期刊文献+
共找到6,171篇文章
< 1 2 250 >
每页显示 20 50 100
Correlation between grain size,mechanical properties and deformed microstructure of Fe-20Mn-6Al-0.6C-0.15Si low-density steel
1
作者 Qi Zhang Guang-hui Chen +2 位作者 Zheng-liang Xue Zheng-kun Chen Guang Xu 《Journal of Iron and Steel Research International》 2025年第1期282-292,共11页
The effects of austenite grain size on the deformed microstructure and mechanical properties of an Fe-20Mn-6Al-0.6C-0.15Si(wt.%)low-density steel were investigated.The microstructure of the experimental steel after so... The effects of austenite grain size on the deformed microstructure and mechanical properties of an Fe-20Mn-6Al-0.6C-0.15Si(wt.%)low-density steel were investigated.The microstructure of the experimental steel after solution treatment was single austenitic phase.The austenite grain size increased with solution temperature and time.A model was established to show the relationship between temperature,time and austenite grain size for the experimental steel.In addition,as the solution temperature increased,the strength decreased,while the elongation first increased and then decreased.This decrease in elongation after solution treatment at 1100℃ for 90 min is contributed to the over-coarse austenite grains.However,after solution treatment at 900℃ for 90 min,the strength-elongation product reached the highest value of 44.4 GPa%.As the austenite grain size increased,the intensity of<111>//tensile direction fiber decreased.This was accompanied by a decrease in dislocation density,resulting in a lower fraction of low-angle grain boundaries and a lower work hardening rate.Therefore,the austenite grain size has a critical influence on the mechanical properties of the low-density steels.Coarser grains lead to a lower yield strength due to the Hall-Petch effect and a lower tensile strength because of lower dislocation strengthening. 展开更多
关键词 Austenitic low-density steel Solution treatment Grain size Mechanical property deformed microstructure
原文传递
水稻矮化并花发育异常突变体dwarf and deformed flower 2(ddf2)的基因定位与候选基因分析 被引量:8
2
作者 张玲 郭爽 +5 位作者 汪玲 张天泉 庄慧 龙珏臣 何光华 李云峰 《中国农业科学》 CAS CSCD 北大核心 2015年第10期1873-1881,共9页
【目的】对一个同时导致营养和生殖器官发育异常的水稻突变体进行表型鉴定、基因定位和候选基因分析,为下一步的基因克隆与功能分析奠定基础。【方法】在水稻籼型恢复系602组织培养后代中,发现一个矮化并花发育异常突变体dwarf and defo... 【目的】对一个同时导致营养和生殖器官发育异常的水稻突变体进行表型鉴定、基因定位和候选基因分析,为下一步的基因克隆与功能分析奠定基础。【方法】在水稻籼型恢复系602组织培养后代中,发现一个矮化并花发育异常突变体dwarf and deformed flower 2(ddf2)。抽穗期,以野生型为对照,对ddf2株高、主穗长、节间和功能叶的长宽等性状进行统计分析;同时利用冷冻切片等技术对茎、叶和花器官进行详细的形态和组织学分析。分别以西农1A和中花11为母本,以DDF2/ddf2杂合株系为父本构建2个F2群体进行遗传分析和基因定位,并对候选基因进行实时荧光定量PCR(real-time PCR)分析。【结果】相较于野生型,突变体各节间的长和茎粗均极显著降低,叶片极显著变短、变窄,同时花序也极显著变短。组织细胞学分析发现,突变体大叶脉数目和相邻2个大叶脉之间的小叶脉数都没有明显的变化,但相邻2个大叶脉之间的宽度明显减小,进一步比较2个小叶脉之间的叶肉细胞,发现在突变体中细胞数目和尺寸均显著降低;突变体茎秆维管束的数目与野生型相比没有明显的变化,但统计发现2个大维管束之间基本组织细胞的数量和细胞的大小都显著小于野生型,表明ddf2突变体茎、叶细胞分裂和膨胀都受到了抑制;此外,ddf2突变体的花器官特征发育受到了严重干扰:第一轮外稃顶部弯曲、内稃不同程度退化,第三轮雄蕊器官严重退化,部分甚至转化为雌蕊状器官,另外部分ddf2小穗的护颖过度发育,转变成稃片状,一些小穗还表现分生组织确定性的丢失,发育出2个以上的小花。遗传分析表明该突变性状受1对隐性基因控制。利用中花11/ddf2的1 024株F2分离群体,最终将DDF2精细定位在第11染色体短臂近着丝粒位置处,位于insertion/deletion(in/del)标记S-11和S-14之间,遗传距离分别为0.049和0.098c M,物理距离为90.295 kb,并与标记S-24共分离。分析定位区间的基因,发现共有MSU注释基因12个,其中一个编码Sec3_C蛋白的LOC_Os11g17600内部包含共分离标记S-24,进一步对该基因进行表达分析,发现该基因在突变体的叶、茎和穗中都表现出明显的下调,初步将LOC_Os11g17600作为DDF2候选基因。【结论】DDF2是一个同时控制水稻茎/叶和花器官发育的新基因。 展开更多
关键词 水稻 矮化 花器官 DWARF and deformed FLOWER 2(ddf2) 基因定位
在线阅读 下载PDF
Contact between deformed rough surfaces
3
作者 Liao-Liang Ke 《Acta Mechanica Sinica》 2025年第2期148-149,共2页
Almost all solid surfaces are rough.The randomness and complexity of roughness make the behavior of contact deformation,electrical conductivity,and heat transfer between solids elusive.If the solids are subjected to f... Almost all solid surfaces are rough.The randomness and complexity of roughness make the behavior of contact deformation,electrical conductivity,and heat transfer between solids elusive.If the solids are subjected to further tensile,bending,or torsional deformation,will more complex or new contact phenomena occur?Clarifying this issue is of great significance to developing and designing some major equipment serving in extreme environments. 展开更多
关键词 Contact deformation Multi-field coupling behavior Interfacial effects in extreme environments Tensile/bending/torsional deformation
原文传递
Twinning mechanism and grain size model of hot deformed FGH4113A alloy
4
作者 Jun-cheng ZHU Yong-cheng LIN +3 位作者 Zi-jian CHEN Yong-fu XIE Jin YANG Majid NASERI 《Transactions of Nonferrous Metals Society of China》 2025年第7期2288-2303,共16页
