As 3D digital photographic and scanning devices produce higher resolution images, acquired geometric data sets grow more complex in terms of the modeled objects' size, geometry, and topology. As a consequence, point-...As 3D digital photographic and scanning devices produce higher resolution images, acquired geometric data sets grow more complex in terms of the modeled objects' size, geometry, and topology. As a consequence, point-sampled geometry is becoming ubiquitous in graphics and geometric information processing, and poses new challenges which have not been fully resolved by the state-of-art graphical techniques. In this paper, we address the challenges by proposing a meshless computational framework for dynamic modeling and simulation of solids and thin-shells represented as point sam- ples. Our meshless framework can directly compute the elastic deformation and fracture propagation for any scanned point geometry, without the need of converting them to polygonal meshes or higher order spline representations. We address the necessary computational techniques, such as Moving Least Squares, Hierarchical Discretization, and Modal Warping, to effectively and efficiently compute the physical simulation in real-time. This meahless computational framework aims to bridge the gap between the point-sampled geometry with physics-based modeling and simulation governed by partial differential equations.展开更多
A new method for iris recognition using a multi-matching system based on a simplified deformable model of the human iris was proposed. The method defined iris feature points and formed the feature space based on a wa...A new method for iris recognition using a multi-matching system based on a simplified deformable model of the human iris was proposed. The method defined iris feature points and formed the feature space based on a wavelet transform. In the matching stage it worked in a crude manner. Driven by a simplified deformable iris model, the crude matching was refined. By means of such multi-matching system, the task of iris recognition was accomplished. This process can preserve the elastic deformation between an input iris image and a template and improve precision for iris recognition. The experimental results indicate the va- lidity of this method.展开更多
In this paper, we present a new deformable model for shape segmentation, which makes two modifications to the original level set implementation of deformable models.The modifications are motivated by difficulties that...In this paper, we present a new deformable model for shape segmentation, which makes two modifications to the original level set implementation of deformable models.The modifications are motivated by difficulties that we have encountered in applying deformable models to segmentation of medical images.The level set algorithm has some advantages over the classical snake deformable models.However, it could develop large gaps in the boundary and holes within the objects.Such boundary gaps and holes of objects can cause inaccurate segmentation that requires manual correction.The proposed method in this paper possesses an inherent property to detect gaps and holes within the object with a single initial contour and also does not require specific initialization.The first modification is to replace the edge detector by some area constraint, and the second modification utilizes weighted length constraint to regularize the curve under evolution.The proposed method has been applied to both synthetic and real images with promising results.展开更多
A hierarchical non-linear method for image registration was presented, which integrates image segmentation and registration under a variational framework. An improved deformable model is used to simultaneously segment...A hierarchical non-linear method for image registration was presented, which integrates image segmentation and registration under a variational framework. An improved deformable model is used to simultaneously segment and register feature from multiple images. The objects in the image pair are segmented by evolving a single contour and meanwhile the parameters of affine registration transformation are found out. After that, a contour-constrained elastic registration is applied to register the images correctly. The experimental results indicate that the proposed approach is effective to segment and register medical images.展开更多
A new B-spline surface reconstruction method from layer data based on deformable model is presented. An initial deformable surface, which is represented as a closed cylinder, is firstly given. The surface is subject t...A new B-spline surface reconstruction method from layer data based on deformable model is presented. An initial deformable surface, which is represented as a closed cylinder, is firstly given. The surface is subject to internal forces describing its implicit smoothness property and external forces attracting it toward the layer data points. And then finite element method is adopted to solve its energy minimization problem, which results a bicubic closed B-spline surface with C^2 continuity. The proposed method can provide a smoothness and accurate surface model directly from the layer data, without the need to fit cross-sectional curves and make them compatible. The feasibility of the proposed method is verified by the experimental results.展开更多
Minimization of energy functional of shape deformation under given constraints is used to generate fair curves and surfaces. This approach allows the user to design the shape interactively by applying different geomet...Minimization of energy functional of shape deformation under given constraints is used to generate fair curves and surfaces. This approach allows the user to design the shape interactively by applying different geometric constraints, external loads and physical parameters. Testing this way in a prototype system shows that the operators offer an intuitive way of shape modeling.展开更多
In this study, the effect of extreme laser fields on the α decay process of ground-state even–even nuclei was investigated.Using the deformed Gamow-like model, we found that state-of-the-art lasers can cause a sligh...In this study, the effect of extreme laser fields on the α decay process of ground-state even–even nuclei was investigated.Using the deformed Gamow-like model, we found that state-of-the-art lasers can cause a slight change in the α decay penetration probability of most nuclei. In addition, we studied the correlation between the rate of change of the α decay penetration probability and angle between the directions of the laser electric field and α particle emission for different nuclei. Based on this correlation, the average effect of extreme laser fields on the half-life of many nuclei with arbitrary α particle emission angles was calculated. The calculations show that the laser suppression and promotion effects on the α decay penetration probability of the nuclei population with completely random α particle-emission directions are not completely canceled.The remainder led to a change in the average penetration probability of the nuclei. Furthermore, the possibility of achieving a higher average rate of change by altering the spatial shape of the laser is explored. We conclude that circularly polarized lasers may be helpful in future experiments to achieve a more significant average rate of change of the α decay half-life of the nuclei population.展开更多
