagnetization analyse.The magnetic Reynolds number is used to express the eddy currents demagnetization.The correction coefficient being expressed as the index of the air-gap width,the inner cylinder thickness,iron pole axial length and the permanent magnet demagnetization coefficient is introduced by magnetic path analysis to represent the self-demagnetization effect and the demagnetization extent.The electromagnetic buffer(EMB)prototype is tested under intensive impact loads of different strengths at room temperature.The accuracy of the nonlinear irreversible demagnetization finite element model is verified by demagnetization on damping force,velocity and displacement.Finally,high-velocity demagnetization and high-temperature demagnetization are analysed in order to obtain the distribution law of irreversible demagnetization.
基金the National Natural Science Foundation of China under Grant 51807094。
文摘A category of permanent-magnet-shield(PM-shield)axial-field dual-rotor segmented switched reluctance machines(ADS-SRMs)are presented in this paper.These topologies are featured by using the magnetic material to shield the flux leakage in the stator and rotor parts.Besides,the deployed magnets weaken the magnetic saturation in the iron core,thus increasing the main flux.Hence,the torque-production capability can be increased effectively.All the PM-shield topologies are proposed and designed based on the magnetic equivalent circuit(MEC)model of ADS-SRM,which is the original design deploying no magnet.The features of all the PM-shield topologies are compared with the original design in terms of the magnetic field distributions,flux linkages,phase inductances,torque components,and followed by their motion-coupled analyses on the torque-production capabilities,copper losses,and efficiencies.Considering the cost reduction and the stable ferrite-magnet supply,an alternative proposal using the ferrite magnets is applied to the magnetic shielding.The magnet demagnetization analysis incorporated with the thermal behavior is performed for further verification of the motor performance.
基金This work was supported by the Natural Science Foundation of China under Grant 51307031 and part by the Natural Science Foundation of Heilongjiang Province under Grant E2018034 and China Postdoctoral Science Foundation funded project under Grant 2019M651185.
文摘Demagnetization behavior of Halbach magnetized compensated pulsed alternator(CPA)is studied by using finite element method(FEM)under the different demagnetization factors in this paper.The effect of armature reaction magnetic field and thermal rise on demagnetization of PMs is analyzed.This paper investigates the effect of different demagnetization factors on magnetic field distribution,load current,and no-load phase voltage.A series of dynamic demagnetization points in Halbach array permanent magnet(PM)are evaluated to search the worst working point.Partial demagnetization risk can be represented by the worst working point,and the global demagnetization of the PM is represented by the no-load phase voltage characteristics after discharge.The research results demonstrated that the compensation shield with a certain thickness can increase the discharge current and weaken the demagnetization influence of armature reaction.The demagnetization effect of armature reaction on PMs at high temperatures will be strengthened.
基金Project supported by the Natural Science Foundation of Shanghai(15ZR1448000)the State Key Lab of Advanced Metals and Materials(2016-Z03)
文摘The magnetic field stability of the PrFeB magnets is one of the key points which affect its application in such devices as cryogenic permanent magnet undulators. In this study, the magnetic properties and micro structure of PrFeB magnets, which were developed by the grain boundary diffusion, were examined. The demagnetizing field distribution of the cryogenic permanent magnet undulator made using the PrFeB magnets was simulated by Radia, and the change mechanism of the irreversible demagnetization following treatments at high temperatures was experimentally studied, The results show that the intrinsic coercivity of the PrFeB magnets can be increased by diffusion of Tb. Meanwhile, the remanence of the magnets displays almost no loss, and the increasing range is closely related to the orientation thickness of the PrFeB magnet, Therefore, the PrFeB magnets developed using grain boundary diffusion are found to have extremely high comprehensive magnetic properties, The irreversible demagnetization of the PrFeB magnets developed by grain boundary diffusion for the CPMU is determined to be significantly improved following high-temperature treatments.
基金This work was supported in part by the National Natural Science Foundation of China under grant no.52067008.
文摘In this paper,a novel intensifying-flux variable flux-leakage interior permanent magnet(IFVF-IPM)machine is proposed,in which flux barriers were designed deliberately between the adjacent poles to obtain intensifying-flux effect and variable flux-leakage property.The rotor topology and design principles of the proposed machine are also introduced.Then,a multi-objective optimization method is adopted based on the sensitivity analysis,and some design variables of IFVF-IPM machine with strong sensitivity are selected to optimization progress by using the non-dominated sorting genetic algorithm-Ⅱ(NSGA-Ⅱ).Moreover,the electromagnetic characteristics of conventional IPM machine,conventional IFVF-IPM machine(CIFVF-IPM)and the novel IFVF-IPM machine are compared based on the finite element analysis(FEA)method which includes flux linkage,inductances characteristic,torque-speed envelops and power characteristic,as well as evaluation of the risk of irreversible demagnetization.Finally,the experiment results show that the IFVF-IPM machine has a better performance in flux weakening capability for wide speed range and a lower risk of irreversible demagnetization,which indicates the validity and feasibility of the proposed machine.
