期刊文献+
共找到64篇文章
< 1 2 4 >
每页显示 20 50 100
Delocalized Nonlinear Vibrational Modes in Bcc Lattice for Testing and Improving Interatomic Potentials
1
作者 Denis S.Ryabov IgorV.Kosarev +2 位作者 Daxing Xiong Aleksey A.Kudreyko Sergey V.Dmitriev 《Computers, Materials & Continua》 2025年第3期3797-3820,共24页
Molecular dynamics(MD)is a powerful method widely used in materials science and solid-state physics.The accuracy of MD simulations depends on the quality of the interatomic potentials.In this work,a special class of e... Molecular dynamics(MD)is a powerful method widely used in materials science and solid-state physics.The accuracy of MD simulations depends on the quality of the interatomic potentials.In this work,a special class of exact solutions to the equations of motion of atoms in a body-centered cubic(bcc)lattice is analyzed.These solutions take the form of delocalized nonlinear vibrational modes(DNVMs)and can serve as an excellent test of the accuracy of the interatomic potentials used in MD modeling for bcc crystals.The accuracy of the potentials can be checked by comparing the frequency response of DNVMs calculated using this or that interatomic potential with that calculated using the more accurate ab initio approach.DNVMs can also be used to train new,more accurate machine learning potentials for bcc metals.To address the above issues,it is important to analyze the properties of DNVMs,which is the main goal of this work.Considering only the point symmetry groups of the bcc lattice,34 DNVMs are found.Since interatomic potentials are not used in finding DNVMs,they are exact solutions for any type of potential.Here,the simplest interatomic potentials with cubic anharmonicity are used to simplify the analysis and to obtain some analytical results.For example,the dispersion relations for small-amplitude phonon modes are derived,taking into account interactions between up to the fourth nearest neighbor.The frequency response of the DNVMs is calculated numerically,and for some DNVMs examples of analytical analysis are given.The energy stored by the interatomic bonds of different lengths is calculated,which is important for testing interatomic potentials.The pros and cons of using DNVMs to test and improve interatomic potentials for metals are discussed.Since DNVMs are the natural vibrational modes of bcc crystals,any reliable interatomic potential must reproduce their properties with reasonable accuracy. 展开更多
关键词 Interatomic potentials molecular dynamics bcc lattice long-range interactions dispersion relation nonlinear dynamics exact solution delocalized nonlinear vibrational mode
在线阅读 下载PDF
Quantum-Size FeS_(2) with Delocalized Electronic Regions Enable High-Performance Sodium-Ion Batteries Across Wide Temperatures
2
作者 Tianlin Li Danyang Zhao +8 位作者 Meiyu Shi Chao Tian Jie Yi Qing Yin Yongzhi Li Bin Xiao Jiqiu Qi Peng Cao Yanwei Sui 《Nano-Micro Letters》 2026年第1期355-374,共20页
Wide-temperature applications of sodium-ion batteries(SIBs)are severely limited by the sluggish ion insertion/diffusion kinetics of conversion-type anodes.Quantum-sized transition metal dichalcogenides possess unique ... Wide-temperature applications of sodium-ion batteries(SIBs)are severely limited by the sluggish ion insertion/diffusion kinetics of conversion-type anodes.Quantum-sized transition metal dichalcogenides possess unique advantages of charge delocalization and enrich uncoordinated electrons and short-range transfer kinetics,which are crucial to achieve rapid low-temperature charge transfer and high-temperature interface stability.Herein,a quantum-scale FeS_(2) loaded on three-dimensional Ti_(3)C_(2) MXene skeletons(FeS_(2) QD/MXene)fabricated as SIBs anode,demonstrating impressive performance under wide-temperature conditions(−35 to 65).The theoretical calculations combined with experimental characterization interprets that the unsaturated coordination edges of FeS_(2) QD can induce delocalized electronic regions,which reduces electrostatic potential and significantly facilitates efficient Na+diffusion across a broad temperature range.Moreover,the Ti_(3)C_(2) skeleton reinforces structural integrity via Fe-O-Ti bonding,while enabling excellent dispersion of FeS_(2) QD.As expected,FeS_(2) QD/MXene anode harvests capacities of 255.2 and 424.9 mAh g^(−1) at 0.1 A g^(−1) under−35 and 65,and the energy density of FeS_(2) QD/MXene//NVP full cell can reach to 162.4 Wh kg^(−1) at−35,highlighting its practical potential for wide-temperatures conditions.This work extends the uncoordinated regions induced by quantum-size effects for exceptional Na^(+)ion storage and diffusion performance at wide-temperatures environment. 展开更多