A model suitable for describing the mechanical response of thin elastic objects is proposed to simulate the deformation of guide wires in minimally invasive interventions. The main objective of this simulation is to p...A model suitable for describing the mechanical response of thin elastic objects is proposed to simulate the deformation of guide wires in minimally invasive interventions. The main objective of this simulation is to provide doctors an opportunity to rehearse the surgery and select an optimal operation plan before the real surgery. In this model the guide wire is discretized with the multi-body representation and its elastic energy derivate from elastic theory is a polynomial function of the nodal displacements. The vascular structure is represented by a tetrahedron mesh extended from the triangular mesh of the artery, which can be extracted from the patient's CT image data. The model applies the energy decline process of the conjugate gradient method to the deformation simulation of the guide wire. Experimental results show that the polynomial relationship between elastic energy and nodal displacements tremendously simplifies the evaluation of the conjugate gradient method and significantly improves the model's efficiency. Compared with models depending on an explicit scheme for evaluation, the new model is not only non-conditionally stable but also more efficient. The model can be applied to the real-time simulation of guide wire in a vascular structure.展开更多
In the process of thin-wall parts assembly for an antenna,the parts assembly deformation deviation is occurring due to the riveting assembly.In view of the riveting assembly deformation problems,it can be analyzed thr...In the process of thin-wall parts assembly for an antenna,the parts assembly deformation deviation is occurring due to the riveting assembly.In view of the riveting assembly deformation problems,it can be analyzed through transient and static simulation.In this work,the theoretical deformation model for riveting assembly is established with round head rivet.The simulation analysis for riveting deformation is carried out with the riveting assembly piece including four rivets,which comparing with the measuring points experiment results of riveting test piece through dealing with the experimental data using the point coordinate transform method and the space line fitting method.Simultaneously,the deformation deviation of the overall thin-wall parts assembly structure is analyzed through finite element simulation;and its results are verified by the measuring experiment for riveting assembly with the deformation deviation of some key points on the thin-wall parts.Through the comparison analysis,it is shown that the simulation results agree well with the experimental results,which proves the correctness and effectiveness of the theoretical analysis,simulation results and the given experiment data processing method.Through the study on the riveting assembly for thin-wall parts,it will provide a theoretical foundation for improving thin-wall parts assembly quality of large antenna in future.展开更多
This paper starts with brief introduction to the open topic of the CFD and wing tunnel correlation study, followed by a description of the Chinese Aeronautical Establishment(CAE) –Aerodynamic Validation Model(AVM...This paper starts with brief introduction to the open topic of the CFD and wing tunnel correlation study, followed by a description of the Chinese Aeronautical Establishment(CAE) –Aerodynamic Validation Model(AVM) and its wind tunnel test in the German-Dutch Wind tunnels(DNW). The features of the aerodynamic design, the CFD approach, the wind tunnel model fabrication and the experimental techniques are discussed along with the motivation of the CAEDNW workshop on CFD-wind tunnel correlation study. The workshop objective is focused on the interference from the aero-elastic deformation of the wind tunnel model and the model support system to the aerodynamic performance and CFD validations. The four study cases, geometry and mesh preparation of the workshop are introduced. A comprehensive summary of the CFD results from the organizer and the participants is provided. Major observations, both CFD to CFD and CFD to wind tunnel, are identified and summarized. The CFD results of the participants are in good agreement with each other, and with the wind tunnel test data when the wing deformation and a Z-sting system are included in the CFD, indicating the importance of considering such interference at high subsonic Mach number of 0.85.展开更多
For the purpose of establishing and validating aerodynamic performance predictions at transonic Mach numbers, a wind tunnel test was conducted in the High-Speed Tunnel(HST) of the German-Dutch Wind Tunnels. The test...For the purpose of establishing and validating aerodynamic performance predictions at transonic Mach numbers, a wind tunnel test was conducted in the High-Speed Tunnel(HST) of the German-Dutch Wind Tunnels. The test article is the aerodynamic validation model from the Chinese Aeronautical Establishment, which is a full-span scale model representation of a business jet aircraft. The wind tunnel test comprised of parallel deployments of balance, pressures, infrared thermography, and model marker measurement techniques. Dedicated investigations with a dummy support were conducted as well, in order to derive and correct for the interference that the support system imposed on the overall model loads. This enabled the establishment of a comprehensive dataset in which the steady overall model loads, the wing load distribution, the state of the wing boundary layer, and the aeroelastic wing shape were quantified for conditions up to and beyond the cruise Mach number of 0.85.展开更多
