Suspended graphene nanopores are widely used in nanofluidic devices,as the machined graphene defects can be downscaled to the angstrom scale.Our recent experimental results showed that the suspended graphene can becom...Suspended graphene nanopores are widely used in nanofluidic devices,as the machined graphene defects can be downscaled to the angstrom scale.Our recent experimental results showed that the suspended graphene can become delaminated from the edges of SiN nanopore under an applied electrical field,theoretical understanding of this process is still lacking.In this work,we analytically studied the voltage-induced blistering of suspended graphene using an energy approach.The external electric field induces accumulation of ions at the graphene-electrolyte interface,causing Maxwell stress resulting in bending and stretching of the graphene and blister formation.We theoretically derived the angle of the graphene blister to the SiN nanopore by energy approach.We found that once the vertical component of the Maxwell stress on the graphene at the perimeter of SiN nanopore ex-ceeds the van der Waals force between the graphene and substrate,the graphene starts to detach from the edges of SiN nanopore.We derived that the threshold voltage of single-layer graphene detachment is in order of 100 mV,which needs to be cautioned for electrical measurements of suspended graphene nanofluidic devices since the voltage amplitude is just in the range of voltage operation for typical electrochemical measurements.The threshold voltage increases as SiN nanopore becomes smaller and in-creases with the number of graphene layers.Our work theoretically describes the blister formation and delamination of graphene from its substrate nanopores.We expect this theory to be useful for optimizing and understanding the unexpected conduction phenomena observed in suspended graphene nanofluidic devices.展开更多
The high-temperature mechanical behaviors of Multi-Layer Composite Panels(MCP)and Corrugated Sandwich Panels(CSP)of Continuous Glass Fiber-Reinforced Polypropylene(CGFRPP)are critical for their application in aerospac...The high-temperature mechanical behaviors of Multi-Layer Composite Panels(MCP)and Corrugated Sandwich Panels(CSP)of Continuous Glass Fiber-Reinforced Polypropylene(CGFRPP)are critical for their application in aerospace fields,which have been rarely mentioned in previous studies.High-temperature quasi-static tensile and compression tests on CGFRPP MCP are conducted first.The results showed that the tensile and compression strength,stiffness,and tensile modulus of MCP decreased with increasing temperature.The Gibson model was found to be more suitable for predicting the high-temperature mechanical performance of MCP after comparing the calculated results of different theoretical models with experimental data.Secondly,hightemperature planar compression tests were conducted on the CGFRPP CSP,revealing that the main failure modes were corrugated core buckling and delamination between the face panel and core material,with delamination being intensified at higher temperatures.Therefore,we proposed a strength theoretical model that considers structural buckling failure and interface delamination failure,and introduced the influence factor to evaluate the effect of interface delamination on structural strength.展开更多
Geodynamic processes following the Indo-Eurasian plate collision remain a key research focus,and the Jinshajiang-Red River tectonic zone(JRTZ),situated along this collision boundary,provides critical insights into pos...Geodynamic processes following the Indo-Eurasian plate collision remain a key research focus,and the Jinshajiang-Red River tectonic zone(JRTZ),situated along this collision boundary,provides critical insights into post-collision tectonic evolution.In this study,we identify a lithological assemblage in the JRTZ,including amphibolite,granite gneiss,and migmatite.These rocks exhibit contrasting geochemical signatures,reflecting multiple source regions:asthenospheric mantle,lithospheric mantle,mafic lower and upper crust.Specifically,amphibolite(28.5 Ma)formed through the partial melting of OIB-like mantle source,whereas S-type granite gneiss(28.2 Ma)originated from the dehydration melting of metamorphosed sedimentary rocks.Amphibole monzonite(28.9 Ma)records the mixing of ancient crustal material with mantle-derived components,while migmatite(37.9 Ma)resulted from deep melting processes of metasedimentary rocks under shear conditions.We propose that the ongoing Indo-Eurasian convergence progressively thickened the crust,ultimately driving large-scale lithospheric delamination between the Eocene and Oligocene.This delamination triggered asthenospheric upwelling,which provided the thermal input required for widespread melting.This lithospheric delamination event started around 38-37 Ma and lasted at least until 28 Ma.展开更多
A comprehensive numerical investigation into mixed⁃mode delamination is presented in this study.It aims to assess the impact of thermal and friction effects through mixed⁃mode flexure crack propagation testing.Finite ...A comprehensive numerical investigation into mixed⁃mode delamination is presented in this study.It aims to assess the impact of thermal and friction effects through mixed⁃mode flexure crack propagation testing.Finite element analysis was employed to model the delamination process,incorporating a contact cohesive zone model.This model couples the traction⁃separation law,the contact law,and the Coulomb friction law simultaneously.The thermomechanical analysis in this study is performed using a sequentially coupled approach,implemented with the finite element software ABAQUS.The findings underscore the importance of this study.展开更多
High-strength steel with excellent ductility is pivotal for the formability and safety of critical structural components.Here,a heterogeneous metastable lamellar steel,composed of alternating lamellar ferrite and aust...High-strength steel with excellent ductility is pivotal for the formability and safety of critical structural components.Here,a heterogeneous metastable lamellar steel,composed of alternating lamellar ferrite and austenite aligned with the rolling direction,was developed through an innovative combination of warm rolling and immediate annealing processes.This novel design overcomes the strength-ductility trade-off,achieving high ultimate tensile strength(∼1.2 GPa)and excellent uniform elongation(∼78%),pushing the product of ultimate tensile strength and uniform elongation to an ultra-high level(>90 GPa%).The high tensile strength is attributed to ultrafine lamellar grains and significant work hardening induced by the hetero-deformation and transformation-induced plasticity(TRIP)effect.The exceptional ductility is a result of the synergy of multiple plasticity mechanisms,including(i)the inherent plastic deformation ability of lamellar microstructure and the hetero-deformation-induced hardening in the early deformation period,(ii)the persistent TRIP effect induced by the lamellar austenite with high mechanical stability and the elimination of strain localization caused by prolonged strain hardening due to the coordinated deformation of lamellar austenite and ferrite in the middle deformation period,and(iii)delamination cracking in the late deformation period.This approach adopted in current work offers a straightforward and economically feasible pathway for fabricating advanced high-strength steel with superior performance.展开更多