关键词 Quantum-size effect Electron delocalization Efficient short-range transfer kinetics Wide-temperature Sodium-ion batteries
在线阅读 下载PDF
Delocalizedπ_(3)^(6) Bond in OX_(2) (X=Halogen) Molecules
3
作者 Yi-han Tang Pu Yang +3 位作者 Meng-yuan Chen Yu-ru Wang Jia-xin Wang Jia-wei Xu 《Chinese Journal of Chemical Physics》 SCIE EI CAS CSCD 2022年第3期542-550,I0003,共10页
OX_(2)(X=halogen)molecules was studied theoretically.Calculation results show that delocalizedπ_(3)^(6) bonds exist in their electronic structures and O atoms adopt the sp^(2) type of hybridization,which violates the... OX_(2)(X=halogen)molecules was studied theoretically.Calculation results show that delocalizedπ_(3)^(6) bonds exist in their electronic structures and O atoms adopt the sp^(2) type of hybridization,which violates the prediction of the valence shell electron pair repulsion theory of sp^(3) type.Delocalization stabilization energy is proposed to measure the contribution of delocalizedπ_(3)^(6) bond to energy decrease and proves to bring extra-stability to the molecule.These phenomena can be summarized as a kind of coordinating effect. 展开更多
关键词 Theoretical and computational chemistry Valence shell electron pair repulsion theory delocalizedπbond Delocalization stabilization energy Dihalogen monoxide
在线阅读 下载PDF
Optimizing the electronic spin state and delocalized electron of NiCo_(2)(OH)_(x)/MXene composite by interface engineering and plasma boosting oxygen evolution reaction
4
作者 Jingyao Xu Xia Zhong +2 位作者 Xiaofeng Wu Ying Wang Shouhua Feng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第8期129-140,I0004,共13页
The electrocatalytic activity of transition-metal-based compounds is closely related to the electronic configuration.However,optimizing the surface electron spin state of catalysts remains a challenge.Here,we develope... The electrocatalytic activity of transition-metal-based compounds is closely related to the electronic configuration.However,optimizing the surface electron spin state of catalysts remains a challenge.Here,we developed a spin-state and delocalized electron regulation method to optimize oxygen evolution reaction(OER)performance by in-situ growth of NiCo_(2)(OH)_(x) using Oswald ripening and coordinating etching process on MXene and plasma treatment.X-ray absorption spectroscopy,magnetic tests and electron paramagnetic resonance reveal that the coupling of NiCo_(2)(OH)_(x) and MXene can induce remarkable spin-state transition of Co^(3+)and transition metal ions electron delocalization,plasma treatment further optimizes the 3 d orbital structure and delocalized electron density.The unique Jahn-Teller phenomenon can be brought by the intermediate spin state(t2 _(g)^(5) e_(g)^(1))of Co^(3+),which benefits from the partial electron occupied egorbitals.This distinct electron configuration(t2_(g)^(5) e_(g)^(1))with unpaired electrons leads to orbital degeneracy,that the adsorption free energy of intermediate species and conductivity were further optimized.The optimized electrocatalyst exhibits excellent OER activity with an overpotential of 268 m V at 10 m A cm^(-2).DFT calculations show that plasma treatment can effectively regulate the d-band center of TMs to optimize the adsorption and improve the OER activity.This approach could guide the rational design and discovery of electrocatalysts with ideal electron configurations in the future. 展开更多
关键词 Transition metal compounds Electronic state control of surface/interface Electron spin state delocalized electron Electrocatalytic material
在线阅读 下载PDF
Assessment of delocalized and localized molecular orbitals through electron momentum spectroscopy
5
作者 刘源 张凌峰 宁传刚 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第6期181-187,共7页