Based on new high-resolution seismic profiles and existing structural and sedimentary results, a superposition deformation model for Cenozoic Bachu Uplift of northwestern Tarim Basin, northwestern China is proposed. T...Based on new high-resolution seismic profiles and existing structural and sedimentary results, a superposition deformation model for Cenozoic Bachu Uplift of northwestern Tarim Basin, northwestern China is proposed. The model presents the idea that the Bachu Uplift suffered structure superposition deformation under the dual influences of the Cenozoic uplifting of Southern Tianshan and Western Kunlun orogen, northwestern China. In the end of the Eocene (early Himalayan movement), Bachu Uplift started to be formed with the uplifting of Western Kunlun, and extended NNW into the interior of Kalpin Uplift. In the end of the Miocene (middle Himalayan movement), Bachu Uplift suffered not only the NNW structure deformation caused by the Western Kunlun uplifting, but also the NE structure deformation caused by the Southern Tianshan uplifting, and the thrust front fault of Kalpin thrust system related to the Southern Tianshan orogen intrudes southeastward into the hinterland of Bachu Uplift and extends NNE from well Pil to Xiaohaizi reservoir and Gudongshan mountain, which resulted in the strata folded and denuded strongly. In the end of the Pliocene (late Himalayan movement), the impact of Southern Yianshan orogen decreased because of the stress released with the breakthrough upward of Kalpin fault extending NE, and Bachu Uplift suffered mainly the structure deformation extending NW-NNW caused by the uplifting of Western Kunlun orogen.展开更多
A systematic study has been conducted aiming to attain an insight into the influence of coefficient of roll speed asymmetry, crystal orientation and structure on the deformation behavior, and crystallographic orientat...A systematic study has been conducted aiming to attain an insight into the influence of coefficient of roll speed asymmetry, crystal orientation and structure on the deformation behavior, and crystallographic orientation development during foil rolling. Simulations were successfully carried out by using crystal plasticity finite element method(CPFEM),and a novel computational framework is presented for the representation of virtual polycrystalline grain structures. It has been found that asymmetric rolling(ASR) is more efficient in producing plastic deformation since it develops additional shear strain and activity of slip system compared with symmetric rolling(SR). For ASR, increase in the length of the shear zone, and decrease in the amount of the pressure and roll force would lead to further reduction. The shear strain path in SR and ASR is strictly influenced by the misorientation of neighbor grains, and corresponding {1 1 1} pole figures offer direct evidence of the spread of crystallographic orientation around the normal direction. The activity of slip systems was examined in detail and found that the predicted results are consistent with the surface layer model. The accuracy of the developed CPFEM model is verified by the fact that the simulated results of roll force coincide well with the experimental results.展开更多
In this paper, a finite element method (FEM)-based multi-phase problem based on a newly proposed thermal elastoplastic constitutive model for saturated/unsaturated geomaterial is discussed. A program of FEM named as...In this paper, a finite element method (FEM)-based multi-phase problem based on a newly proposed thermal elastoplastic constitutive model for saturated/unsaturated geomaterial is discussed. A program of FEM named as SOFT, adopting unified field equations for thermo-hydro-mechanical-air (THMA) behavior of geomaterial and using finite element-finite difference (FE-FD) scheme for so/l-water-air three-phase coupling problem, is used in the numerical simulation. As an application of the newly proposed numerical method, two engineering problems, one for slope failure in unsaturated model ground and another for in situ heating test related to deep geological repository of high-level radioactive waste (HLRW), are simulated. The model tests on slope failure in unsaturated Shirasu ground, carried out by Kitamura et al. (2007), is simulated in the framework of soil-water-air three-phase coupling under the condition of constant temperature. While the in situ heating test reported by Munoz (2006) is simulated in the same framework under the conditions of variable temperature hut constant air pressure.展开更多
The permafrost development in the Qinghai-Tibet Engineering Corridor(QTEC)is affected by natural environment changes and human engineering activities.Human engineering activities may damage the permafrost growing envi...The permafrost development in the Qinghai-Tibet Engineering Corridor(QTEC)is affected by natural environment changes and human engineering activities.Human engineering activities may damage the permafrost growing environment,which in turn impact these engineering activities.Thus high spatial-temporal resolution monitoring over the QTEC in the permafrost region is very necessary.This paper presents a method for monitoring the frozen soil area using the intermittent coherencebased small baseline subset(ICSBAS).The method can improve the point density of the results and enhance the interpretability of deformation results by identifying the discontinuous coherent points according to the coherent value of time series.Using the periodic function that models the seasonal variation of permafrost,we separate the long wavelength atmospheric delay and establish an estimation model for the frozen soil deformation.Doing this can raise the monitoring accuracy and improve the understanding of the surface deformation of the frozen soil.In this study,we process 21 PALSAR data acquired by the Alos satellite with the proposed ICSBAS technique.The results show that the frozen soil far from the QTR in the study area experiences frost heave and thaw settlement(4.7 cm to8.4 cm)alternatively,while the maximum settlement along the QTR reaches 12 cm.The interferomatric syntnetic aperture radar(InSAR)-derived results are validated using the ground leveling data nearby the Beiluhe basin.The validation results show the InSAR results have good consistency with the leveling data in displacement rates as well as time series.We also find that the deformation in the permafrost area is correlated with temperature,human activities and topography.Based on the interfering degree of human engineering activities on the permafrost environment,we divide the QTEC along the Qinghai-Tibet Railway into engineering damage zone,transition zone and natural permafrost.展开更多
The arbitrary space-shape free form deformation (FFD) method developed in this paper is based on non-uniform rational B-splines (NURBS) basis function and used for the integral parameterization of nacelle-pylon ge...The arbitrary space-shape free form deformation (FFD) method developed in this paper is based on non-uniform rational B-splines (NURBS) basis function and used for the integral parameterization of nacelle-pylon geometry. The multi-block structured grid deformation technique is established by Delaunay graph mapping method. The optimization objects of aerodynamic characteristics are evaluated by solving NavierStokes equations on the basis of multi-block structured grid. The advanced particle swarm optimization (PSO) is utilized as search algorithm, which com-bines the Kriging model as surrogate model during optimization. The optimization system is used for optimizing the nacelle location of DLR-F6 wing-body-pylon-nacelle. The results indicate that the aerodynamic interference between the parts is significantly reduced. The optimization design system established in this paper has extensive applications and engineering value.展开更多