Fe-Cr-Al alloys,owing to their absence of allotropic transformation,require multiple cycles of rolling and recrystallization annealing processes to achieve substantial grain refinement,ultimately leading to the attain...Fe-Cr-Al alloys,owing to their absence of allotropic transformation,require multiple cycles of rolling and recrystallization annealing processes to achieve substantial grain refinement,ultimately leading to the attainment of outstanding mechanical properties.However,the corresponding manufacturing costs will also increase greatly.In this work,we have proposed a new microstructural preparation process.Sim-ply using warm rolling for an ultra-coarse-grained Fe-Cr-Al alloy to introduce lamellar kink bands(KBs)into the matrix,the mechanical properties can be significantly improved.By using electron backscatter diffraction(EBSD)and transmission electron microscopy(TEM),and combined with Schmid factor(SF)calculation,the formation mechanism of KBs has been revealed.When the slip plane and direction are nearly perpendicular to the loading force direction(LFD)during the continuous grain rotation,the dislo-cation wall will evolve into the KBs boundaries.Simultaneously,a huge orientation separation between the matrix and KBs will be produced.As strain continues to rise,KBs undergo a transformation,tran-sitioning from low-angle-grain boundaries(LAGBs)to high-angle-grain boundaries(HAGBs),occasionally adopting a configuration as coincident site lattice(CSL)boundaries with reduced interface energy.Re-sults of the tensile test,cyclic loading-unloading-reloading tensile test,and the strengthening calculation show that KBs can pronouncedly enhance the strength by their heterogeneous refinement on the original grains and hetero-deformation induced(HDI)strengthening effect from the dislocation density discrep-ancy between the matrix and internal KBs,the grains containing KBs(KBGs)and the grains without KBs(or KBs-free-grains,KFGs).The theoretical calculation value of the strengthening contribution from KBs on yield strength can be up to 225.5 MPa,with a minimum value exceeding 153 MPa.On the other hand,the ductility can be retained to some extent through stimulating the KBs boundary delamination mecha-nism.The present study provides a low-cost and feasible processing method for fabricating Fe-Cr-Al alloy with high strength and good ductility.展开更多
The demand for highly porous yet transparent aerogels with mechanical flexibility and solar-thermal dual-regulation for energy-saving windows is significant but challenging.Herein,a delaminated aerogel film(DAF)is fab...The demand for highly porous yet transparent aerogels with mechanical flexibility and solar-thermal dual-regulation for energy-saving windows is significant but challenging.Herein,a delaminated aerogel film(DAF)is fabricated through filtration-induced delaminated gelation and ambient drying.The delaminated gelation process involves the assembly of fluorinated cellulose nanofiber(FCNF)at the solid-liquid interface between the filter and the filtrate during filtration,resulting in the formation of lamellar FCNF hydrogels with strong intra-plane and weak interlayer hydrogen bonding.By exchanging the solvents from water to hexane,the hydrogen bonding in the FCNF hydrogel is further enhanced,enabling the formation of the DAF with intra-layer mesopores upon ambient drying.The resulting aerogel film is lightweight and ultra-flexible,which pos-sesses desirable properties of high visible-light transmittance(91.0%),low thermal conductivity(33 mW m^(-1) K^(-1)),and high atmospheric-window emissivity(90.1%).Furthermore,the DAF exhibits reduced surface energy and exceptional hydrophobicity due to the presence of fluorine-containing groups,enhancing its durability and UV resistance.Consequently,the DAF has demonstrated its potential as solar-thermal regulatory cooling window materials capable of simultaneously providing indoor lighting,thermal insulation,and daytime radiative cooling under direct sunlight.Significantly,the enclosed space protected by the DAF exhibits a temperature reduction of 2.6℃ compared to that shielded by conventional architectural glass.展开更多
This paper presents an air-coupled impact echo(IE)technique that relies on the phase spectrum of the collected data to find the frequencies corresponding to the reflections from delaminations.The proposed technique ta...This paper presents an air-coupled impact echo(IE)technique that relies on the phase spectrum of the collected data to find the frequencies corresponding to the reflections from delaminations.The proposed technique takes advantage of the fact that the IE compression wave is not a propagating wave,but it is the 1st order symmetrical(S1)mode Lamb wave at zero group velocity(S1-ZGV).Therefore,it searches the phase spectra of the data collected by multiple sensors to locate the frequency corresponding to the lowest phase difference.As a result,the technique reduces the effect of propagating waves,including the direct acoustic wave and ambient noise.It is named the Constant Phase IE(CPIE).The performance of the CPIE is experimentally compared with the regular amplitude spectrum-based IE technique and two other multisensor IE techniques.The CPIE shows a performance advantage,especially in a noisy environment.展开更多
Inspired by nature,various biomimetic materials have been synthesized for enhanced mechanical properties,among which composites with brick-and-mortar structures attract the most attention.In such bio-inspired composit...Inspired by nature,various biomimetic materials have been synthesized for enhanced mechanical properties,among which composites with brick-and-mortar structures attract the most attention.In such bio-inspired composites,the matrix layer mainly functions to transfer load between bricks through shearing,while the shear stress in the matrix is not uniform but highly concentrated on the interface ends,which tends to initiate cracks and evoke interface delamination in composites.To enhance the composites’resistance to interface delamination,we propose to homogenize the shear stress by adopting a matrix with a gradient modulus.A theoretical solution to the optimal gradient modulus of the matrix layer is obtained,followed by computational validations.Moreover,composites with such functionally graded matrices are further demonstrated to possess higher elastic limits,higher resilience,and flaw tolerance than the uniform controls.The results of this paper should be of great value to the design and synthesis of advanced structural materials for superior mechanical performance.展开更多