The effects of varying strain rates and deformation temperatures on the microstructure evolution of the FGH4113A alloy were investigated through hot compression experiments.During hot deformation,grain evolution is pr... The effects of varying strain rates and deformation temperatures on the microstructure evolution of the FGH4113A alloy were investigated through hot compression experiments.During hot deformation,grain evolution is primarily governed by dynamic recrystallization(DRX)and twinning primarily.Furthermore,the pinning effect of the primaryγ'phase(γ'p phase)plays a crucial role in grain refinement.Lower strain rates or higher temperatures facilitate DRX,twinning,and the dissolution of theγ'p phase.At 1140℃,significant dissolution of theγ'p phase and the subsequent loss of its pinning effect reduce twinning activity.A unique twinning mechanism,termed“pinning twinning”,is identified,occurring exclusively under the influence of the pinning effect.When grain boundary migration fails to accommodate dislocations due to the pinning effect,grains preferentially eliminate dislocations via twinning,thereby reducing local strain energy.The grain size prediction model is improved by considering the pinning effect. 展开更多
关键词 nickel-based superalloy hot deformation dynamic recrystallization TWINNING γ'phase pinning effect
在线阅读 下载PDF
Relating normal stiffness to permeability of a deformed self-affine rough fracture using its geometric properties
5
作者 Qinglin Deng Jianming Shangguan +3 位作者 Yinlin Ji Mauro Cacace Guido Blöcher Jean Schmittbuhl 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第5期2829-2842,共14页
In subsurface projects where the host rock is of low permeability,fractures play an important role in fluid circulation.Both the geometrical and mechanical properties of the fracture are relevant to the permeability o... In subsurface projects where the host rock is of low permeability,fractures play an important role in fluid circulation.Both the geometrical and mechanical properties of the fracture are relevant to the permeability of the fracture.To evaluate this relationship,we numerically generated self-affine fractures reproducing the scaling relationship of the power spectral density(PSD)of the measured fracture surfaces.The fractures were then subjected to a uniform and stepwise increase in normal stress.A fast Fourier transform(FFT)-based elastic contact model was used to simulate the fracture closure.The evolution of fracture contact area,fracture closure,and fracture normal stiffness were determined throughout the whole process.In addition,the fracture permeability at each step was calculated by the local cubic law(LCL).The influences of roughness exponent and correlation length on the fracture hydraulic and mechanical behaviors were investigated.Based on the power law of normal stiffness versus normal stress,the corrected cubic law and the linear relationship between fracture closure and mechanical aperture were obtained from numerical modeling of a set of fractures.Then,we derived a fracture normal stiffness-permeability equation which incorporates fracture geometric parameters such as the root-mean-square(RMS),roughness exponent,and correlation length,which can describe the fracture flow under an effective medium regime and a percolation regime.Finally,we interpreted the flow transition behavior from the effective medium regime to the percolation regime during fracture closure with the established stiffness-permeability function. 展开更多
关键词 Fracture closure Elastic deformation Fluid flow PERMEABILITY Normal stiffness Scaling relationship
在线阅读 下载PDF
Atomic-scale understanding of martensitic transformation and transition-induced twinning in deformed Fe-Mn alloys
6
作者 ZHANG Hong-bo LI Hong-kui +2 位作者 OU Xiao-qin SHEN Jie SONG Min 《Journal of Central South University》 2025年第4期1211-1222,共12页