An equivalent continuum method only considering the stretching deformation of struts was used to study the in-plane stiffness and strength of planar lattice grid com- posite materials. The initial yield equations of l...An equivalent continuum method only considering the stretching deformation of struts was used to study the in-plane stiffness and strength of planar lattice grid com- posite materials. The initial yield equations of lattices were deduced. Initial yield surfaces were depicted separately in different 3D and 2D stress spaces. The failure envelope is a polyhedron in 3D spaces and a polygon in 2D spaces. Each plane or line of the failure envelope is corresponding to the yield or buckling of a typical bar row. For lattices with more than three bar rows, subsequent yield of the other bar row after initial yield made the lattice achieve greater limit strength. The importance of the buckling strength of the grids was strengthened while the grids were relative sparse. The integration model of the method was used to study the nonlinear mechanical properties of strain hardening grids. It was shown that the integration equation could accurately model the complete stress-strain curves of the grids within small deformations.展开更多
Temperature rise is a significant factor influencing microstructure during(α+β) deformation of TA15 titanium alloy.An experiment was designed to explore microstructure evolution induced by temperature rise due to...Temperature rise is a significant factor influencing microstructure during(α+β) deformation of TA15 titanium alloy.An experiment was designed to explore microstructure evolution induced by temperature rise due to deformation heat.The experiment was carried out in(α+β) phase field at typical temperature rise rates.The microstructures of the alloy under different temperature rise rates were observed by scanning electron microscopy(SEM).It is found that the dissolution rate of primary equiaxed a phase increases with the increase in both temperature and temperature rise rate.In the same temperature range,the higher the temperature rise rate is,the larger the final content and grain size of primary equiaxed a phase are due to less dissolution time.To quantitatively depict the evolution behavior of primary equiaxed a phase under any temperature rise rates,the dissolution kinetics of primary equiaxed a phase were well described by a diffusion model.The model predictions,including content and grain size of primary equiaxed a phase,are in good agreement with experimental observations.The work provides an important basis for the prediction and control of microstructure during hot working of titanium alloy.展开更多
We prepared concretes(RC0, RC30, and RC100) with three different mixes. The poresize distribution parameters of RAC were examined by high-precision mercury intrusion method(MIM) and nuclear magnetic resonance(NMR...We prepared concretes(RC0, RC30, and RC100) with three different mixes. The poresize distribution parameters of RAC were examined by high-precision mercury intrusion method(MIM) and nuclear magnetic resonance(NMR) imaging. A capillary-bundle physical model with random-distribution pores(improved model, IM) was established according to the parameters, and dry-shrinkage strain values were calculated and verified. Results show that in all pore types, capillary pores, and gel pores have the greatest impacts on concrete shrinkage, especially for pores 2.5-50 and 50-100 nm in size. The median radii are 34.2, 31, and 34 nm for RC0, RC30, and RC100, respectively. Moreover, the internal micropore size distribution of RC0 differs from that of RC30 and RC100, and the pore descriptions of MIM and NMR are consistent both in theory and in practice. Compared with the traditional capillary-bundle model, the calculated results of IM have higher accuracy as demonstrated by experimental verifi cation.展开更多
A model of deformation resistance during hot strip rolling was established based on generalized additive model.Firstly,a data modeling method based on generalized additive model was given.It included the selection of ...A model of deformation resistance during hot strip rolling was established based on generalized additive model.Firstly,a data modeling method based on generalized additive model was given.It included the selection of dependent variable and independent variables of the model,the link function of dependent variable and smoothing functional form of each independent variable,estimating process of the link function and smooth functions,and the last model modification.Then,the practical modeling test was carried out based on a large amount of hot rolling process data.An integrated variable was proposed to reflect the effects of different chemical compositions such as carbon,silicon,manganese,nickel,chromium,niobium,etc.The integrated chemical composition,strain,strain rate and rolling temperature were selected as independent variables and the cubic spline as the smooth function for them.The modeling process of deformation resistance was realized by SAS software,and the influence curves of the independent variables on deformation resistance were obtained by local scoring algorithm.Some interesting phenomena were found,for example,there is a critical value of strain rate,and the deformation resistance increases before this value and then decreases.The results confirm that the new model has higher prediction accuracy than traditional ones and is suitable for carbon steel,microalloyed steel,alloyed steel and other steel grades.展开更多
基金Supported by the National Science Foundation (Grant Nos. CCF-0727098, IIS-0710819)
文摘As 3D digital photographic and scanning devices produce higher resolution images, acquired geometric data sets grow more complex in terms of the modeled objects' size, geometry, and topology. As a consequence, point-sampled geometry is becoming ubiquitous in graphics and geometric information processing, and poses new challenges which have not been fully resolved by the state-of-art graphical techniques. In this paper, we address the challenges by proposing a meshless computational framework for dynamic modeling and simulation of solids and thin-shells represented as point sam- ples. Our meshless framework can directly compute the elastic deformation and fracture propagation for any scanned point geometry, without the need of converting them to polygonal meshes or higher order spline representations. We address the necessary computational techniques, such as Moving Least Squares, Hierarchical Discretization, and Modal Warping, to effectively and efficiently compute the physical simulation in real-time. This meahless computational framework aims to bridge the gap between the point-sampled geometry with physics-based modeling and simulation governed by partial differential equations.
