Understanding the temperature dependent deformation behavior of Mg alloys is crucial for their expanding use in the aerospace sector.This study investigates the deformation mechanisms of hot-rolled AZ61 Mg alloy under...Understanding the temperature dependent deformation behavior of Mg alloys is crucial for their expanding use in the aerospace sector.This study investigates the deformation mechanisms of hot-rolled AZ61 Mg alloy under uniaxial tension along rolling direction(RD)and transverse direction(TD)at-50,25,50,and 150℃.Results reveal a transition from high strength with limited elongation at-50℃ to significant softening and maximum ductility at 150℃.TD samples consistently showed 2%-6%higher strength than RD;however,this yield anisotropy diminished at 150℃ due to the shift from twinning to thermally activated slip and recovery.Fractography indicated a change from semi-brittle to fully ductile fracture with increasing temperature.Electron backscattered diffraction(EBSD)analysis confirmed twinning-driven grain refinement at low temperatures,while deformation at high temperatures involved grain elongation along shear zones,enabling greater strain accommodation before material failure.展开更多
Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The t...Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The traditional thermal elastic-plastic finite element method(TEP-FEM)can accurately predict welding deformation.However,its efficiency is low because of the complex nonlinear transient computation,making it difficult to meet the needs of rapid engineering evaluation.To address this challenge,this study proposes an efficient prediction method for welding deformation in marine thin plate butt welds.This method is based on the coupled temperature gradient-thermal strain method(TG-TSM)that integrates inherent strain theory with a shell element finite element model.The proposed method first extracts the distribution pattern and characteristic value of welding-induced inherent strain through TEP-FEM analysis.This strain is then converted into the equivalent thermal load applied to the shell element model for rapid computation.The proposed method-particularly,the gradual temperature gradient-thermal strain method(GTG-TSM)-achieved improved computational efficiency and consistent precision.Furthermore,the proposed method required much less computation time than the traditional TEP-FEM.Thus,this study lays the foundation for future prediction of welding deformation in more complex marine thin plates.展开更多
The recently established theory has built clear connections between hardness and toughness and electron structure involving both valence electron concentration(VEC)and core electron count(CEC)in transition metal nitri...The recently established theory has built clear connections between hardness and toughness and electron structure involving both valence electron concentration(VEC)and core electron count(CEC)in transition metal nitride(TMN)ceramics.However,the underlying deformation mechanisms remain unclear.Herein,we conduct in-depth analysis on microstructure evolution during deformation of the high VEC-CEC solution TiMoN coatings having desired combination of high hardness and toughness.The effects of solid solution,preferred orientation linked with symbiotic compressive stress,grain size and dislocations are systematically discussed.We discover that numerous dislocations have been implanted into the nanocrystals of the TiMoN coating during the high-ionization arc deposition.Using two-beam bright-field imaging,we count the dislocation density and confirm occurrence of dislocation multiplication to form effective plastic deformation,which contributes to significant strain hardening,comparable to solid solution hardening,fine-grain hardening and compressive stress hardening.The improved dislocation activities also play a crucial role in enhancing the toughness by providing extra energy dissipation paths.This work gains new insights into the origins of mechanical properties of ceramic coatings and possibility to tune them via defects.展开更多
How to achieve high-entropy alloys(HEAs)with ultrahigh strength and ductility is a challenging issue.Precipitation strengthening is one of the methods to significantly enhance strength,but unfortunately,ductility will...How to achieve high-entropy alloys(HEAs)with ultrahigh strength and ductility is a challenging issue.Precipitation strengthening is one of the methods to significantly enhance strength,but unfortunately,ductility will be lost.To overcome the strength-ductility trade-off,the strategy of this study is to induce the formation of high-density nanoprecipitates through dual aging(DA),triggering multiple deformation mechanisms,to obtain HEAs with ultrahigh strength and ductility.First,the effect of precold deformation on precipitation behavior was studied using Ni_(35)(CoFe)_(55)V_(5)Nb_(5)(at.%)HEAas the object.The results reveal that the activation energy of recrystallization is 112.2 kJ/mol.As the precold-deformation amount increases from 15%to 65%,the activation energy of precipitation gradually decreases from 178.8 to 159.7 kJ/mol.The precipitation time shortens,the size of the nanoprecipitate decreases,and the density increases.Subsequently,the thermal treatment parameters were optimized,and the DA process was customized based on the effect of precold deformation on precipitation behavior.High-density L1_(2) nanoprecipitates(~3.21×10^(25) m^(-3))were induced in the 65% precold-deformed HEA,which led to the simultaneous formation of twins and stacking fault(SF)networks during deformation.The yield strength(YS),ultimate tensile strength,and ductility of the DA-HEA are~2.0 GPa,~2.2 GPa,and~12.3%,respectively.Compared with the solid solution HEA,the YS of the DA-HEA increased by 1,657 MPa,possessing an astonishing increase of~440%.The high YS stems from the precipitation strengthening contributed by the L1_(2) nanoprecipitates and the dislocation strengthening contributed by precold deformation.The synergistically enhanced ductility stems from the high strain-hardening ability under the dual support of twinning-induced plasticity and SF-induced plasticity.展开更多