In the present study,molecular dynamic simulation(MD)was used to investigate the plastic deformation process of the Fe-Mn alloys with different Mn contents.The influences of Mn contents ranging from 10%to 30%(at%)on t... In the present study,molecular dynamic simulation(MD)was used to investigate the plastic deformation process of the Fe-Mn alloys with different Mn contents.The influences of Mn contents ranging from 10%to 30%(at%)on the deformation behavior and the controlling mechanism of the Fe-base alloys were analyzed.The results show that phase transformations and{112}<111>_(BCC)deformation twinning occur in all Fe-Mn alloys but follow different deformation paths.In the Fe-10%Mn alloy the deformation twinning mechanism obeys the FCC-related path,the Fe-20%Mn alloy involves both the FCC-and HCP-related paths,and the deformation of the Fe-30%Mn alloy is dominated by the HCP-related twinning path.The addition of Mn can increase the stacking fault energy and retard the activation of slip systems as well as the formation of stacking faults.Thus,a higher content of Mn can delay the FCC®ε-martensite and the subsequentε-martensite®BCC phase transition at the intersection of twoε-martensitic bands.Therefore,the addition of Mn alloying element increases the yield strength and reduces the elastic modulus of the Fe-Mn alloys.The formation of deformation twins will contribute to the work-hardening effect and delay the necking and fracture of alloys.It is expected that the results in the present study will provide theoretical reference for the design and optimization of high-performance steels. 展开更多
关键词 Fe-Mn steel tensile deformation molecular dynamics simulation phase transformation
在线阅读 下载PDF
Pore network modeling of gas-water two-phase flow in deformed multi-scale fracture-porous media
7
作者 Dai-Gang Wang Yu-Shan Ma +6 位作者 Zhe Hu Tong Wu Ji-Rui Hou Zhen-Chang Jiang Xin-Xuan Qi Kao-Ping Song Fang-zhou Liu 《Petroleum Science》 2025年第5期2096-2108,共13页
Two actual rocks drilled from a typical ultra-deep hydrocarbon reservoir in the Tarim Basin are selected to conduct in-situ stress-loading micro-focus CT scanning experiments.The gray images of rock microstructure at ... Two actual rocks drilled from a typical ultra-deep hydrocarbon reservoir in the Tarim Basin are selected to conduct in-situ stress-loading micro-focus CT scanning experiments.The gray images of rock microstructure at different stress loading stages are obtained.The U-Net fully convolutional neural network is utilized to achieve fine semantic segmentation of rock skeleton,pore space,and microfractures based on CT slice images of deep rocks.The three-dimensional digital rock models of deformed multiscale fractured-porous media at different stress loading stages are thereafter reconstructed,and the equivalent fracture-pore network models are finally extracted to explore the underlying mechanisms of gas-water two-phase flow at the pore-scale.Results indicate that,in the process of insitu stress loading,both the deep rocks have experienced three stages:linear elastic deformation,nonlinear plastic deformation,and shear failure.The micro-mechanical behavior greatly affects the dynamic deformation of rock microstructure and gas-water two-phase flow.In the linear elastic deformation stage,with the increase in in-situ stress,both the deep rocks are gradually compacted,leading to decreases in average pore radius,pore throat ratio,tortuosity,and water-phase relative permeability,while the coordination number nearly remains unchanged.In the plastic deformation stage,the synergistic influence of rock compaction and existence of micro-fractures typically exert a great effect on pore-throat topological properties and gas-water relative permeability.In the shear failure stage,due to the generation and propagation of micro-fractures inside the deep rock,the topological connectivity becomes better,fluid flow paths increase,and flow conductivity is promoted,thus leading to sharp increases in average pore radius and coordination number,rapid decreases in pore throat ratio and tortuosity,as well as remarkable improvement in relative permeability of gas phase and waterphase. 展开更多
关键词 Ultra-deep reservoir In-situ stress loading U-Netfully convolutional neural network CTscanning Microstructure deformation Pore-scalefluid flow
原文传递
Microstructure evolution of alumina dispersion strengthened copper alloy deformed under different conditions 被引量:3
8
作者 李灵 李周 +3 位作者 雷前 肖柱 刘斌 刘娜 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第12期3953-3958,共6页