Post-collisional magmatism contains important clues for understanding the reworking and growth of continental crust,as well as lithospheric delamination and orogenic collapse.Early Devonian magmatism has been identifi...Post-collisional magmatism contains important clues for understanding the reworking and growth of continental crust,as well as lithospheric delamination and orogenic collapse.Early Devonian magmatism has been identified in the North Qilian Orogenic Belt(NQOB).This paper reports an integrated study of petrology,whole-rock geochemistry,Sm-Nd isotope and zircon U-Pb dating,as well as Lu-Hf isotopic data,for two Early Devonian intrusive plutons.The Yongchang and Chijin granites yield zircon U-Pb ages of 394-407 Ma and 414 Ma,respectively.Both of them are characterized by weakly peraluminous to metaluminous without typical aluminium-rich minerals,LREE-enriched patterns with negative Eu anomalies and a negative correlation between P_(2)O_(5) and SiO_(2) contents,consistent with geochemical features of I-type granitoids.Zircons from the studied granites display negative to weak positive ε_(Hf)(t)values(−5.7 to 2.1),which agree well with those of negative ε_(Nd)(t)values(−6.4 to−2.9)for the whole-rock samples,indicating that they were derived from the partial melting of Mesoproterozoic crust.Furthermore,low Sr/Y ratios(1.13-21.28)and high zircon saturation temperatures(745℃ to 839℃,with the majority being>800℃)demonstrated a relatively shallow depth level below the garnet stability field and an additional heat source.Taken together,the Early Devonian granitic magmatism could have been produced by the partial melting of ancient crustal materials heated by mantle-derived magmas at high-temperature and low-pressure conditions during postcollisional extensional collapse.The data obtained in this study,when viewed in conjunction with previous studies,provides more information about the tectonic processes that followed the closure of the North Qilian Ocean.The tectonic transition from continental collision to post-collisional delamination could be constrained to~430 Ma,which is provided by the sudden decrease of Sr/Y and La/Yb ratios and an increase in zircon ε_(Hf)(t)values for granitoids.A two-stage tectonic evolution model from continental collision to post-collisional extensional collapse for the NQOB includes(a)continental collision and crustal thickening during ca.455-430 Ma,characterized by granulite-facies metamorphism and widespread low-Mg adakitic magmatism;(b)post-collisional delamination of thickened continental crust and extensional collapse of orogen during ca.430-390 Ma,provided by coeval high-Mg adakitic magmatism,A-type granites and I-type granitoids with low Sr-Y ratios.展开更多
Regulating the surface instability of thin film/substrate structures has been successfully applied to prepare new ductile electronic devices.However,such electronic devices need to be subjected to external loads durin...Regulating the surface instability of thin film/substrate structures has been successfully applied to prepare new ductile electronic devices.However,such electronic devices need to be subjected to external loads during operation,which can easily induce delamination of the thin-film electronic device from the substrate.This study aims to investigate the instability characteristics of hard films on flexible substrate surfaces from theoretical analysis and numerical simulation perspectives.Considering finite-thickness substrates,this paper establishes theoretical models for pure bending,bent wrinkle,partial delamination,and total delamination buckling of film/substrate structures based on the nonlinear Euler–Bernoulli beam theory and the principle of minimum energy;then the effects of material and geometric parameters of the structure,interfacial adhesion strength,and pre-strain on the evolutionary path of the four patterns are discussed.The study results show that:the greater Young’s modulus of the substrate is,the larger the parameter region where partial delamination of the film/substrate structure occurs,and the smaller the parameter region where bent wrinkle occurs.By varying Young’s modulus,thickness of the film and substrate,interfacial adhesion coefficient,and pre-strain,the buckling pattern of the structure can be predicted and regulated.The parametric design intervals for each pattern are summarized in the phase diagram.The results of this paper provide theoretical support for the design and reliability evaluation of flexible electronic devices.展开更多
Upper mantle earthquakes are usually associated with plate boundary tectonics, but rarely occur beneath intracontinental orogenic belts. In the Moroccan Atlas Mountains, earthquakes determined at subcrustal depths are...Upper mantle earthquakes are usually associated with plate boundary tectonics, but rarely occur beneath intracontinental orogenic belts. In the Moroccan Atlas Mountains, earthquakes determined at subcrustal depths are a controversial topic because they are few in number compared to subduction zones and are not related to plate boundary tectonics. A recent increase of broadband stations in Morocco has revealed numerous events below the Atlas belts, thought to occur from the upper mantle. Using additional available stations, these Atlas events were relocated and new epicenter resolutions were acquired following rigorous depth and RMS error criteria. 309 events were reprocessed and epicenter depths obtained were between 31 and 240 km during the last 23 years. Temporal variations of High Atlas events appear to be continually dipping while Anti Atlas events show no temporal variation trends. In addition, a recent strong event M6.8 occurred in September 2023 at the transition crust-uppermost mantle followed by several aftershocks which have been relocated at uppermost mantle depths. These events support delamination model under the High-Middle Atlas which could flow southward beneath the Anti Atlas lithosphere, and explain the large variation observed in lithosphere thickness between the High-Middle Atlas, and the Anti Atlas. Subcrustal events beneath the Atlas may be related to upper mantle earthquakes beneath the neighboring Canary Islands which have experienced recent swarms and eruptions. This possible correlation cannot be excluded since descending and ascending material is necessary for a regional geodynamic balance.展开更多
This study presents a novel two-step approach to assess plate-like structural laminar damages,particularly for delamination damage detection of composite structures.Firstly,a 2-D continuous wavelet transform is employ...This study presents a novel two-step approach to assess plate-like structural laminar damages,particularly for delamination damage detection of composite structures.Firstly,a 2-D continuous wavelet transform is employed to identify the damage location and sizes from vibration curvature data.An inverse method is subsequently then used to determine the bending stiffness reduction ratio along a specified direction,enabling the quantification of the delamination severity.The method employed in this study is an extension of the one-dimensional inverse method developed in a previous work of the authors.The applicability of the two-step inverse approach is demonstrated in a simulation analysis and by an experimental study on a cantilever composite plate containing a single delamination.The inverse method is shown to have the capacity to reveal the detailed damage information of delamination within a constrained searching space and can be used to determine the effective flexural stiffness of composite plate structures,even in cases of complex delamination damage.展开更多