Deep excavations in silt strata can lead to large deformation problems,posing risks to both the excavation and adjacent structures.This study combines field monitoring with numerical simulation to investigate the unde...Deep excavations in silt strata can lead to large deformation problems,posing risks to both the excavation and adjacent structures.This study combines field monitoring with numerical simulation to investigate the underlying mechanisms and key aspects associated with large deformation problems induced by deep excavation in silt strata in Shenzhen,China.The monitoring results reveal that,due to the weak property and creep effect of the silt strata,the maximum wall deflection in the first excavated section(Section 1)exceeds its controlled value at more than 93%of measurement points,reaching a peak value of 137.46 mm.Notably,the deformation exhibits prolonged development characteristics,with the diaphragm wall deflections contributing to 39%of the overall deformation magnitude during the construction of the base slab.Subsequently,numerical simulations are carried out to analyze and assess the primary factors influencing excavation-induced deformations,following the observation of large deformations.The simulations indicate that the low strength of the silt soil is a pivotal factor that results in significant deformations.Furthermore,the flexural stiffness of the diaphragm walls exerts a notable influence on the development of deformations.To address these concerns,an optimization study of potential treatment measures was performed during the subsequent excavation of Section 2.The combined treatment approach,which comprises the reinforcement of the silt layer within the excavation and the increase in the thickness of the diaphragm walls,has been demonstrated to offer an economically superior solution for the handling of thick silt strata.This approach has the effect of reducing the lateral wall displacement by 83.1%and the ground settlement by 70.8%,thereby ensuring the safe construction of the deep excavation.展开更多
Birds have developed near-perfect structures and functionality over millions of years of natural evolution.To improve the efficiency of fixed-wing vehicles in different environments,researchers have developed deformab...Birds have developed near-perfect structures and functionality over millions of years of natural evolution.To improve the efficiency of fixed-wing vehicles in different environments,researchers have developed deformable wings inspired by the wing structures of birds.Shape Memory Alloy(SMA)is applied as a smart material to the deformable wing.Compared with other drive methods,SMA actuators have the advantages of high drive capacity and a simple structure for driving wing deformation.According to the shape memory effect,SMA actuators are classified as single-range and dual-range actuators.The wing structure designed for each SMA drive is unique.By comparing and analyzing the structures of airfoils,airfoils with similar drive forms and deformation structures are put together for review and discussion.The deformable wings are categorized into out-of-face deformation,in-face deformation,airfoil curvature deformation,and combined deformation with multiple degrees of freedom based on the structure and location of the wing that produces the deformation.An overview of the deformed wing is introduced by telling the bionic theory of seagulls.The principles of deformation of the wing,the mechanics of the SMA actuator mechanism,and the aerodynamic characteristics of the deformable wing are presented.The structure and working principle of SMA actuators for each type of deformable wing are explained in detail.Methods and approaches to study the deformability of deformable wings are analyzed and summarized.This work provides comprehensive insights and perspectives for future studies of SMA-driven deformable airfoils.展开更多
Current hyperelastic constitutive models of hydrogels face difficulties in capturing the stress-strain behaviors of hydrogels under extremely large deformation because the effect of non-affine deformation of the polym...Current hyperelastic constitutive models of hydrogels face difficulties in capturing the stress-strain behaviors of hydrogels under extremely large deformation because the effect of non-affine deformation of the polymer network inside is ambiguous.In this work,we construct periodic random network(PRN)models for the effective polymer network in hydrogels and investigate the non-affine deformation of polymer chains intrinsically originates from the structural randomness from bottom up.The non-affine deformation in PRN models is manifested as the actual stretch of polymer chains randomly deviated from the chain stretch predicted by affine assumption,and quantified by a non-affine ratio of each polymer chain.It is found that the non-affine ratios of polymer chains are closely related to bulk deformation state,chain orientation,and initial chain elongation.By fitting the non-affine ratio of polymer chains in all PRN models,we propose a non-affine constitutive model for the hydrogel polymer network based on micro-sphere model.The stress-strain curves of the proposed constitutive models under uniaxial tension condition agree with the simulation results of different PRN models of hydrogels very well.展开更多