文摘A new method for iris recognition using a multi-matching system based on a simplified deformable model of the human iris was proposed. The method defined iris feature points and formed the feature space based on a wavelet transform. In the matching stage it worked in a crude manner. Driven by a simplified deformable iris model, the crude matching was refined. By means of such multi-matching system, the task of iris recognition was accomplished. This process can preserve the elastic deformation between an input iris image and a template and improve precision for iris recognition. The experimental results indicate the va- lidity of this method.
基金Supported by the National Natural Science Foundation of China (No.60472071, 60532080, 60602062)the Natural Science Foundation of Beijing (No.4051002)
文摘In this paper, we present a new deformable model for shape segmentation, which makes two modifications to the original level set implementation of deformable models.The modifications are motivated by difficulties that we have encountered in applying deformable models to segmentation of medical images.The level set algorithm has some advantages over the classical snake deformable models.However, it could develop large gaps in the boundary and holes within the objects.Such boundary gaps and holes of objects can cause inaccurate segmentation that requires manual correction.The proposed method in this paper possesses an inherent property to detect gaps and holes within the object with a single initial contour and also does not require specific initialization.The first modification is to replace the edge detector by some area constraint, and the second modification utilizes weighted length constraint to regularize the curve under evolution.The proposed method has been applied to both synthetic and real images with promising results.
基金National Natural Science Foundation ofChina (No.60271033)
文摘A hierarchical non-linear method for image registration was presented, which integrates image segmentation and registration under a variational framework. An improved deformable model is used to simultaneously segment and register feature from multiple images. The objects in the image pair are segmented by evolving a single contour and meanwhile the parameters of affine registration transformation are found out. After that, a contour-constrained elastic registration is applied to register the images correctly. The experimental results indicate that the proposed approach is effective to segment and register medical images.
基金This project is supported by National Natural Science Foundation of China(No. 10272033) and Provincial Natural Science Foundation of Guangdong,China(No.04105385).
文摘A new B-spline surface reconstruction method from layer data based on deformable model is presented. An initial deformable surface, which is represented as a closed cylinder, is firstly given. The surface is subject to internal forces describing its implicit smoothness property and external forces attracting it toward the layer data points. And then finite element method is adopted to solve its energy minimization problem, which results a bicubic closed B-spline surface with C^2 continuity. The proposed method can provide a smoothness and accurate surface model directly from the layer data, without the need to fit cross-sectional curves and make them compatible. The feasibility of the proposed method is verified by the experimental results.
文摘Minimization of energy functional of shape deformation under given constraints is used to generate fair curves and surfaces. This approach allows the user to design the shape interactively by applying different geometric constraints, external loads and physical parameters. Testing this way in a prototype system shows that the operators offer an intuitive way of shape modeling.
基金This work was supported by the National Nature Science Foundation of China(Nos.12375244,12135009)the Science and Technology Innovation Program of Hunan Province(No.2020RC4020)+1 种基金the Hunan Provincial Innovation Foundation for Postgraduate(No.CX20210007)Natural Science Research Project of Yichang City(No.A23-2-028).