The buckling behavior of a typical structure consisting of a micro constantan wire and a polymer membrane under coupled electrical-mechanical loading was studied. The phenomenon that the constantan wire delaminates fr...The buckling behavior of a typical structure consisting of a micro constantan wire and a polymer membrane under coupled electrical-mechanical loading was studied. The phenomenon that the constantan wire delaminates from the polymer membrane was observed after unloading. The interfacial toughness of the constantan wire and the polymer membrane was estimated. Moreover, several new instability modes of the constantan wire could be further triggered based on the buckle-driven delamination. After electrical loading and tensile loading, the constantan wire was likely to fracture based on buckling. After electrical loading and compressive loading, the constantan wire was easily folded at the top of the buckling region. On the occasion, the constantan wire buckled towards the inside of the polymer membrane under electrical-compressive loading. The mechanisms of these instability modes were analyzed.展开更多
The friction and wear behaviors of Inconel 690 flat against Si3Ni4 ball were investigated using a hydraulic fretting test rig equipped with a liquid container device. The loads of 20-80 N, reciprocating amplitudes of ...The friction and wear behaviors of Inconel 690 flat against Si3Ni4 ball were investigated using a hydraulic fretting test rig equipped with a liquid container device. The loads of 20-80 N, reciprocating amplitudes of 80-200 μm and two different environments (distilled water and hydrazine solution at temperatures from 25 to 90 ℃) were selected. The results show that the ratio of Ft/Fn is lower in distilled water than that in hydrazine solution at the same temperature in the slip regime. Both the ratio of Ft/Fn and wear volume gradually increase with increasing medium temperature under the given normal load and displacement amplitude. Besides the displacement amplitude and load, temperature also plays an important role for wear behavior of Inconel 690 material. The increase of temperature could reduce the concentration of dissolved oxygen, and promote the absorption reaction of hydrazine and dissolved oxygen. As a result, the oxidative corrosion rate is obviously lowered. Abrasive wear and delamination wear are the main mechanisms of Inconel 690 in distilled water. However, in hydrazine solution the cracks accompanied by abrasive wear and delamination wear are the main mechanisms.展开更多
On the basis ofa 2D 4-node Mindlin shell element method, a novel self-adapting delamination finite element method is presented, which is developed to model the delamination damage of composite laminates. In the method...On the basis ofa 2D 4-node Mindlin shell element method, a novel self-adapting delamination finite element method is presented, which is developed to model the delamination damage of composite laminates. In the method, the sublaminate elements are generated automatically when the delamination damage occurs or extends. Thus, the complex process and state of delamination damage can be simulated practically with high efficiency for both analysis and modeling. Based on the self-adapting delamination method, linear dynamic finite element damage analysis is performed to simulate the low-velocity impact damage process of three types of mixed woven composite laminates. Taking the frictional force among sublaminations during delaminating and the transverse normal stress into account, the analytical results are consistent with those of the experimental data.展开更多
Based on the conventional compliance and area methods, a high precision method named the angle method is presented in this work. The interlaminar fracture toughness is determined by measurement of the load and the ben...Based on the conventional compliance and area methods, a high precision method named the angle method is presented in this work. The interlaminar fracture toughness is determined by measurement of the load and the bending angle at the loading point without measurement of the crack length, and the improvement of the conventional compliance method is made, which is more precise and can be used to general DCB specimen with unequal flexural stiffness of the cantilevers. The interlaminar fracture toughness in 0/ θ(θ =0°,30°,60°,90°) interfaces of two epoxy composites, one being the carbon fibre reinforced brittle matrix T300/4211, the other the carbon fibre reinforced tough matrix T300/3261, is measured by both compliance and angle methods, and the relationship between fracture toughness and the ply angle θ is obtained. It is found that the interlaminar fracture toughness is correlated with the type of matrix and the ply angles near the crack front.展开更多
The delamination near the centre crack of ARALL under fatigue and static loads is investigated, and the effects on delamination by different residual stresses are analyzed. The results show that the situations under t...The delamination near the centre crack of ARALL under fatigue and static loads is investigated, and the effects on delamination by different residual stresses are analyzed. The results show that the situations under the two kinds of loads are different.Under the fatigue load, the typical delamination with crack growth presents symmetrical hi-ellipse-shape, whereas under the condition of static tensile, the edge-effect becomes more evident. Applying a proper pre-stress to the laminate can increase the ability of anti-delamination damage.展开更多
A new method for forecasting non stationary series is developed. Its steps are as follows: Step 1. Data delaminating. Non stationary series is delaminated into several multi scale steady data layers and one trend laye...A new method for forecasting non stationary series is developed. Its steps are as follows: Step 1. Data delaminating. Non stationary series is delaminated into several multi scale steady data layers and one trend layer. Step 2. Modeling and forecasting each stationary data layer. Step 3. Imitating trend layer using polynomial. Step 4. Combining the forecasting layers and imitating layer into one series. The EMD (Empirical Mode Decomposition) method suitable to process non stationary series is selected to delaminate data, while ARMA (Auto Regressive Moving Average) model is employed to model and forecast stationary data layer and least square error method for trend layer regression. Aiming at forecasting length, forecasting orientation and selective method, experiments are performed for SAR (Synthetic Aperture Radar) images. Finally, an example is provided, in which the whole SAR image is restored via the method proposed by this paper.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.12075191,12388101,and 12241201)Fundamental Research Funds for the Central Universities(Grant No.D5000230373)Innovation Capability Support Program of Shaanxi(Grant No.2024RS-CXTD-15).