Recently, there was a hot controversy about the concept of localized orbitals, which was triggered by Grushow's work titled "Is it time to retire the hybrid atomic orbital?" [J. Chem. Educ. 88, 860 (2011)]. To c... Recently, there was a hot controversy about the concept of localized orbitals, which was triggered by Grushow's work titled "Is it time to retire the hybrid atomic orbital?" [J. Chem. Educ. 88, 860 (2011)]. To clarify the issue, we assess the delocalized and localized molecular orbitals from an experimental view using electron momentum spectroscopy. The delocalized and localized molecular orbitals based on various theoretical models for CH4, NH3, and H20 are compared with the experimental momentum distributions. Our results show that the delocalized molecular orbitals rather than the localized ones can give a direct interpretation of the experimental (e, 2e) results. 展开更多
关键词 electron momentum spectroscopy delocalized molecular orbital localized molecular orbital
原文传递
A Cheeger-Müller Theorem for Delocalized L^(2)-analytic Torsion Form
6
作者 Guo Lin AN 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2024年第11期2615-2670,共56页
In this paper we define the delocalized L^(2)-analytic torsion form and the delocalized L^(2)-combinatorial torsion form.By using the method of Bismut-Goette,under the conditions of positive Novikov-Shubin invariants,... In this paper we define the delocalized L^(2)-analytic torsion form and the delocalized L^(2)-combinatorial torsion form.By using the method of Bismut-Goette,under the conditions of positive Novikov-Shubin invariants,nontrivial finite conjugacy class and the existence of a family of fiberwise Morse functions whose gradient fields satisfy the Thom-Smale transversality condition in every fiber,we prove the Cheeger-Müller type relation between the delocalized L^(2)-analytic torsion form and the delocalized L^(2)-combinatorial torsion form. 展开更多
关键词 delocalized trace Novikov-Shubin invariant delocalized L^(2)-analytic torsion form delocalized L^(2)-combinatorial torsion form
原文传递
Enhanced charge transport in 2D inorganic molecular crystals constructed with charge-delocalized molecules
7
作者 Jie Wu Yan Zeng +10 位作者 Xin Feng Yiran Ma Pengyu Li Chunlei Li Teng Liu Shenghong Liu Yinghe Zhao Huiqiao Li Lang Jiang Yuanping Yi Tianyou Zhai 《InfoMat》 SCIE CSCD 2024年第7期90-101,共12页
Outstanding charge transport in molecular crystals is of great importance in modern electronics and optoelectronics.The widely adopted strategies to enhance charge transport,such as restraining intermolecular vibratio... Outstanding charge transport in molecular crystals is of great importance in modern electronics and optoelectronics.The widely adopted strategies to enhance charge transport,such as restraining intermolecular vibration,are mostly limited to organic molecules,which are nearly inoperative in 2D inor-ganic molecular crystals currently.In this contribution,charge transport in 2D inorganic molecular crystals is improved by integrating charge-delocalized Se8 rings as building blocks,where the delocalized electrons on Se8 rings lift the intermolecular orbitals overlap,offering efficient charge transfer channels.Besides,α-Se flakes composed of charge-delocalized Se8 rings possess small exciton binding energy.Benefitting from these,α-Se flake exhibits excellent photodetection performance with an ultrafast response rate(�5μs)and a high detectivity of 1.08�1011 Jones.These findings contribute to a deeper under-standing of the charge transport of 2D inorganic molecular crystals composed of electron-delocalized inorganic molecules and pave the way for their poten-tial application in optoelectronics. 展开更多
关键词 charge transport delocalized inorganic molecular crystals TWO-DIMENSIONAL
原文传递
Asymmetrical carbazole-benzonitrile-based TADF emitters designed by alternate donor-acceptor strategy
8
作者 Zhaoyue Lü Tiantian Chai +8 位作者 Yichao Jin Xiao Wang Ye Zou Lijiang Zhang Jiankang Feng Mengtong Zhang Shuo Wang Chichong Lu Guofan Jin 《Chinese Chemical Letters》 2025年第6期500-504,共5页
