Drought is one of environmental stresses which the most limiting to plant growth and productivity. Drought stress led to a series of changes including biochemical changes like accumulation of osmolit and specific prot...Drought is one of environmental stresses which the most limiting to plant growth and productivity. Drought stress led to a series of changes including biochemical changes like accumulation of osmolit and specific proteins involved in stress tolerance. One of the proteins that play a role in the mechanism of drought resistance is dehydrin protein. This study aimed to identify the protein profiles and dehydrin accumulation in 7 varieties of local Indonesian soybeans: Tanggamus, Nanti, Seulawah and Tidar (tolerant), Wilis and Burangrang (moderate) and Detam-1 (drought stress sensitive). Plants were treated with drought stress by adjusting soil water content to 25% below field capacity and compared with plants which were grown on normal condition as control plants. The results of SDS-PAGE electrophoresis showed a new protein with the molecular weight of 13 and 52 kDa were induced in Tanggamus, Nanti, Seulawah and Tidar varieties. Western blotting analysis for dehydrin showed that the quantity of the protein in the leaves of all varieties except Tanggamus decreased in drought stress conditions. The quantity of dehydrin protein in tolerant varieties higher than the protein quantity in both moderate varieties and drought sensitive.展开更多
Late embryogenesis abundant (LEA) proteins accumulate in the late stage of plant seed development, and are upregulated in most plants during drought, cold, heat, or salinity stress. LEA proteins can be classified by a...Late embryogenesis abundant (LEA) proteins accumulate in the late stage of plant seed development, and are upregulated in most plants during drought, cold, heat, or salinity stress. LEA proteins can be classified by amino-acid sequence into seven groups. Dehydrins belong to LEA protein group Ⅱ. In previous studies, the maize KS type dehydrin ZmDHN13 increased the tolerance of transgenic tobacco to oxidative stress. In the present study, ZmDHN13 was identified under copper stress conditions, and the protein was then characterized using transgenic yeast and tobacco plants to investigate its functions. ZmDHN13 bound Cu2+. Its overexpression in transgenic tobacco conferred tolerance to copper stress by binding metals and reducing the accumulation of reactive oxygen species (ROS). Three conserved domains displayed a cooperative effect under copper stress conditions.展开更多
The changes of DHN1 expression and subcellular distribution in A. delicisoa cells under osmotic stress were studied by using GFP as a reporter molecule. Through creating the Xba I and BamH I restriction sites at the e...The changes of DHN1 expression and subcellular distribution in A. delicisoa cells under osmotic stress were studied by using GFP as a reporter molecule. Through creating the Xba I and BamH I restriction sites at the ends of dhn1 by PCR, the expression vector for the fusion protein DHN1-mGFP4 was constructed by cloning dhn1 into plasmid pBIN-35SmGFP4. Then the DHN1-mGFP4 expression vector was transformed into A. delicisoa suspension cells by microprojectile bombardment method. Bright green fluorescence of GFP which shows the high-level expression of DHN1-mGFP4 was visualized after culture for 10 h. However, the green fluorescence was only located within the nucleus. By increasing the culture medium osmotic potential, the green fluorescence was visualized in the cytoplasm (mainly around the plasma membranes). The generation of GFP fluorescence in the cytoplasm was also promoted by increasing the medium osmotic potential. Moreover, GFP green fluorescence was abolished by protein synthesis inhibitor dicyclohexylcarbodiimid, indicating that the cytoplasmic DHN1 was newly synthesized under osmotic stress. Furthermore, ABA promoted the presence of green fluorescence in the cytoplasm, and the GFP fluorescence was visualized within a shorter time under a higher osmotic potential.展开更多
文摘Drought is one of environmental stresses which the most limiting to plant growth and productivity. Drought stress led to a series of changes including biochemical changes like accumulation of osmolit and specific proteins involved in stress tolerance. One of the proteins that play a role in the mechanism of drought resistance is dehydrin protein. This study aimed to identify the protein profiles and dehydrin accumulation in 7 varieties of local Indonesian soybeans: Tanggamus, Nanti, Seulawah and Tidar (tolerant), Wilis and Burangrang (moderate) and Detam-1 (drought stress sensitive). Plants were treated with drought stress by adjusting soil water content to 25% below field capacity and compared with plants which were grown on normal condition as control plants. The results of SDS-PAGE electrophoresis showed a new protein with the molecular weight of 13 and 52 kDa were induced in Tanggamus, Nanti, Seulawah and Tidar varieties. Western blotting analysis for dehydrin showed that the quantity of the protein in the leaves of all varieties except Tanggamus decreased in drought stress conditions. The quantity of dehydrin protein in tolerant varieties higher than the protein quantity in both moderate varieties and drought sensitive.
基金supported by the National Natural Science Foundation of China (31701334)the Shandong Province Natural Science Foundation (ZR2016CQ34)
文摘Late embryogenesis abundant (LEA) proteins accumulate in the late stage of plant seed development, and are upregulated in most plants during drought, cold, heat, or salinity stress. LEA proteins can be classified by amino-acid sequence into seven groups. Dehydrins belong to LEA protein group Ⅱ. In previous studies, the maize KS type dehydrin ZmDHN13 increased the tolerance of transgenic tobacco to oxidative stress. In the present study, ZmDHN13 was identified under copper stress conditions, and the protein was then characterized using transgenic yeast and tobacco plants to investigate its functions. ZmDHN13 bound Cu2+. Its overexpression in transgenic tobacco conferred tolerance to copper stress by binding metals and reducing the accumulation of reactive oxygen species (ROS). Three conserved domains displayed a cooperative effect under copper stress conditions.
基金This work was supported by the Major State Basic Research Development Program of the People's Republic of China, the National Natural Science Foundation of China (Grant No. 39770077) the Science and Technology Program of the Ministry of Education of
文摘The changes of DHN1 expression and subcellular distribution in A. delicisoa cells under osmotic stress were studied by using GFP as a reporter molecule. Through creating the Xba I and BamH I restriction sites at the ends of dhn1 by PCR, the expression vector for the fusion protein DHN1-mGFP4 was constructed by cloning dhn1 into plasmid pBIN-35SmGFP4. Then the DHN1-mGFP4 expression vector was transformed into A. delicisoa suspension cells by microprojectile bombardment method. Bright green fluorescence of GFP which shows the high-level expression of DHN1-mGFP4 was visualized after culture for 10 h. However, the green fluorescence was only located within the nucleus. By increasing the culture medium osmotic potential, the green fluorescence was visualized in the cytoplasm (mainly around the plasma membranes). The generation of GFP fluorescence in the cytoplasm was also promoted by increasing the medium osmotic potential. Moreover, GFP green fluorescence was abolished by protein synthesis inhibitor dicyclohexylcarbodiimid, indicating that the cytoplasmic DHN1 was newly synthesized under osmotic stress. Furthermore, ABA promoted the presence of green fluorescence in the cytoplasm, and the GFP fluorescence was visualized within a shorter time under a higher osmotic potential.