文摘Suspended graphene nanopores are widely used in nanofluidic devices,as the machined graphene defects can be downscaled to the angstrom scale.Our recent experimental results showed that the suspended graphene can become delaminated from the edges of SiN nanopore under an applied electrical field,theoretical understanding of this process is still lacking.In this work,we analytically studied the voltage-induced blistering of suspended graphene using an energy approach.The external electric field induces accumulation of ions at the graphene-electrolyte interface,causing Maxwell stress resulting in bending and stretching of the graphene and blister formation.We theoretically derived the angle of the graphene blister to the SiN nanopore by energy approach.We found that once the vertical component of the Maxwell stress on the graphene at the perimeter of SiN nanopore ex-ceeds the van der Waals force between the graphene and substrate,the graphene starts to detach from the edges of SiN nanopore.We derived that the threshold voltage of single-layer graphene detachment is in order of 100 mV,which needs to be cautioned for electrical measurements of suspended graphene nanofluidic devices since the voltage amplitude is just in the range of voltage operation for typical electrochemical measurements.The threshold voltage increases as SiN nanopore becomes smaller and in-creases with the number of graphene layers.Our work theoretically describes the blister formation and delamination of graphene from its substrate nanopores.We expect this theory to be useful for optimizing and understanding the unexpected conduction phenomena observed in suspended graphene nanofluidic devices.
基金co-supported by the National Natural Science Foundation of China(Nos.12372127,12202085,12302464)the Fundamental Research Funds for the Central Universities,China(No.2024CDJXY009)+1 种基金the Chongqing Outstanding Youth Fund,China(No.CSTB2024NSCQ-JQX0028)the Chongqing Natural Science Foundation,China(Nos.cstc2021ycjh-bgzxm0117,CSTB2022NSCQ-MSX0608)。
文摘The high-temperature mechanical behaviors of Multi-Layer Composite Panels(MCP)and Corrugated Sandwich Panels(CSP)of Continuous Glass Fiber-Reinforced Polypropylene(CGFRPP)are critical for their application in aerospace fields,which have been rarely mentioned in previous studies.High-temperature quasi-static tensile and compression tests on CGFRPP MCP are conducted first.The results showed that the tensile and compression strength,stiffness,and tensile modulus of MCP decreased with increasing temperature.The Gibson model was found to be more suitable for predicting the high-temperature mechanical performance of MCP after comparing the calculated results of different theoretical models with experimental data.Secondly,hightemperature planar compression tests were conducted on the CGFRPP CSP,revealing that the main failure modes were corrugated core buckling and delamination between the face panel and core material,with delamination being intensified at higher temperatures.Therefore,we proposed a strength theoretical model that considers structural buckling failure and interface delamination failure,and introduced the influence factor to evaluate the effect of interface delamination on structural strength.
基金supported by the National Natural Science Foundation of China(Grant No.42472181)the National Key Research and Development Program of China(Grant No.2021YFA0719000)CNPC Innovation Fund(Grant No.2021DQ02-0103).
文摘Geodynamic processes following the Indo-Eurasian plate collision remain a key research focus,and the Jinshajiang-Red River tectonic zone(JRTZ),situated along this collision boundary,provides critical insights into post-collision tectonic evolution.In this study,we identify a lithological assemblage in the JRTZ,including amphibolite,granite gneiss,and migmatite.These rocks exhibit contrasting geochemical signatures,reflecting multiple source regions:asthenospheric mantle,lithospheric mantle,mafic lower and upper crust.Specifically,amphibolite(28.5 Ma)formed through the partial melting of OIB-like mantle source,whereas S-type granite gneiss(28.2 Ma)originated from the dehydration melting of metamorphosed sedimentary rocks.Amphibole monzonite(28.9 Ma)records the mixing of ancient crustal material with mantle-derived components,while migmatite(37.9 Ma)resulted from deep melting processes of metasedimentary rocks under shear conditions.We propose that the ongoing Indo-Eurasian convergence progressively thickened the crust,ultimately driving large-scale lithospheric delamination between the Eocene and Oligocene.This delamination triggered asthenospheric upwelling,which provided the thermal input required for widespread melting.This lithospheric delamination event started around 38-37 Ma and lasted at least until 28 Ma.
文摘A comprehensive numerical investigation into mixed⁃mode delamination is presented in this study.It aims to assess the impact of thermal and friction effects through mixed⁃mode flexure crack propagation testing.Finite element analysis was employed to model the delamination process,incorporating a contact cohesive zone model.This model couples the traction⁃separation law,the contact law,and the Coulomb friction law simultaneously.The thermomechanical analysis in this study is performed using a sequentially coupled approach,implemented with the finite element software ABAQUS.The findings underscore the importance of this study.
基金support from the National Natural Science Foundation of China(Grant No.52304389)the China Postdoctoral Science Foundation(No.2022M720402)+2 种基金Huibin Wu and Gang Niu appreciate the support from the Fundamental Research Funds for the Central Universities(No.FRF-BD-23-01)Na Gong appreciates the support from the Structural Metal Alloy Program(SMAP,No.A18B1b0061)Gang Niu is grateful to Hatem S.Zurob for his insightful recommendation and expressive discussion.