A pair of asymmetric rigid carbazole-benzonitrile-based emitters were synthesized by strategically alternating donor and acceptor groups along the molecular edges.The spin-flip process is accelerated by both the forma... A pair of asymmetric rigid carbazole-benzonitrile-based emitters were synthesized by strategically alternating donor and acceptor groups along the molecular edges.The spin-flip process is accelerated by both the formation of localized and delocalized charge transfer states due to linearly positioned donors and strong spin-orbital coupling between different excitation feature of the lowest singlet and triplet excited states.This molecular architecture results in a remarkable short delayed lifespan of around 100 ns.The application of the two emitters in organic light-emitting diodes(OLEDs)achieves the highest external quantum efficiencies of 13.0%for the green emitter and 9.1%for the sky-blue emitter.Impressively,these devices maintain their high efficiency even at high luminance levels.The sustained efficiency is ascribed to the effective suppression of exciton quenching by substantially shortening delayed lifespan.These findings underscore the practical utility of the molecular design strategy that incorporates alternate donor and acceptor groups at the molecular periphery for shortening delayed fluorescence lifetime,and hold great promise for the development of high-performance OLEDs. 展开更多
关键词 Delayed fluorescence Linear D-A-D structure Localized excited state delocalized charge transfer state Spin-orbital coupling
原文传递
Outer delocalized electron aggregation of bromide bridged core–shell CuBr@C for hydrogen evolution reaction
9
作者 Tianyi Xu Ruoyu Li +11 位作者 Lei Zhang Dongxu Jiao Yilong Dong Ming Gong Dantong Zhang Jinchang Fan Dewen Wang Yanhua Liu Xiao Zhao Wei Zhang Weitao Zheng Xiaoqiang Cui 《Nano Research》 SCIE EI CSCD 2023年第5期6608-6614,共7页
Modulation of the surface electron distribution is a challenging problem that determines the adsorption ability of catalytic process.Here,we address this challenge by bridging the inner and outer layers of the core–s... Modulation of the surface electron distribution is a challenging problem that determines the adsorption ability of catalytic process.Here,we address this challenge by bridging the inner and outer layers of the core–shell structure through the bridge Br atom.Carbon shell wrapped copper bromide nanorods(CuBr@C)are constructed for the first time by chemical vapour deposition with hexabromobenzene(HBB).HBB pyrolysis provides both bridge Br atom and C shells.The C shell protects the stability of the internal halide structure,while the bridge Br atom triggers the rearrangement of the surface electrons and exhibits excellent electrocatalytic activity.Impressively,the hydrogen evolution reaction(HER)activity of CuBr@C is significantly better than that of commercial N-doped carbon nanotubes,surpassing commercial Pt/C at over 200 mA·cm^(−2).Density functional theory(DFT)calculations reveal that bridge Br atoms inspire aggregation of delocalized electrons on C-shell surfaces,leading to optimization of hydrogen adsorption energy. 展开更多
关键词 bridge Br atoms delocalized electron aggregation core–shell nanorods C-shell wrapped CuBr hydrogen evolution reaction
原文传递
Periphery-Hydrogenating Effects on the Unordinary 14 w-Electron Delocalized Circuits and Related Electronic Properties of Subporphyrazine Analogs: A Density Functional Theory Investigation
10
作者 赵鲁阳 齐冬冬 +1 位作者 蔡雪 姜建壮 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2012年第9期2126-2130,共5页
Density functional theory method was employed to investigate the electronic properties of two series of sub- porphyrazine and subphthalocyanine derivatives, namely SubPz, SubPz-1H, SubPz-2H, SubPz-3H, SubPc, SubPc-1H,... Density functional theory method was employed to investigate the electronic properties of two series of sub- porphyrazine and subphthalocyanine derivatives, namely SubPz, SubPz-1H, SubPz-2H, SubPz-3H, SubPc, SubPc-1H, SubPc-2H, and SubPc-3H. Calculated results show that peripheral hydrogenation essentially changes the delocalized pattern from the common π14^14 to limited π13^14 or π12^14 for SubPz series, and substantially weakens the aromaticity for both SubPz and SubPc compounds. The unordinary delocalized circuit owns an unstable energy level, and thus gives rise to a notable transformation of geometric configuration, frontier molecular orbital topology, and absorption spectral bands. 展开更多
关键词 subporphyrazine SUBPHTHALOCYANINE AROMATICITY delocalized circuit density functional theory
原文传递
Mg-Li-Cu alloy anode for highly reversible lithium metal batteries
11