文摘In this study, the effect of extreme laser fields on the α decay process of ground-state even–even nuclei was investigated.Using the deformed Gamow-like model, we found that state-of-the-art lasers can cause a slight change in the α decay penetration probability of most nuclei. In addition, we studied the correlation between the rate of change of the α decay penetration probability and angle between the directions of the laser electric field and α particle emission for different nuclei. Based on this correlation, the average effect of extreme laser fields on the half-life of many nuclei with arbitrary α particle emission angles was calculated. The calculations show that the laser suppression and promotion effects on the α decay penetration probability of the nuclei population with completely random α particle-emission directions are not completely canceled.The remainder led to a change in the average penetration probability of the nuclei. Furthermore, the possibility of achieving a higher average rate of change by altering the spatial shape of the laser is explored. We conclude that circularly polarized lasers may be helpful in future experiments to achieve a more significant average rate of change of the α decay half-life of the nuclei population.
文摘A model suitable for describing the mechanical response of thin elastic objects is proposed to simulate the deformation of guide wires in minimally invasive interventions. The main objective of this simulation is to provide doctors an opportunity to rehearse the surgery and select an optimal operation plan before the real surgery. In this model the guide wire is discretized with the multi-body representation and its elastic energy derivate from elastic theory is a polynomial function of the nodal displacements. The vascular structure is represented by a tetrahedron mesh extended from the triangular mesh of the artery, which can be extracted from the patient's CT image data. The model applies the energy decline process of the conjugate gradient method to the deformation simulation of the guide wire. Experimental results show that the polynomial relationship between elastic energy and nodal displacements tremendously simplifies the evaluation of the conjugate gradient method and significantly improves the model's efficiency. Compared with models depending on an explicit scheme for evaluation, the new model is not only non-conditionally stable but also more efficient. The model can be applied to the real-time simulation of guide wire in a vascular structure.
基金Project(51675100)supported by the National Natural Science Foundation of ChinaProject(2016ZX04004008)supported by the National Numerical Control Equipment Major Project of ChinaProject(6902002116)supported by the Foundation of Certain Ministry of China
文摘In the process of thin-wall parts assembly for an antenna,the parts assembly deformation deviation is occurring due to the riveting assembly.In view of the riveting assembly deformation problems,it can be analyzed through transient and static simulation.In this work,the theoretical deformation model for riveting assembly is established with round head rivet.The simulation analysis for riveting deformation is carried out with the riveting assembly piece including four rivets,which comparing with the measuring points experiment results of riveting test piece through dealing with the experimental data using the point coordinate transform method and the space line fitting method.Simultaneously,the deformation deviation of the overall thin-wall parts assembly structure is analyzed through finite element simulation;and its results are verified by the measuring experiment for riveting assembly with the deformation deviation of some key points on the thin-wall parts.Through the comparison analysis,it is shown that the simulation results agree well with the experimental results,which proves the correctness and effectiveness of the theoretical analysis,simulation results and the given experiment data processing method.Through the study on the riveting assembly for thin-wall parts,it will provide a theoretical foundation for improving thin-wall parts assembly quality of large antenna in future.
文摘This paper starts with brief introduction to the open topic of the CFD and wing tunnel correlation study, followed by a description of the Chinese Aeronautical Establishment(CAE) –Aerodynamic Validation Model(AVM) and its wind tunnel test in the German-Dutch Wind tunnels(DNW). The features of the aerodynamic design, the CFD approach, the wind tunnel model fabrication and the experimental techniques are discussed along with the motivation of the CAEDNW workshop on CFD-wind tunnel correlation study. The workshop objective is focused on the interference from the aero-elastic deformation of the wind tunnel model and the model support system to the aerodynamic performance and CFD validations. The four study cases, geometry and mesh preparation of the workshop are introduced. A comprehensive summary of the CFD results from the organizer and the participants is provided. Major observations, both CFD to CFD and CFD to wind tunnel, are identified and summarized. The CFD results of the participants are in good agreement with each other, and with the wind tunnel test data when the wing deformation and a Z-sting system are included in the CFD, indicating the importance of considering such interference at high subsonic Mach number of 0.85.
文摘For the purpose of establishing and validating aerodynamic performance predictions at transonic Mach numbers, a wind tunnel test was conducted in the High-Speed Tunnel(HST) of the German-Dutch Wind Tunnels. The test article is the aerodynamic validation model from the Chinese Aeronautical Establishment, which is a full-span scale model representation of a business jet aircraft. The wind tunnel test comprised of parallel deployments of balance, pressures, infrared thermography, and model marker measurement techniques. Dedicated investigations with a dummy support were conducted as well, in order to derive and correct for the interference that the support system imposed on the overall model loads. This enabled the establishment of a comprehensive dataset in which the steady overall model loads, the wing load distribution, the state of the wing boundary layer, and the aeroelastic wing shape were quantified for conditions up to and beyond the cruise Mach number of 0.85.