Microstructure and texture evolution of Cu-0.23%Al2O3 dispersion strengthened copper alloy, deformed at room temperature or cryogenic temperature, were investigated. The main textures in hot-extruded specimen were Bra... Microstructure and texture evolution of Cu-0.23%Al2O3 dispersion strengthened copper alloy, deformed at room temperature or cryogenic temperature, were investigated. The main textures in hot-extruded specimen were Brass {011} 〈211〉 and Cube {100} 〈100〉. Textures of Brass {011} 〈211〉 and Goss {011} 〈100〉 were observed in specimen after deformation at room temperature; while textures of Brass {011} 〈211〉, Goss {011} 〈100〉 and S {123} 〈634〉 were detected after deformation at cryogenic temperature. It is believed that the additional Al2O3 nanoparticles can result in dislocation pinning effect, which can further lead to the suppression of dislocations cross-slip. While in the specimen deformed at cryogenic temperature, both pinning effect and cryogenic temperature are responsible for the formation of Brass, Goss and S textures. 展开更多
关键词 cryogenic deformation microstructure TEXTURE dispersion strengthened copper alloy
在线阅读 下载PDF
Micro-structural evolution and their effects on physical properties in different types of tectonically deformed coals 被引量:45
9
作者 Yiwen Ju Kray Luxbacher +4 位作者 Xiaoshi Li Guochang Wang Zhifeng Yan Mingming Wei Liye Yu 《International Journal of Coal Science & Technology》 EI CAS 2014年第3期364-375,共12页
The macromolecular structure of tectonically deformed coals(TDC)may be determined by the deformation mechanisms of coal.Alterations of the macromolecular structure change the pore structure of TDC and thereby impact p... The macromolecular structure of tectonically deformed coals(TDC)may be determined by the deformation mechanisms of coal.Alterations of the macromolecular structure change the pore structure of TDC and thereby impact physical properties such as porosity and permeability.This study focuses on structure and properties of TDC from the Huaibei and Huainan coal mining areas of southern North China.Relationships between the macromolecular structure and the pore structure of TDC were analyzed using techniques such as X-ray diffraction,high-resolution transmission electron microcopy,and the low-temperature nitrogen adsorption.The results indicated that the directional stress condition can cause the arrangement of basic structural units(BSU)more serious and closer.And,the orientation is stronger in ductile deformed coal than in brittle deformed coal.Tectonic deformation directly influences the macromolecular structure of coal and consequently results in dynamic metamorphism.Because the size of BSU in brittle deformed coal increases more slowly than in ductile deformed coal,frictional heating and stress-chemistry of shearing areas might play a more important role,locally altering coal structure under stress,in brittle deformed coal.Strain energy is more significant in increasing the ductile deformation of coal.Furthermore,mesopores account for larger percentage of the nano-scale pore volume in brittle deformed coals,while mesopores volume in ductile deformed coal diminishes rapidly along with an increase in the proportion of micropores and sub-micropores.This research also approved that the deformations of macromolecular structures change nano-scale pore structures,which are very important for gas adsorption and pervasion space for gas.Therefore,the exploration and development potential of coal bed methane is promising for reservoirs that are subjected to a certain degree of brittle deformation(such as schistose structure coal,mortar structure coal and cataclastic structure coal).It also holds promise for TDC resulting from wrinkle structure coal of low ductile deformation and later superimposed by brittle deformation.Other kinds of TDC suffering from strong brittle-ductile and ductile deformation,such as scale structure coal and mylonitic structure coal,are difficult problems to resolve. 展开更多
关键词 Tectonically deformed coals Formation mechanisms Macromolecular structure Pore structure Micro-structured evolution Coal bed methane
在线阅读 下载PDF
A robust deformed convolutional neural network(CNN)for image denoising 被引量:22
10
作者 Qi Zhang Jingyu Xiao +2 位作者 Chunwei Tian Jerry Chun‐Wei Lin Shichao Zhang 《CAAI Transactions on Intelligence Technology》 SCIE EI 2023年第2期331-342,共12页