作者 Xinbin Li Shuai Liu +7 位作者 Fangya Li Kaiwen Ma Hao Xu Zhiang Li Fan Ding Zhenhua Yan Runhua Fan Hongzhi Cui 《Journal of Magnesium and Alloys》 2025年第5期2144-2154,共11页
Lithium metal is considered as the most promising anode material for the next generation of secondary batteries due to its high theoretical specific capacity and low potential.However,undesirable parasitic reactions,p... Lithium metal is considered as the most promising anode material for the next generation of secondary batteries due to its high theoretical specific capacity and low potential.However,undesirable parasitic reactions,poor cycling stability and safety concerns could be caused by uncontrolled dendrite and high reactivity of Li metal,which hinder the practical application of Li-metal anode in high-energy rechargeable Li metal batteries(LMBs).Here,a facile way is reported to stabilize Li metal anode by building high lithiophilic Mg-Li-Cu alloy.Due to the delocalization of electrons on the deposited lithium enhanced by Cu self-diffusion into Mg-Li alloy,the growth of lithium dendrites could be inhibited by Mg-Li-Cu alloy.Moreover,the parasitic reactions with electrolyte could be avoided by the Mg-Li-Cu alloy anode.It is noteworthy that the symmetric battery life of Mg-Li-Cu alloy electrodes exceeds 9000 h at 1 m A cm^(-2)and 1 m Ah cm^(-2).The full cell(LiFePO_(4)|Mg-Li-Cu)exhibits a specific capacity of 148.2 m Ah g^(-1),with a capacity retention of 96.4%,at 1 C after 500 cycles.This work not only pave the way for application of flexible alloy anode in highly stable LMBs,but also provides novel strategies for preparation and optimization of Mg alloy. 展开更多
关键词 SELF-DIFFUSION Delocalization of electrons Mg-Li-Cu alloy Li dendrite Lithium metal battery
在线阅读 下载PDF
Ni^(2+)crossover effect induced by electron delocalization to construct corrosion-resistant interface for Li metal battery
12
作者 Chengwei Ma Hongxing Wang +4 位作者 Jianwei Wang Tinglu Song Jiangqi Zhou Chunli Li Shizhao Xiong 《Journal of Energy Chemistry》 2025年第8期650-659,共10页
In order to maximize the advantages of high energy density in Li metal batteries,it is necessary to match cathode materials with high specific capacities.Ni-rich layered oxides have been shown to reversibly embed more... In order to maximize the advantages of high energy density in Li metal batteries,it is necessary to match cathode materials with high specific capacities.Ni-rich layered oxides have been shown to reversibly embed more Li+during charge and discharge processes due to the increased Ni content in their crystal structure,thereby providing higher energy density.However,a significant challenge associated with Ni-rich layered oxide cathodes is the crossover effect,which arises from the dissolution of Ni^(2+)from the cathode,leading to a rapid decline in battery capacity.Through the delocalization-induced effect of solvent molecules,Ni^(2+)is transformed into a fluorinated transition metal inorganic phase layer,thereby forming a corrosion-resistant Li metal interface.This prevents solvent molecules from being reduced and degraded by Li metal anode.The surface of the Li metal anode exhibits a smooth and flat deposition morphology after long-term cycling.Furthermore,the introduction of Ni^(2+)can enhance the concentration gradient of transition metal ions near the cathode,thereby suppressing the dissolution process of transition metal ions.Even the NCM955 cathode with a mass load of 22 mg cm^(−2)also has great capacity retention after cycling.The Ni^(2+)induced by high electronegative functional groups of solvent under the electron delocalization effect,preventing the Ni ions dissolution of cathode and constructing a corrosion-resistant Li metal interface layer.This work provides new insights into suppressing crossover effects in Li metal batteries with high nickel cathodes. 展开更多
关键词 Crossover effect Electron delocalization Corrosion-resistant interface Li metal battery Fluorinated inorganic phase layer
在线阅读 下载PDF
Unleashing high-efficiency proton storage:Innovative design of ladder-type organic molecules
13
作者 Yujie Cui Jun Yang +5 位作者 Houxiang Wang Yueheng Tao Peipei Zhang Guangxing Li Minjie Shi Edison Huixiang Ang 《Carbon Energy》 2025年第4期139-149,共11页