文摘High-strength steel with excellent ductility is pivotal for the formability and safety of critical structural components.Here,a heterogeneous metastable lamellar steel,composed of alternating lamellar ferrite and austenite aligned with the rolling direction,was developed through an innovative combination of warm rolling and immediate annealing processes.This novel design overcomes the strength-ductility trade-off,achieving high ultimate tensile strength(∼1.2 GPa)and excellent uniform elongation(∼78%),pushing the product of ultimate tensile strength and uniform elongation to an ultra-high level(>90 GPa%).The high tensile strength is attributed to ultrafine lamellar grains and significant work hardening induced by the hetero-deformation and transformation-induced plasticity(TRIP)effect.The exceptional ductility is a result of the synergy of multiple plasticity mechanisms,including(i)the inherent plastic deformation ability of lamellar microstructure and the hetero-deformation-induced hardening in the early deformation period,(ii)the persistent TRIP effect induced by the lamellar austenite with high mechanical stability and the elimination of strain localization caused by prolonged strain hardening due to the coordinated deformation of lamellar austenite and ferrite in the middle deformation period,and(iii)delamination cracking in the late deformation period.This approach adopted in current work offers a straightforward and economically feasible pathway for fabricating advanced high-strength steel with superior performance.
基金financially supported by the National Natural Science Foundation of China(No.U1867201)Key Project of Nuclear Safety and Advanced Nuclear Technology(No.2019YFB1901002)“the Project supported by State Key Laboratory of Powder Metallurgy”,Central South University,Changsha,China。
文摘Fe-Cr-Al alloys,owing to their absence of allotropic transformation,require multiple cycles of rolling and recrystallization annealing processes to achieve substantial grain refinement,ultimately leading to the attainment of outstanding mechanical properties.However,the corresponding manufacturing costs will also increase greatly.In this work,we have proposed a new microstructural preparation process.Sim-ply using warm rolling for an ultra-coarse-grained Fe-Cr-Al alloy to introduce lamellar kink bands(KBs)into the matrix,the mechanical properties can be significantly improved.By using electron backscatter diffraction(EBSD)and transmission electron microscopy(TEM),and combined with Schmid factor(SF)calculation,the formation mechanism of KBs has been revealed.When the slip plane and direction are nearly perpendicular to the loading force direction(LFD)during the continuous grain rotation,the dislo-cation wall will evolve into the KBs boundaries.Simultaneously,a huge orientation separation between the matrix and KBs will be produced.As strain continues to rise,KBs undergo a transformation,tran-sitioning from low-angle-grain boundaries(LAGBs)to high-angle-grain boundaries(HAGBs),occasionally adopting a configuration as coincident site lattice(CSL)boundaries with reduced interface energy.Re-sults of the tensile test,cyclic loading-unloading-reloading tensile test,and the strengthening calculation show that KBs can pronouncedly enhance the strength by their heterogeneous refinement on the original grains and hetero-deformation induced(HDI)strengthening effect from the dislocation density discrep-ancy between the matrix and internal KBs,the grains containing KBs(KBGs)and the grains without KBs(or KBs-free-grains,KFGs).The theoretical calculation value of the strengthening contribution from KBs on yield strength can be up to 225.5 MPa,with a minimum value exceeding 153 MPa.On the other hand,the ductility can be retained to some extent through stimulating the KBs boundary delamination mecha-nism.The present study provides a low-cost and feasible processing method for fabricating Fe-Cr-Al alloy with high strength and good ductility.
基金The authors are grateful for the financial support from the National Natural Science Foundation of China(Grant Nos.52273067,52122303,52233006)the Fundamental Research Funds for the Central Universities(Grant No.2232023A-03)the Shuguang Program of Shanghai Education Development Foundation and Shanghai Municipal Education Commission(23SG29).
文摘The demand for highly porous yet transparent aerogels with mechanical flexibility and solar-thermal dual-regulation for energy-saving windows is significant but challenging.Herein,a delaminated aerogel film(DAF)is fabricated through filtration-induced delaminated gelation and ambient drying.The delaminated gelation process involves the assembly of fluorinated cellulose nanofiber(FCNF)at the solid-liquid interface between the filter and the filtrate during filtration,resulting in the formation of lamellar FCNF hydrogels with strong intra-plane and weak interlayer hydrogen bonding.By exchanging the solvents from water to hexane,the hydrogen bonding in the FCNF hydrogel is further enhanced,enabling the formation of the DAF with intra-layer mesopores upon ambient drying.The resulting aerogel film is lightweight and ultra-flexible,which pos-sesses desirable properties of high visible-light transmittance(91.0%),low thermal conductivity(33 mW m^(-1) K^(-1)),and high atmospheric-window emissivity(90.1%).Furthermore,the DAF exhibits reduced surface energy and exceptional hydrophobicity due to the presence of fluorine-containing groups,enhancing its durability and UV resistance.Consequently,the DAF has demonstrated its potential as solar-thermal regulatory cooling window materials capable of simultaneously providing indoor lighting,thermal insulation,and daytime radiative cooling under direct sunlight.Significantly,the enclosed space protected by the DAF exhibits a temperature reduction of 2.6℃ compared to that shielded by conventional architectural glass.
文摘This paper presents an air-coupled impact echo(IE)technique that relies on the phase spectrum of the collected data to find the frequencies corresponding to the reflections from delaminations.The proposed technique takes advantage of the fact that the IE compression wave is not a propagating wave,but it is the 1st order symmetrical(S1)mode Lamb wave at zero group velocity(S1-ZGV).Therefore,it searches the phase spectra of the data collected by multiple sensors to locate the frequency corresponding to the lowest phase difference.As a result,the technique reduces the effect of propagating waves,including the direct acoustic wave and ambient noise.It is named the Constant Phase IE(CPIE).The performance of the CPIE is experimentally compared with the regular amplitude spectrum-based IE technique and two other multisensor IE techniques.The CPIE shows a performance advantage,especially in a noisy environment.