文摘As a auxiliary brake, Permanent Magnet Retarder (PMR) generates lots of energy and has greater temperature-rise when PMR works, so that it has a direct impact on PMR work performance and even causes demagnetization seriously. In order to analyze permanent magnet (PM) demagnetization in high-temperature in PMR, PMR mathematical model is established firstly, and the boundary conditions of finite element analysis are determined. Then the eddy current field distribution in the rotor is determined by solving eddy current demagnetization field, and PM dynamic permeance coefficient is obtained. Combined with PM demagnetization curve analysis, PMR permanent magnet demagnetization properties are analyzed. The analysis result is validated by the bench test. It shows that part of PM is demagnetized when PRM continues working for about 15 minutes, and the braking performance is declined. Finally, three PMR optimization design methods are proposed.
文摘This paper presents new converter for torque ripple minimization of three phases Switched Reluctance Motor (SRM). The proposed converter has basic passive circuit which includes two diodes and one capacitor to the front end of an asymmetric converter with a specific end goal to get a high magnetization and demagnetization voltage. In view of this boost capacitor, the charge and demagnetization voltage are higher. Accordingly, it can reduce the negative torque generation from the tail current and enhance the output power. The proposed converter circuit is equipped for minimizing the SRM torque ripple furthermore enhancing the average torque when contrasted with traditional converter circuit. A three-phase SRM is modeled and the simulation output for no load and stacked condition depicts that the proposed converter has better performance when contrasted with traditional converter. It is appropriate for electric vehicle applications. The proposed framework is simulated by utilizing MATLAB/Simulink environment and their outcomes are examined extravagantly.
基金NSFC(90923027 and 51050110137)The Fundamental Research Funds for Central Universitie
文摘Effect of heat source sliding contact on the CoPtCr-based magnetic recording disk was investigated.A tribo-test of the disk with low load heat source and the scan of disk with magnetic head were sequentially carried out.Then disk samples in the contact area were observed by atomic force microscopy(AFM)and magnetic force microscopy(MFM).A finite element model using thermomechanical coupling was developed to calculate the mechanical and thermal response of the disk under heat source sliding contact based on the experimental results.It was found that data loss load under sliding contact with a heat source was far less than that without a heat source,and mechanical scratches and demagnetization did not occur in the data loss area under the experimental conditions.The finite element analysis(FEA)results indicate that the thin surface DLC coating has more significant effect on the mechanical response than the thermal response of the magnetic layer.
基金financially supported by the National High Technology Research and Development Program of China (No. 2011AA03A401)the National Basic Research Program of China (No. 2014CB643701)+1 种基金the National Natural Science Foundation of China (Nos. 51171049 and 51271060)the National Key Technology R&D Program (No. 2012BAE02B01)
文摘The relationship between the microstructure and magnetic properties of Nd-Fe-B sintered magnet compressed by shock wave with 6.26 GPa≤p≤7.16 GPa was investigated.It reveals that Nd-Fe-B magnets show a demagnetization behavior after compressed by shock wave.The intergranular fracture is the main occurring phe-nomenon in the shock wave-compressed magnets.The coercivity of the shock wave-compressed Nd-Fe-B magnets could be recovered after repeating the annealing process.It suggests that only the morphology change just like the intergranular fracture occurs,and there is no structural change in the grain boundary phase in the shock wave-compressed magnet.Matrix phase grain interconnection,microcracks and pores,and alterant orientation relationship between matrix phase and grain boundaries phase are con-sidered as induced factors of demagnetization.
文摘A three-dimentional finite element micromagnetic algorithm was developed to study the magnetization reversal of Pr2Fe14B single-phase nanocrystalline permanent magnets. A single-phase nanocrystalline Pr2Fe14B magnets composed of 216 irregular shaped grains was built. The magnetic hysteresis loops were simulated by micromagnetic finite element method. The contribution of intergrain exchange coupling ment degree (IGEC) to remanence enhancement is considered related to the alignin oriented magnets, and decreased with improved grain alignment. For the magnets with perfectly crystallo- graphic alignment of grains, the contribution of IGEC to remanence enhancement is nearly zero. The shape of demagnetization curve is not only dependent on grain alignment degree but also on the strength of IGEC in magnets.