The architectural design of redox-active organic molecules and the modulation of their electronic properties significantly influence their application in energy storage systems within aqueous environments.However,thes... The architectural design of redox-active organic molecules and the modulation of their electronic properties significantly influence their application in energy storage systems within aqueous environments.However,these organic molecules often exhibit sluggish reaction kinetics and unsatisfactory utilization of active sites,presenting significant challenges for their practical deployment as electrode materials in aqueous batteries.In this study,we have synthesized a novel organic compound(PTPZ),comprised of a centrally symmetric and fully ladder-type structure,tailored for aqueous proton storage.This unique configuration imparts the PTPZ molecule with high electron delocalization and enhanced structural stability.As an electrode material,PTPZ demonstrates a substantial proton-storage capacity of 311.9mAh g^(-1),with an active group utilization efficiency of up to 89% facilitated by an 8-electron transfer process,while maintaining a capacity retention of 92.89% after 8000 chargingdischarging cycles.Furthermore,in-situ monitoring technologies and various theoretical analyses have pinpointed the associated electrochemical processes of the PTPZ electrode,revealing exceptional redox activity,rapid proton diffusion,and efficient charge transfer.These attributes confer a significant competitive advantage to PTPZ as an anode material for high-performance proton storage devices.Consequently,this work contributes to the rational design of organic electrode materials for the advancement of rechargeable aqueous batteries. 展开更多
关键词 aqueous batteries electrode material electron delocalization proton storage redox‐active organic molecule
在线阅读 下载PDF
Highly delocalized endohedral metal in Gd@C2v(9)-C82 metallofullerenes co-crystallized with α-Se
14
作者 Cheng Li Xuejiao J. Gao +11 位作者 Huanli Yao Huan Huang Rongli Cui Xihong Guo Lele Zhang Bing Liu Binggang Xu Weiqun Shi Jinquan Dong Lai Feng Xingfa Gao Baoyun Sun 《Nano Research》 SCIE EI CAS CSCD 2018年第4期2277-2284,共8页
A new Gd@C2v(9)-C82·2.5(S8)·0.5(CS2) co-crystal was prepared for the first time and characterized by single-crystal X-ray diffraction (XRD). The analysis dearly showed that, even though the C2v(9)-... A new Gd@C2v(9)-C82·2.5(S8)·0.5(CS2) co-crystal was prepared for the first time and characterized by single-crystal X-ray diffraction (XRD). The analysis dearly showed that, even though the C2v(9)-C82 cage is fully ordered, the endohedral Gd atoms are highly disordered. This result indicates the presence of highly delocalized endohedral Gd atoms, which has never been reported before. Density functional theory (DFT) calculations were used to rationalize the XRD results. The calcula- tions reveal the presence of two local energy minima, a and b, with the latter existing as four conformers b1-b4. Whereas the energy difference between the two minima is calculated only - 10 kcal/mol, their interconversion is almost impossible due to a high energy barrier, of up to 35.98 kcal/mol. This suggests the existence of multiple low-energy positions for the endohedral Gd atom. In addition, a remarkable electron transfer from the C2d9)-C82 cage to the S8 moieties was demonstrated, which might result in a modified endohedral environment and further contribute to the occurrence of delocalized endohedral Gd atoms. 展开更多
关键词 METALLOFULLERENES sulfur structure elucidation DELOCALIZATION density functional theory(DFT) calculations
原文传递
In situ embedded bismuth nanoparticles among highly porous carbon fibers for efficient carbon dioxide reduction 被引量:1
15
作者 Wei-Jian Guo Ao Zhou +1 位作者 Wen-Wen Cai Jin-Tao Zhang 《Rare Metals》 SCIE EI CAS CSCD 2024年第9期4312-4320,共9页