Due to strong learning ability,convolutional neural networks(CNNs)have been developed in image denoising.However,convolutional operations may change original distributions of noise in corrupted images,which may increa... Due to strong learning ability,convolutional neural networks(CNNs)have been developed in image denoising.However,convolutional operations may change original distributions of noise in corrupted images,which may increase training difficulty in image denoising.Using relations of surrounding pixels can effectively resolve this problem.Inspired by that,we propose a robust deformed denoising CNN(RDDCNN)in this paper.The proposed RDDCNN contains three blocks:a deformable block(DB),an enhanced block(EB)and a residual block(RB).The DB can extract more representative noise features via a deformable learnable kernel and stacked convolutional architecture,according to relations of surrounding pixels.The EB can facilitate contextual interaction through a dilated convolution and a novel combination of convolutional layers,batch normalisation(BN)and ReLU,which can enhance the learning ability of the proposed RDDCNN.To address long-term dependency problem,the RB is used to enhance the memory ability of shallow layer on deep layers and construct a clean image.Besides,we implement a blind denoising model.Experimental results demonstrate that our denoising model outperforms popular denoising methods in terms of qualitative and quantitative analysis.Codes can be obtained at https://github.com/hellloxiaotian/RDDCNN. 展开更多
关键词 blind denoising CNN deformed block enhanced block
在线阅读 下载PDF
Response of Macromolecular Structure to Deformation in Tectonically Deformed Coal 被引量:8
11
作者 LI Xiaoshi JU Yiwen +1 位作者 HOU Quanlin FAN Junjia 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2013年第1期82-90,共9页
The structural evolution of tectonically deformed coals (TDC) with different deformational mechanisms and different deformational intensities are investigated in depth through X-ray diffraction (XRD) analysis on 3... The structural evolution of tectonically deformed coals (TDC) with different deformational mechanisms and different deformational intensities are investigated in depth through X-ray diffraction (XRD) analysis on 31 samples of different metamorphic grades (R : 0.7%-3.1%) collected from the Huaibei coalfield. The results indicated that there are different evolution characteristics between the ductile and brittle deformational coals with increasing of metamorphism and deformation. On the one hand, with the increase of metamorphism, the atomic plane spacing (d002) is decreasing at step velocity, the stacking of the BSU layer (Lc) is increasing at first and then decreasing, but the extension of the BSU layer (La) and the ratio of La/Lc are decreasing initially and then increasing. On the other hand, for the brittle deformational coal, d002 is increasing initially and then decreasing, which causes an inversion of the variation of Lc and La under the lower-middle or higher-middle metamorphism grade when the deformational intensity was increasing. In contrast, in the ductile deformational coals, d002 decreased initially and then increased, and the value of L~ decreased with the increase of deformational intensity. But the value of La increased under the lower-middle metamorphism grade and increased at first and then decreased under the higher-middle metamorphism grade. We conclude that the degradation and polycondensation of TDC macromolecular structure can be obviously impacted during the ductile deformational process, because the increase and accumulation of unit dislocation perhaps transforms the stress into strain energy. Meanwhile, the brittle deformation can transform the stress into frictional heat energy, and promote the metamorphism and degradation as well. It can be concluded that deformation is more important than metamorphism to the differential evolution of the ductile and brittle deformational coals. 展开更多
关键词 tectonically deformed coal X-ray diffraction deformational mechanism deformationalintensity macromolecular structure
在线阅读 下载PDF
MECHANICAL STABILIZATION OF DEFORMED AUSTENITEDURING CONTINUOUS COOLING TRANSFORMATION IN AC-Mn-Cr-Ni-Mo PLASTIC DIE STEEL 被引量:7
12
作者 D.S.Liu G.D.Wang +1 位作者 X.H.Liu G.Z.Cui 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1998年第2期93-99,共7页
The influence of prior austenite deformed at different temperature on the subsequent continuous cooling bainitic transformation has been investigated in an C-Ma-Cr-Ni-Mo plastic die steel. The results show that the pr... The influence of prior austenite deformed at different temperature on the subsequent continuous cooling bainitic transformation has been investigated in an C-Ma-Cr-Ni-Mo plastic die steel. The results show that the prior deformation in low temperature region of austenite retards significantly the bainitic transformation. For the same continuous cooling schedule, as austenite deformed at lower temperature, the quantity of the classical sheaf-like bainite becomes less. The present results show that severe deformation leads to mechanical stabilization of austenite and causes the difficulty of bainitic ferrite propagation into the austenite. 展开更多