基金Project supported by the National Science and Technology Project of Tenth Five Years (No.2001BA605A06A)Science and Tech-nology Cooperation Program of SINOPEC (No.FYWX04-06),China
文摘Based on new high-resolution seismic profiles and existing structural and sedimentary results, a superposition deformation model for Cenozoic Bachu Uplift of northwestern Tarim Basin, northwestern China is proposed. The model presents the idea that the Bachu Uplift suffered structure superposition deformation under the dual influences of the Cenozoic uplifting of Southern Tianshan and Western Kunlun orogen, northwestern China. In the end of the Eocene (early Himalayan movement), Bachu Uplift started to be formed with the uplifting of Western Kunlun, and extended NNW into the interior of Kalpin Uplift. In the end of the Miocene (middle Himalayan movement), Bachu Uplift suffered not only the NNW structure deformation caused by the Western Kunlun uplifting, but also the NE structure deformation caused by the Southern Tianshan uplifting, and the thrust front fault of Kalpin thrust system related to the Southern Tianshan orogen intrudes southeastward into the hinterland of Bachu Uplift and extends NNE from well Pil to Xiaohaizi reservoir and Gudongshan mountain, which resulted in the strata folded and denuded strongly. In the end of the Pliocene (late Himalayan movement), the impact of Southern Yianshan orogen decreased because of the stress released with the breakthrough upward of Kalpin fault extending NE, and Bachu Uplift suffered mainly the structure deformation extending NW-NNW caused by the uplifting of Western Kunlun orogen.
基金financially supported by the National Natural Science Foundation of China (Nos. 51374069 and U1460107)
文摘A systematic study has been conducted aiming to attain an insight into the influence of coefficient of roll speed asymmetry, crystal orientation and structure on the deformation behavior, and crystallographic orientation development during foil rolling. Simulations were successfully carried out by using crystal plasticity finite element method(CPFEM),and a novel computational framework is presented for the representation of virtual polycrystalline grain structures. It has been found that asymmetric rolling(ASR) is more efficient in producing plastic deformation since it develops additional shear strain and activity of slip system compared with symmetric rolling(SR). For ASR, increase in the length of the shear zone, and decrease in the amount of the pressure and roll force would lead to further reduction. The shear strain path in SR and ASR is strictly influenced by the misorientation of neighbor grains, and corresponding {1 1 1} pole figures offer direct evidence of the spread of crystallographic orientation around the normal direction. The activity of slip systems was examined in detail and found that the predicted results are consistent with the surface layer model. The accuracy of the developed CPFEM model is verified by the fact that the simulated results of roll force coincide well with the experimental results.
文摘In this paper, a finite element method (FEM)-based multi-phase problem based on a newly proposed thermal elastoplastic constitutive model for saturated/unsaturated geomaterial is discussed. A program of FEM named as SOFT, adopting unified field equations for thermo-hydro-mechanical-air (THMA) behavior of geomaterial and using finite element-finite difference (FE-FD) scheme for so/l-water-air three-phase coupling problem, is used in the numerical simulation. As an application of the newly proposed numerical method, two engineering problems, one for slope failure in unsaturated model ground and another for in situ heating test related to deep geological repository of high-level radioactive waste (HLRW), are simulated. The model tests on slope failure in unsaturated Shirasu ground, carried out by Kitamura et al. (2007), is simulated in the framework of soil-water-air three-phase coupling under the condition of constant temperature. While the in situ heating test reported by Munoz (2006) is simulated in the same framework under the conditions of variable temperature hut constant air pressure.
基金supported by the National Natural Science Foundation of China(42174026)the National Key Research and Development Program of China(2021YFE011004)。
文摘The permafrost development in the Qinghai-Tibet Engineering Corridor(QTEC)is affected by natural environment changes and human engineering activities.Human engineering activities may damage the permafrost growing environment,which in turn impact these engineering activities.Thus high spatial-temporal resolution monitoring over the QTEC in the permafrost region is very necessary.This paper presents a method for monitoring the frozen soil area using the intermittent coherencebased small baseline subset(ICSBAS).The method can improve the point density of the results and enhance the interpretability of deformation results by identifying the discontinuous coherent points according to the coherent value of time series.Using the periodic function that models the seasonal variation of permafrost,we separate the long wavelength atmospheric delay and establish an estimation model for the frozen soil deformation.Doing this can raise the monitoring accuracy and improve the understanding of the surface deformation of the frozen soil.In this study,we process 21 PALSAR data acquired by the Alos satellite with the proposed ICSBAS technique.The results show that the frozen soil far from the QTR in the study area experiences frost heave and thaw settlement(4.7 cm to8.4 cm)alternatively,while the maximum settlement along the QTR reaches 12 cm.The interferomatric syntnetic aperture radar(InSAR)-derived results are validated using the ground leveling data nearby the Beiluhe basin.The validation results show the InSAR results have good consistency with the leveling data in displacement rates as well as time series.We also find that the deformation in the permafrost area is correlated with temperature,human activities and topography.Based on the interfering degree of human engineering activities on the permafrost environment,we divide the QTEC along the Qinghai-Tibet Railway into engineering damage zone,transition zone and natural permafrost.
文摘The arbitrary space-shape free form deformation (FFD) method developed in this paper is based on non-uniform rational B-splines (NURBS) basis function and used for the integral parameterization of nacelle-pylon geometry. The multi-block structured grid deformation technique is established by Delaunay graph mapping method. The optimization objects of aerodynamic characteristics are evaluated by solving NavierStokes equations on the basis of multi-block structured grid. The advanced particle swarm optimization (PSO) is utilized as search algorithm, which com-bines the Kriging model as surrogate model during optimization. The optimization system is used for optimizing the nacelle location of DLR-F6 wing-body-pylon-nacelle. The results indicate that the aerodynamic interference between the parts is significantly reduced. The optimization design system established in this paper has extensive applications and engineering value.