Electrocatalysis provides an optimal approach for the conversion of carbon dioxide(CO_(2))into high-value chemicals,thereby presenting a promising avenue toward achieve carbon neutrality.However,addressing the selecti... Electrocatalysis provides an optimal approach for the conversion of carbon dioxide(CO_(2))into high-value chemicals,thereby presenting a promising avenue toward achieve carbon neutrality.However,addressing the selectivity and stability challenges of metal catalysts in electrolytic reduction remains a daunting task.In this study,the electrospinning method is employed to fabricate porous carbon nanofibers loaded with bismuth nanoparticles with the help of in situ pyrolysis.The porous carbon nanofibers as conductive support would facilitate the dispersion of bismuth active sites while inhibiting their aggregation and promoting the mass transfer,thus enhancing their electrocatalytic activity and stability.Additionally,nitrogen doping induces electron delocalization in bismuth atoms through metal-support interactions,thus enabling efficient adsorption of intermediates for improving selectivity based on the theoretical calculation.Consequently,Bi@PCNF-500 exhibits the exceptional selectivity and stability across a wide range of potential windows.Notably,its faradaic efficiency(FE)of formate reaches 92.7%in H-cell and94.9%in flow cell,respectively,with good electrocatalytic stability.The in situ characterization and theoretical calculations elucidate the plausible reaction mechanism to obtain basic rules for designing efficient electrocatalyst. 展开更多
关键词 Porous carbon nanofiber N-DOPING Electron delocalization Carbon dioxide reduction
原文传递
Re-delocalization of localized d-electrons in VO_(2)(R)-VS_(4)hetero-structure enables high performance of rechargeable Mg-ion batteries
16
作者 Lijiao Zhou Chao Shen +3 位作者 Xueyang Hou Zhao Fang Ting Jin Keyu Xie 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第5期1830-1840,共11页
Rechargeable Mg-ion batteries(MIBs)have attracted much more attentions by virtue of the high capacity from the two electrons chemistry.However,the reversible Mg^(2+)diffusion in cathode materials is restricted by the ... Rechargeable Mg-ion batteries(MIBs)have attracted much more attentions by virtue of the high capacity from the two electrons chemistry.However,the reversible Mg^(2+)diffusion in cathode materials is restricted by the strong interactions between the high-polarized bivalent Mg^(2+)ions and anionic lattice.Herein,we design and propose a hetero-structural VO_(2)(R)-VS_(4)cathode,in which the re-delocalized d-electrons can effectively shield the polarity of Mg^(2+)ions.Theoretically,the electrons should spontaneously transfer from VS_(4)to VO_(2)(R)through the interfaces of hetero-structure due to the lower work function value of VS_(4).Furthermore,the internal electrons transfer lead to the electronic injection into VO_(2)(R)from VS_(4)and the partially broken V-V dimers,indicating the presence of lone pair electrons and charge re-delocalization.Benefiting from the shield effect of re-delocalized electrons,and the weakened attraction between cations and O/S anions enables more S^(2-)-S_(2)^(2-)redox groups to participate the electrochemical reactions and compensate the double charge of Mg^(2+)ions.Accordingly,VO_(2)(R)-VS_(4)hetero-structure exhibits a high specific capacity of 554 mA h g^(-1)at 50 mA g^(-1).It is believed that the charge re-delocalization of cathode extremely boost the Mg^(2+)ions migration for the high-capacity of MIBs. 展开更多
关键词 Mg-ion batteries Cathode Charge delocalization Electronic structure HETEROSTRUCTURE
在线阅读 下载PDF
Rich electron delocalization structure in carbon nitride inducing radical transfer for high-performance photocatalytic uranyl reduction
17
作者 Zhangmeng Liu Yayao Li +6 位作者 Shuaiqi Yao Runchao Zhou Guiting Lin Yunzhi Fu Qixin Zhou Wei Wang Weijie Chi 《Carbon Energy》 CSCD 2024年第12期151-163,共13页
Investigating the activation of the persulfate process through heterogeneous carbonaceous catalysts to expedite the reduction of uranyl ions(U(Ⅵ))is imperative.The primary hurdle involves understanding the transfer a... Investigating the activation of the persulfate process through heterogeneous carbonaceous catalysts to expedite the reduction of uranyl ions(U(Ⅵ))is imperative.The primary hurdle involves understanding the transfer and distribution of photogenerated carriers during the reduction process in this intricate system and deciphering the role of activated groups in promoting reduction efficiency.In this study,we strategically regulate the structure of polymeric carbon nitride to promote the N-doped state,thereby facilitating delocalization electron enrichment.The resulting active sites effectively activate peroxyl disulfate(PDS),generating