关键词 plastic die steel deformed austenite continuous cooling bainitic transformation mechanical stabilization of austenite
在线阅读 下载PDF
Study of seismic behavior of PHC piles with partial normal-strength deformed bars 被引量:4
13
作者 Zhang Xizhi Zhang Shaohua +1 位作者 Xu Shengbo Niu Sixin 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2020年第2期307-320,共14页
Nine PHC piles with partial normal-strength deformed bars were prepared in present study,and cyclic loading tests were implemented to evaluate these piles’seismic performance.The influence of the axial compression ra... Nine PHC piles with partial normal-strength deformed bars were prepared in present study,and cyclic loading tests were implemented to evaluate these piles’seismic performance.The influence of the axial compression ratio and the amount of normal-strength deformed bars on failure modes,crack patterns,strength,stiffness,and ductility were examined.The test findings indicate that the change of axial compression ratio has a noticeable influence on the failure mode of PHC piles.A larger axial compression ratio results in a higher cracking bending resistance,ultimate bending resistance,and initial stiffness,but the propagation heights of flexural cracks decrease as the axial compression ratio increases.Furthermore,increasing the amount of normal-strength deformed bars causes a slight decrease in ductility.Finally,a calculation formula was proposed to predict the flexural capacity of PHC piles with partial normal-strength deformed bars. 展开更多
关键词 PHC pile PRESTRESSED TENDONS deformed bars seismic behavior cyclic loading test FLEXURAL capacity
在线阅读 下载PDF
Experimental Research on Pore Structure and Gas Adsorption Characteristic of Deformed Coal 被引量:4
14
作者 Guo Deyong Guo Li Miao Xinhui 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2014年第4期55-64,共10页
The pore structure and gas adsorption property of deformed coal with different degrees of metamorphism were tested by low-temperature nitrogen adsorption and isothermal adsorption experiments. The fractal theory and t... The pore structure and gas adsorption property of deformed coal with different degrees of metamorphism were tested by low-temperature nitrogen adsorption and isothermal adsorption experiments. The fractal theory and the Langmuir adsorption theory were used to analyze the experimental data. The test results showed that the deformed coal had more heterogeneous pore structures and open pores, and its specific surface area(SSA) and fractal dimension(D) were higher. There is a polynomial relationship between D and specific surface area as well as gas adsorption capacity(VL). The gas adsorption capacity of deformed coal is influenced by pore structure, coal rank, deformation and stress together, among which the pore structure is the main influencing factor for the adsorption capacity of deformed coal. The test pressure could affect the accuracy of the adsorption constants a and b, so the highest experiment pressure should be greater than the actual pressure of coal seam in order to reduce the deviation of adsorption constants. 展开更多
关键词 deformed COAL PORE structure nitrogen ADSORPTION ISOTHERMAL ADSORPTION
在线阅读 下载PDF
Even and Odd Q-coherent State Representations of the Q-deformed Heisenberg-Weyl Algebra 被引量:4
15
作者 WANG Fabo KUANG Leman 《Chinese Physics Letters》 SCIE CAS CSCD 1992年第12期629-632,共4页
We construct explicitly even and odd q-coherent states.These q-coherent states are introduced in terms of the q-functions defined in the paper.It is shown that the even and odd q-coherent states form a kind of represe... We construct explicitly even and odd q-coherent states.These q-coherent states are introduced in terms of the q-functions defined in the paper.It is shown that the even and odd q-coherent states form a kind of representations of the q-deformed Heisenberg-Weyl algebra which is realized in the form of matrix q-differential operators in the even and odd q-coherent state space.We also analyse some different between the even and odd q-CSs and the usual even and odd CSs. 展开更多
关键词 space. coherent deformed
原文传递
Odd Systems in Deformed Relativistic Hartree Bogoliubov Theory in Continuum 被引量:3
16
作者 LI Lu-Lu MENG Jie +2 位作者 P.Ring ZHAO En-Guang ZHOU Shan-Gui 《Chinese Physics Letters》 SCIE CAS CSCD 2012年第4期43-46,共4页