基金the China Postdoctoral Science Foundation (20060400465)the National Natural Science Foundation of China (10702033)
文摘An equivalent continuum method only considering the stretching deformation of struts was used to study the in-plane stiffness and strength of planar lattice grid com- posite materials. The initial yield equations of lattices were deduced. Initial yield surfaces were depicted separately in different 3D and 2D stress spaces. The failure envelope is a polyhedron in 3D spaces and a polygon in 2D spaces. Each plane or line of the failure envelope is corresponding to the yield or buckling of a typical bar row. For lattices with more than three bar rows, subsequent yield of the other bar row after initial yield made the lattice achieve greater limit strength. The importance of the buckling strength of the grids was strengthened while the grids were relative sparse. The integration model of the method was used to study the nonlinear mechanical properties of strain hardening grids. It was shown that the integration equation could accurately model the complete stress-strain curves of the grids within small deformations.
基金financially supported by the National Natural Science Foundation of China (Nos.51175427 and 51205317)the Open Fund of State Key Laboratory of Materials Processing and Die & Mould Technology of China (No.P2014-005)+1 种基金the Marie Curie International Research Staff Exchange Scheme within the 7th EC Framework Programme (FP7) (No.318968)the Programme of Introducing Talents of Discipline to Universities (No.B08040)
文摘Temperature rise is a significant factor influencing microstructure during(α+β) deformation of TA15 titanium alloy.An experiment was designed to explore microstructure evolution induced by temperature rise due to deformation heat.The experiment was carried out in(α+β) phase field at typical temperature rise rates.The microstructures of the alloy under different temperature rise rates were observed by scanning electron microscopy(SEM).It is found that the dissolution rate of primary equiaxed a phase increases with the increase in both temperature and temperature rise rate.In the same temperature range,the higher the temperature rise rate is,the larger the final content and grain size of primary equiaxed a phase are due to less dissolution time.To quantitatively depict the evolution behavior of primary equiaxed a phase under any temperature rise rates,the dissolution kinetics of primary equiaxed a phase were well described by a diffusion model.The model predictions,including content and grain size of primary equiaxed a phase,are in good agreement with experimental observations.The work provides an important basis for the prediction and control of microstructure during hot working of titanium alloy.
基金Funded by the National Natural Science Foundation of China(51202304)the China Postdoctoral Science Foundation(2014M552320)+1 种基金Scientific,the Technological Talents’Special Funds of Wanzhou District and Scientific and Technological Research Program of Chongqing Municipal Education Commission(KJ1401016)the Youth Project of Chongqing Three Gorges College(13QN-20)
文摘We prepared concretes(RC0, RC30, and RC100) with three different mixes. The poresize distribution parameters of RAC were examined by high-precision mercury intrusion method(MIM) and nuclear magnetic resonance(NMR) imaging. A capillary-bundle physical model with random-distribution pores(improved model, IM) was established according to the parameters, and dry-shrinkage strain values were calculated and verified. Results show that in all pore types, capillary pores, and gel pores have the greatest impacts on concrete shrinkage, especially for pores 2.5-50 and 50-100 nm in size. The median radii are 34.2, 31, and 34 nm for RC0, RC30, and RC100, respectively. Moreover, the internal micropore size distribution of RC0 differs from that of RC30 and RC100, and the pore descriptions of MIM and NMR are consistent both in theory and in practice. Compared with the traditional capillary-bundle model, the calculated results of IM have higher accuracy as demonstrated by experimental verifi cation.
基金supported by National Natural Science Foundation of China (51774219)Science and Technology Research Program of Hubei Ministry of Education(D20161103)Youth Science and technology Program of Wuhan(2016070204010099)
文摘A model of deformation resistance during hot strip rolling was established based on generalized additive model.Firstly,a data modeling method based on generalized additive model was given.It included the selection of dependent variable and independent variables of the model,the link function of dependent variable and smoothing functional form of each independent variable,estimating process of the link function and smooth functions,and the last model modification.Then,the practical modeling test was carried out based on a large amount of hot rolling process data.An integrated variable was proposed to reflect the effects of different chemical compositions such as carbon,silicon,manganese,nickel,chromium,niobium,etc.The integrated chemical composition,strain,strain rate and rolling temperature were selected as independent variables and the cubic spline as the smooth function for them.The modeling process of deformation resistance was realized by SAS software,and the influence curves of the independent variables on deformation resistance were obtained by local scoring algorithm.Some interesting phenomena were found,for example,there is a critical value of strain rate,and the deformation resistance increases before this value and then decreases.The results confirm that the new model has higher prediction accuracy than traditional ones and is suitable for carbon steel,microalloyed steel,alloyed steel and other steel grades.