radicals that expedite the selective reduction of U(VI).This strategic approach mitigates the inherent disadvantage of the short half-life of free radicals in persulfate-based advanced oxidation processes.As a consequence of our endeavors and with the simultaneous presence of PDS and hydrogen peroxide,we achieve an exceptional photoreduction efficiency of 100%within a remarkably short period of 20 min.This breakthrough presents a high-efficiency application with significant potential for addressing the pollution associated with uranylcontaining wastewater.Our findings not only contribute to the fundamental understanding of AOPs but also offer a practical solution with implications for environmental remediation. 展开更多
关键词 persulfate activation PHOTOCATALYTIC polymerized carbon nitride reduction uranium(Ⅵ) rich electron delocalization structure
在线阅读 下载PDF
Abnormal physics of group-Ⅱ telluride system:valence contribution of d electrons
18
作者 段鹤 董有忠 +1 位作者 黄燕 陈效双 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第4期243-248,共6页
The physical trend of group-I/tellurides is unexpected and contrary to the conventional wisdom. The present firstprinciples calculations give fundamental insights into the extent to which group-Ⅱ telluride compounds ... The physical trend of group-I/tellurides is unexpected and contrary to the conventional wisdom. The present firstprinciples calculations give fundamental insights into the extent to which group-Ⅱ telluride compounds present special properties upon mixing the d valence character. Our results provide explanations for the unexpected experimental observations based on the abnormal binding ordering of metal d electrons and their strong perturbation to the band edge states. The insights into the binary tellurides are useful for the study and control of the structural and chemical perturbation in their ternary alloys and heterostructures. 展开更多
关键词 group-Ⅱ tellurides first-principles calculations electronic property tendency delocalized metal d states
原文传递
Pronounced interfacial interaction in icosahedral Au@C_(60) core-shell nanostructure for boosting direct plasmonic photocatalysis under alkaline condition
19
作者 Yue Tian Qingqiang Cui +4 位作者 Linlin Xu Anxin Jiao Shuang Li Xuelin Wang Ming Chen 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第35期10-21,共12页
The unique hot carrier-driven direct plasmonic photocatalysis of coinage metal nanomaterials(NMs)via energetic localized surface plasmon resonance(LSPR)in visible-light region has been explored in recent years.However... The unique hot carrier-driven direct plasmonic photocatalysis of coinage metal nanomaterials(NMs)via energetic localized surface plasmon resonance(LSPR)in visible-light region has been explored in recent years.However,the low photoinduced electron transfer efficiency and insufficient separation of electronhole pairs would severely preclude their widespread practical applications.Herein,we demonstrate an interesting plasmonic photocatalyst based on the construction of icosahedral(Ih)Au@C_(60) core-shell NMs,taking advantage of specific delocalizedπelectrons structure of a tight C_(60) shell and enhanced LSPR property of Ih Au core.Then,the pronounced interfacial interaction at junction region endows the obtained Au@C_(60) NMs with an outstanding photoinduced hot carrier-transmission during photocatalytic reaction,facilitating a remarkably higher(1.89 times)photocatalytic activity toward visible-light driven degradation of crystal violet(CV)dyes,as compared to bare Au NMs.Impressively,the photocatalytic activity of Ih Au@C_(60) NMs can be effectively optimized by changing the p H value of reaction solution,with the kinetic rate constant reaching the maximum value of 0.179 min^(-1) in pH011.4 solution,while 0.005 min^(-1) at pH03.0.Moreover,due to the protection of a tight C_(60) shell,the Ih Au@C_(60) NMs also possess excellent photocatalytic stability/reusability in recycling runs,holding great potential for the design of robust and high-performance plasmonic photocatalysts in repeated practical applications. 展开更多
关键词 Direct plasmonic photocatalysis Icosahedral Au@C_(60)core-shell nanostructure Localized surface plasmon resonance delocalizedπelectrons Photocatalytic degradation
原文传递
上一页 1 2 4 下一页 到第
使用帮助 返回顶部