In order to describe the exotic nuclear structure in unstable odd-A or odd-odd nuclei,the deformed relativistic Hartree Bogoliubov theory in continuum is extended to incorporate the blocking effect due to the odd nucl... In order to describe the exotic nuclear structure in unstable odd-A or odd-odd nuclei,the deformed relativistic Hartree Bogoliubov theory in continuum is extended to incorporate the blocking effect due to the odd nucleon.For a microscopic and self-consistent description of pairing correlations,continuum,deformation,blocking effects,and the extended spatial density distribution in exotic nuclei,the deformed relativistic Hartree Bogoliubov equations are solved in a Woods Saxon basis in which the radial wave functions have a proper asymptotic behavior at large r.The formalism and numerical details are provided.The code is checked by comparing the results with those of spherical relativistic continuum Hartree Bogoliubov theory in the nucleus 19O.The prolate deformed nucleus 15 C is studied by examining the neutron levels and density distributions. 展开更多
关键词 HARTREE deformed RELATIVISTIC
原文传递
Grain boundary construction and properties enhancement for hot deformed(Ce,La,Y)-Fe-B magnet by a two-step diffusion process 被引量:3
17
作者 Xuefeng Liao Weiwei Zeng +10 位作者 Lizhong Zhao Qing Zhou Jiayi He Wei Li Xiangyi Liu Hongya Yu Xiaolian Liu Haoyang Jia Jean-Marc Greneche Xuefeng Zhang Zhongwu Liu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第34期253-261,共9页
The rare earth-iron-boron magnets based on high abundance rare earths(REs)show potential for costeffective permanent magnets but their hard magnetic properties have to be greatly improved.The grain boundary diffusion ... The rare earth-iron-boron magnets based on high abundance rare earths(REs)show potential for costeffective permanent magnets but their hard magnetic properties have to be greatly improved.The grain boundary diffusion process(GBDP)is known as an effective way to improve the coercivity of Nd-Fe-B magnets,however,the conventional diffusion method faces a challenge for Ce-based magnets since there is no enough continuous GB layer as the diffusion channel.Here,a two-step(Nd-Cu doping followed by Nd-Cu diffusion)GBDP was introduced for hot deformed(Ce,La,Y)-Fe-B magnet,and the excellent magnetic properties ofμ0Hc=0.63 T,μ0Mr=0.68 T,and(BH)max=72.4 kJ/m^(3)were achieved.The Nd-Cu doping helps the formation of RE-rich GB layer,and then it acts as the diffusion channel for increasing the ef-ficiency of the subsequent Nd-Cu diffusion and results in the increased volume fraction of continuously distributed GB phase,whose paramagnetism was verified by 57Fe Mössbauer spectrometry.Those paramagnetic GB phases help to form the discontinuous domain walls,as observed by Lorentz transmission electron microscopy,and break the magnetic exchange coupling of RE2Fe14B grains.It thus contributes to the coercivity enhancement of the hot deformed magnet with two-step diffusion,which is further proved by micromagnetic simulation.This study proposes a potential technique to prepare anisotropic hot deformed(Ce,La,Y)-Fe-B magnet with high cost-performance. 展开更多
关键词 High abundance rare earth Hot deformed RE-Fe-B magnets Grain boundary diffusion process Magnetic properties Grain boundary phase
原文传递
Influence of combination forms of intact sub-layer and tectonically deformed sub-layer of coal on the gas drainage performance of boreholes: a numerical study 被引量:3
18
作者 Wei Zhao Kai Wang +3 位作者 Rong Zhang Huzi Dong Zhen Lou Fenghua An 《International Journal of Coal Science & Technology》 EI 2020年第3期571-580,共10页
High concentration and large flow flux of gas drainage from underground coal seams is the precondition of reducing emission and large-scale use of gas.However,the layered occurrence of coal seams with tectonically def... High concentration and large flow flux of gas drainage from underground coal seams is the precondition of reducing emission and large-scale use of gas.However,the layered occurrence of coal seams with tectonically deformed sub-layers and intact sub-layers makes it difficult to effectively drain gas through commonly designed boreholes.In this study,the gas drainage performance in coal seams with different combinations of tectonically deformed sub-layers and intact sub-layers was numerically analyzed.The analysis results show that the gas drainage curve changes from a single-stage line to a dual-stage curve as the permeability ratios of Zone II(kII)and Zone I(kI)increase,raising the difficulty in gas drainage.Furthermore,a dual-system pressure decay model based on the first-order kinetic model was developed to describe the dual-stage characteristics of pressure decay curves with different permeability ratios.In the end,the simulation results were verified with reference to in-situ drainage data from literature.The research results are helpful for mines,especially those with layered coal seams comprising tectonically deformed sub-layers and intact sub-layers,to choose appropriate gas drainage methods and develop the original drainage designs for achieving better gas drainage performance. 展开更多