基金supported by the National Natural Science Foundation of China(Grant No.12202447)China Postdoctoral Science Foundation(Grant No.2021M703289)+1 种基金the Fundamental Research Funds for the Central Universities(Grant No.2023ZKPYLJ04)Excellent Youth Team Funding Project of Central Universities(Grant No.2023YQTD01).
文摘Inspired by nature,various biomimetic materials have been synthesized for enhanced mechanical properties,among which composites with brick-and-mortar structures attract the most attention.In such bio-inspired composites,the matrix layer mainly functions to transfer load between bricks through shearing,while the shear stress in the matrix is not uniform but highly concentrated on the interface ends,which tends to initiate cracks and evoke interface delamination in composites.To enhance the composites’resistance to interface delamination,we propose to homogenize the shear stress by adopting a matrix with a gradient modulus.A theoretical solution to the optimal gradient modulus of the matrix layer is obtained,followed by computational validations.Moreover,composites with such functionally graded matrices are further demonstrated to possess higher elastic limits,higher resilience,and flaw tolerance than the uniform controls.The results of this paper should be of great value to the design and synthesis of advanced structural materials for superior mechanical performance.
基金supported by the Natural Science Foundation of Shandong Province(Grant No.ZR2022QD055)the Taishan Scholars(Grant No.tstp 20231214)the National Natural Science Foundation of China(Grant No.42372247).
文摘Post-collisional magmatism contains important clues for understanding the reworking and growth of continental crust,as well as lithospheric delamination and orogenic collapse.Early Devonian magmatism has been identified in the North Qilian Orogenic Belt(NQOB).This paper reports an integrated study of petrology,whole-rock geochemistry,Sm-Nd isotope and zircon U-Pb dating,as well as Lu-Hf isotopic data,for two Early Devonian intrusive plutons.The Yongchang and Chijin granites yield zircon U-Pb ages of 394-407 Ma and 414 Ma,respectively.Both of them are characterized by weakly peraluminous to metaluminous without typical aluminium-rich minerals,LREE-enriched patterns with negative Eu anomalies and a negative correlation between P_(2)O_(5) and SiO_(2) contents,consistent with geochemical features of I-type granitoids.Zircons from the studied granites display negative to weak positive ε_(Hf)(t)values(−5.7 to 2.1),which agree well with those of negative ε_(Nd)(t)values(−6.4 to−2.9)for the whole-rock samples,indicating that they were derived from the partial melting of Mesoproterozoic crust.Furthermore,low Sr/Y ratios(1.13-21.28)and high zircon saturation temperatures(745℃ to 839℃,with the majority being>800℃)demonstrated a relatively shallow depth level below the garnet stability field and an additional heat source.Taken together,the Early Devonian granitic magmatism could have been produced by the partial melting of ancient crustal materials heated by mantle-derived magmas at high-temperature and low-pressure conditions during postcollisional extensional collapse.The data obtained in this study,when viewed in conjunction with previous studies,provides more information about the tectonic processes that followed the closure of the North Qilian Ocean.The tectonic transition from continental collision to post-collisional delamination could be constrained to~430 Ma,which is provided by the sudden decrease of Sr/Y and La/Yb ratios and an increase in zircon ε_(Hf)(t)values for granitoids.A two-stage tectonic evolution model from continental collision to post-collisional extensional collapse for the NQOB includes(a)continental collision and crustal thickening during ca.455-430 Ma,characterized by granulite-facies metamorphism and widespread low-Mg adakitic magmatism;(b)post-collisional delamination of thickened continental crust and extensional collapse of orogen during ca.430-390 Ma,provided by coeval high-Mg adakitic magmatism,A-type granites and I-type granitoids with low Sr-Y ratios.
基金funded by the Practice and Innovation Funds for Graduate Students of Northwestern Polytechnical University(Grant No.2021201712).
文摘Regulating the surface instability of thin film/substrate structures has been successfully applied to prepare new ductile electronic devices.However,such electronic devices need to be subjected to external loads during operation,which can easily induce delamination of the thin-film electronic device from the substrate.This study aims to investigate the instability characteristics of hard films on flexible substrate surfaces from theoretical analysis and numerical simulation perspectives.Considering finite-thickness substrates,this paper establishes theoretical models for pure bending,bent wrinkle,partial delamination,and total delamination buckling of film/substrate structures based on the nonlinear Euler–Bernoulli beam theory and the principle of minimum energy;then the effects of material and geometric parameters of the structure,interfacial adhesion strength,and pre-strain on the evolutionary path of the four patterns are discussed.The study results show that:the greater Young’s modulus of the substrate is,the larger the parameter region where partial delamination of the film/substrate structure occurs,and the smaller the parameter region where bent wrinkle occurs.By varying Young’s modulus,thickness of the film and substrate,interfacial adhesion coefficient,and pre-strain,the buckling pattern of the structure can be predicted and regulated.The parametric design intervals for each pattern are summarized in the phase diagram.The results of this paper provide theoretical support for the design and reliability evaluation of flexible electronic devices.
文摘Upper mantle earthquakes are usually associated with plate boundary tectonics, but rarely occur beneath intracontinental orogenic belts. In the Moroccan Atlas Mountains, earthquakes determined at subcrustal depths are a controversial topic because they are few in number compared to subduction zones and are not related to plate boundary tectonics. A recent increase of broadband stations in Morocco has revealed numerous events below the Atlas belts, thought to occur from the upper mantle. Using additional available stations, these Atlas events were relocated and new epicenter resolutions were acquired following rigorous depth and RMS error criteria. 309 events were reprocessed and epicenter depths obtained were between 31 and 240 km during the last 23 years. Temporal variations of High Atlas events appear to be continually dipping while Anti Atlas events show no temporal variation trends. In addition, a recent strong event M6.8 occurred in September 2023 at the transition crust-uppermost mantle followed by several aftershocks which have been relocated at uppermost mantle depths. These events support delamination model under the High-Middle Atlas which could flow southward beneath the Anti Atlas lithosphere, and explain the large variation observed in lithosphere thickness between the High-Middle Atlas, and the Anti Atlas. Subcrustal events beneath the Atlas may be related to upper mantle earthquakes beneath the neighboring Canary Islands which have experienced recent swarms and eruptions. This possible correlation cannot be excluded since descending and ascending material is necessary for a regional geodynamic balance.
