期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
DA-ViT:Deformable Attention Vision Transformer for Alzheimer’s Disease Classification from MRI Scans
1
作者 Abdullah G.M.Almansour Faisal Alshomrani +4 位作者 Abdulaziz T.M.Almutairi Easa Alalwany Mohammed S.Alshuhri Hussein Alshaari Abdullah Alfahaid 《Computer Modeling in Engineering & Sciences》 2025年第8期2395-2418,共24页
The early and precise identification of Alzheimer’s Disease(AD)continues to pose considerable clinical difficulty due to subtle structural alterations and overlapping symptoms across the disease phases.This study pre... The early and precise identification of Alzheimer’s Disease(AD)continues to pose considerable clinical difficulty due to subtle structural alterations and overlapping symptoms across the disease phases.This study presents a novel Deformable Attention Vision Transformer(DA-ViT)architecture that integrates deformable Multi-Head Self-Attention(MHSA)with a Multi-Layer Perceptron(MLP)block for efficient classification of Alzheimer’s disease(AD)using Magnetic resonance imaging(MRI)scans.In contrast to traditional vision transformers,our deformable MHSA module preferentially concentrates on spatially pertinent patches through learned offset predictions,markedly diminishing processing demands while improving localized feature representation.DA-ViT contains only 0.93 million parameters,making it exceptionally suitable for implementation in resource-limited settings.We evaluate the model using a class-imbalanced Alzheimer’s MRI dataset comprising 6400 images across four categories,achieving a test accuracy of 80.31%,a macro F1-score of 0.80,and an area under the receiver operating characteristic curve(AUC)of 1.00 for the Mild Demented category.Thorough ablation studies validate the ideal configuration of transformer depth,headcount,and embedding dimensions.Moreover,comparison research indicates that DA-ViT surpasses state-of-theart pre-trained Convolutional Neural Network(CNN)models in terms of accuracy and parameter efficiency. 展开更多
关键词 Alzheimer disease classification vision transformer deformable attention MRI analysis bayesian optimization
在线阅读 下载PDF
基于改进YOLOv8的无人机视角下小目标检测模型 被引量:1
2
作者 谢明宏 《信息技术与信息化》 2025年第3期7-11,共5页
随着无人机技术的快速发展,无人机在城市管理和灾害监测等领域的应用愈加广泛。无人机拍摄的航拍图像具备广泛视角和高覆盖范围的优势,但也面临小目标检测难度大、背景复杂等挑战。针对这些问题,文章提出了一种基于改进YOLOv8的目标检... 随着无人机技术的快速发展,无人机在城市管理和灾害监测等领域的应用愈加广泛。无人机拍摄的航拍图像具备广泛视角和高覆盖范围的优势,但也面临小目标检测难度大、背景复杂等挑战。针对这些问题,文章提出了一种基于改进YOLOv8的目标检测算法——DAE-YOLO。该模型通过引入Deformable Attention机制,实现了动态调整注意力的关键点位置,提升了对小目标的检测能力;采用创新的Inner Wise-IoU损失函数,通过引入自适应的辅助边界框优化IoU损失计算,提高了边框回归的精度;同时设计了轻量化的Detect_Effi cient检测头,在保证检测精度的同时提升了模型效率。实验结果表明,DAE-YOLO在VisDrone2019数据集上相较于原始模型有显著性能提升:精确率提升7.2%,召回率提升6.9%,mAP50提升9.8%,mAP50-95提升10.7%。在夜间和白天的复杂场景测试中,DAE-YOLO都表现出了优异的小目标检测能力。 展开更多
关键词 改进YOLOv8 小目标检测 DAE-YOLO deformable attention Inner Wise-IoU
在线阅读 下载PDF
A Simple and Effective Surface Defect Detection Method of Power Line Insulators for Difficult Small Objects
3
作者 Xiao Lu Chengling Jiang +2 位作者 Zhoujun Ma Haitao Li Yuexin Liu 《Computers, Materials & Continua》 SCIE EI 2024年第4期373-390,共18页
Insulator defect detection plays a vital role in maintaining the secure operation of power systems.To address the issues of the difficulty of detecting small objects and missing objects due to the small scale,variable... Insulator defect detection plays a vital role in maintaining the secure operation of power systems.To address the issues of the difficulty of detecting small objects and missing objects due to the small scale,variable scale,and fuzzy edge morphology of insulator defects,we construct an insulator dataset with 1600 samples containing flashovers and breakages.Then a simple and effective surface defect detection method of power line insulators for difficult small objects is proposed.Firstly,a high-resolution featuremap is introduced and a small object prediction layer is added so that the model can detect tiny objects.Secondly,a simplified adaptive spatial feature fusion(SASFF)module is introduced to perform cross-scale spatial fusion to improve adaptability to variable multi-scale features.Finally,we propose an enhanced deformable attention mechanism(EDAM)module.By integrating a gating activation function,the model is further inspired to learn a small number of critical sampling points near reference points.And the module can improve the perception of object morphology.The experimental results indicate that concerning the dataset of flashover and breakage defects,this method improves the performance of YOLOv5,YOLOv7,and YOLOv8.In practical application,it can simply and effectively improve the precision of power line insulator defect detection and reduce missing detection for difficult small objects. 展开更多
关键词 Insulator defect detection small object power line deformable attention mechanism
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部