关键词 Tectonically deformed coal Pressure decay Permeability Hydraulic flushing boreholes
在线阅读 下载PDF
Shape Decoupling Effects and Rotation of Deformed Halo Nuclei 被引量:3
19
作者 SUN Xiangxiang ZHOU Shangui 《原子核物理评论》 CAS CSCD 北大核心 2024年第1期75-85,共11页
With the development of radioactive-ion-beam facilities,many exotic phenomena have been discovered or predicted in the nuclei far from the stability line,including cluster structure,shell structure,deformed halo,and s... With the development of radioactive-ion-beam facilities,many exotic phenomena have been discovered or predicted in the nuclei far from the stability line,including cluster structure,shell structure,deformed halo,and shape decoupling effects.The study of exotic nuclear phenomena is at the frontier of nuclear physics nowadays.The covariant density functional theory(CDFT)is one of the most successful microscopic models in describing the structure of nuclei in almost the whole nuclear chart.Within the framework of CDFT,toward a proper treatment of deformation and weak binding,the deformed relativistic Hartree-Bogoliubov theory in continuum(DRHBc)has been developed.In this contribution,we review the applications and extensions of the DRHBc theory to the study of exotic nuclei.The DRHBc theory has been used to investigate the deformed halos in B,C,Ne,Na,and Mg isotopes and the theoretical descriptions are reasonably consistent with available data.A DRHBc Mass Table Collaboration has been founded,aiming at a high precision nuclear mass table with deformation and continuum effects included,which is underway.By implementing the angular momentum projection based on the DRHBc theory,the rotational excitations of deformed halos have been investigated and it is shown that the deformed halos and shape decoupling effects also exist in the low-lying rotational excitation states of deformed halo nuclei. 展开更多
关键词 exotic nuclei deformed halo shape decoupling effect nuclear mass rotational excitation density functional theory
原文传递
Tectonically deformed coal types and pore structures in Puhe and Shanchahe coal mines in western Guizhou 被引量:19
20
作者 Li Ming Jiang Bo +3 位作者 Lin Shoufa Wang Jilin Ji Mingjun Qu Zhenghui 《Mining Science and Technology》 EI CAS 2011年第3期353-357,共5页
To evaluate the effect of tectonic deformation on coal reservoir properties, we provide an analysis of the types of tectonically deformed coal, macroand microscopic deformation and discuss pore structural characterist... To evaluate the effect of tectonic deformation on coal reservoir properties, we provide an analysis of the types of tectonically deformed coal, macroand microscopic deformation and discuss pore structural characteristics and connectivity based on samples from the Puhe and Shanchahe coal mines. Our research shows that the tectonically deformed coal mostly includes cataclastic structural coal, mortar structural coal and schistose structural coal of a brittle deformation series. The major pore structures of different types of tectonically deformed coal are transitional pores and micropores. The pore volumes of macropores and visible fracture pores produced by structural deformations vary over a large range and increase with the intensity of tectonic deformation. Mesopores as connecting passages develop well in schistose structural coal. According to the shapes of intrusive mercury curves, tectonically deformed coal can be divided into parallel, open and occluded types. The parallel type has poor connectivity and is relatively closed; the open type reflects uniformly developed open pores with good connectivity while the occluded type is good for coalbed methane enrichment, but has poor connectivity between pores. 展开更多
关键词 Puhe and Shanchahe coal minesTectonically deformed coalPore structure Coalbed methane
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部