文摘This study presents a novel two-step approach to assess plate-like structural laminar damages,particularly for delamination damage detection of composite structures.Firstly,a 2-D continuous wavelet transform is employed to identify the damage location and sizes from vibration curvature data.An inverse method is subsequently then used to determine the bending stiffness reduction ratio along a specified direction,enabling the quantification of the delamination severity.The method employed in this study is an extension of the one-dimensional inverse method developed in a previous work of the authors.The applicability of the two-step inverse approach is demonstrated in a simulation analysis and by an experimental study on a cantilever composite plate containing a single delamination.The inverse method is shown to have the capacity to reveal the detailed damage information of delamination within a constrained searching space and can be used to determine the effective flexural stiffness of composite plate structures,even in cases of complex delamination damage.
基金Projects(2010CB631005,2011CB606105)support by the National Basic Research Program of ChinaProjects(11232008,91216301,11227801,11172151)supported by the National Natural Science Foundation of ChinaProject supported by Tsinghua University Initiative Scientific Research Program
文摘The buckling behavior of a typical structure consisting of a micro constantan wire and a polymer membrane under coupled electrical-mechanical loading was studied. The phenomenon that the constantan wire delaminates from the polymer membrane was observed after unloading. The interfacial toughness of the constantan wire and the polymer membrane was estimated. Moreover, several new instability modes of the constantan wire could be further triggered based on the buckle-driven delamination. After electrical loading and tensile loading, the constantan wire was likely to fracture based on buckling. After electrical loading and compressive loading, the constantan wire was easily folded at the top of the buckling region. On the occasion, the constantan wire buckled towards the inside of the polymer membrane under electrical-compressive loading. The mechanisms of these instability modes were analyzed.
基金Project(51075342)supported by the National Natural Science Foundation of China
文摘The friction and wear behaviors of Inconel 690 flat against Si3Ni4 ball were investigated using a hydraulic fretting test rig equipped with a liquid container device. The loads of 20-80 N, reciprocating amplitudes of 80-200 μm and two different environments (distilled water and hydrazine solution at temperatures from 25 to 90 ℃) were selected. The results show that the ratio of Ft/Fn is lower in distilled water than that in hydrazine solution at the same temperature in the slip regime. Both the ratio of Ft/Fn and wear volume gradually increase with increasing medium temperature under the given normal load and displacement amplitude. Besides the displacement amplitude and load, temperature also plays an important role for wear behavior of Inconel 690 material. The increase of temperature could reduce the concentration of dissolved oxygen, and promote the absorption reaction of hydrazine and dissolved oxygen. As a result, the oxidative corrosion rate is obviously lowered. Abrasive wear and delamination wear are the main mechanisms of Inconel 690 in distilled water. However, in hydrazine solution the cracks accompanied by abrasive wear and delamination wear are the main mechanisms.
基金National Natural Science Foundation of China (50073002)
文摘On the basis ofa 2D 4-node Mindlin shell element method, a novel self-adapting delamination finite element method is presented, which is developed to model the delamination damage of composite laminates. In the method, the sublaminate elements are generated automatically when the delamination damage occurs or extends. Thus, the complex process and state of delamination damage can be simulated practically with high efficiency for both analysis and modeling. Based on the self-adapting delamination method, linear dynamic finite element damage analysis is performed to simulate the low-velocity impact damage process of three types of mixed woven composite laminates. Taking the frictional force among sublaminations during delaminating and the transverse normal stress into account, the analytical results are consistent with those of the experimental data.
文摘Based on the conventional compliance and area methods, a high precision method named the angle method is presented in this work. The interlaminar fracture toughness is determined by measurement of the load and the bending angle at the loading point without measurement of the crack length, and the improvement of the conventional compliance method is made, which is more precise and can be used to general DCB specimen with unequal flexural stiffness of the cantilevers. The interlaminar fracture toughness in 0/ θ(θ =0°,30°,60°,90°) interfaces of two epoxy composites, one being the carbon fibre reinforced brittle matrix T300/4211, the other the carbon fibre reinforced tough matrix T300/3261, is measured by both compliance and angle methods, and the relationship between fracture toughness and the ply angle θ is obtained. It is found that the interlaminar fracture toughness is correlated with the type of matrix and the ply angles near the crack front.
文摘The delamination near the centre crack of ARALL under fatigue and static loads is investigated, and the effects on delamination by different residual stresses are analyzed. The results show that the situations under the two kinds of loads are different.Under the fatigue load, the typical delamination with crack growth presents symmetrical hi-ellipse-shape, whereas under the condition of static tensile, the edge-effect becomes more evident. Applying a proper pre-stress to the laminate can increase the ability of anti-delamination damage.
文摘A new method for forecasting non stationary series is developed. Its steps are as follows: Step 1. Data delaminating. Non stationary series is delaminated into several multi scale steady data layers and one trend layer. Step 2. Modeling and forecasting each stationary data layer. Step 3. Imitating trend layer using polynomial. Step 4. Combining the forecasting layers and imitating layer into one series. The EMD (Empirical Mode Decomposition) method suitable to process non stationary series is selected to delaminate data, while ARMA (Auto Regressive Moving Average) model is employed to model and forecast stationary data layer and least square error method for trend layer regression. Aiming at forecasting length, forecasting orientation and selective method, experiments are performed for SAR (Synthetic Aperture Radar) images. Finally, an example is provided, in which the whole SAR image is restored via the method proposed by this paper.