Almost all solid surfaces are rough.The randomness and complexity of roughness make the behavior of contact deformation,electrical conductivity,and heat transfer between solids elusive.If the solids are subjected to f...Almost all solid surfaces are rough.The randomness and complexity of roughness make the behavior of contact deformation,electrical conductivity,and heat transfer between solids elusive.If the solids are subjected to further tensile,bending,or torsional deformation,will more complex or new contact phenomena occur?Clarifying this issue is of great significance to developing and designing some major equipment serving in extreme environments.展开更多
Multi-pass hot processing methods are commonly used in magnesium(Mg)alloys to overcome the poor workability due to limited slip systems,which generally involve complicated post-deformation softening and hardening beha...Multi-pass hot processing methods are commonly used in magnesium(Mg)alloys to overcome the poor workability due to limited slip systems,which generally involve complicated post-deformation softening and hardening behaviors.In this work,to reveal post-deformation softening and hardening mechanisms of a Mg-2Y-1Zn alloy,double-stage hot compression tests and microstructural observations were conducted.The results showed that the softening fraction of Mg-2Y-1Zn alloy showed a non-linear dependence on deformation conditions and could be general coupled by Z parameter.Due to the formation and cross-overlapping of twins and kinks,only static recovery(SRV)occurred during holding process at 300℃/0.001 s^(-1) which led to the least static softening:5.52% after 10 s of holding.For samples at 400℃/0.001s^(-1),the enhanced post-deformation softening,which is 11.93% after 10 s of holding,was attributed to static recrystallization(SRX)followed continuous dynamic recrystallization(CDRX)happened during first deformation stage as well as SRV influenced by the LPSO phases.Under deformation condition of 400℃/0.1 s^(-1),the coupled meta-dynamic recrystallization(MDRX)and SRX resulted in serious stress relaxation,which is 42.83% after 10 s of holding,and caused hardening phenomenon at reloading stage.The 18R-LPSO and 14H-LPSO phases synchronously worked on deformation behaviors and limited the growth of recrystallized grains.Further,a simplified static softening kinetics model was established based on Johnson-Mehl-Avrami-Kolmogorov equation and employed to rationalize experimental data.展开更多
304H austenitic stainless steel wire was investigated,emphasizing microstructural deformation,martensite phase transformation,and residual magnetic properties during drawing.Utilizing several microstructural observati...304H austenitic stainless steel wire was investigated,emphasizing microstructural deformation,martensite phase transformation,and residual magnetic properties during drawing.Utilizing several microstructural observation techniques,the volume fraction of martensite,modes of grain deformation in distinct regions,and the phase relationship between austenite and martensite were comprehensively characterized.In addition,a finite element simulation with representative volume elements specific to different zones also offers insights into strain responses during the drawing process.Results from the first-pass drawing reveal that there exists a higher volume fraction of martensite in the central region of 304H austenitic stainless steel wire compared to edge areas.This discrepancy is attributed to a concentrated presence of shear slip system{111}<110>γcrystallographic orientation,primarily accumulating in the central region obeying the Kurdjumov-Sachs path.Subsequent to the second drawing pass,the cumulative shear deformation within distinct regions of the steel wire became more pronounced.This resulted in a progressive augmentation of the volume fraction of martensite in both the central and peripheral regions of the steel wire.Concurrently,this led to a discernible elevation in the overall residual magnetism of the steel wire.展开更多
Heterogeneous structure exhibits superiority in improving mechanical properties,whereas their effects on fatigue damage properties have rarely been studied.In this work,we employed a high-throughput gradient heat trea...Heterogeneous structure exhibits superiority in improving mechanical properties,whereas their effects on fatigue damage properties have rarely been studied.In this work,we employed a high-throughput gradient heat treatment method(757−857℃)to rapidly acquire the solution microstructure of the Ti-6554 alloy with different recrystallization degrees(0%,40%and 100%),followed by the same aging treatment.The results showed that theβ-hetero structure exhibited a yield strength(σ_(YS))of 1403 MPa,an increase of 6.7%,and a remarkable improvement in uniform elongation(UE)of 109.7%,reaching 6.5%,compared to the homogeneous structure.Interestingly,introducing a heterogeneous structure not only overcame the traditional trade-off between strength and ductility but also enhanced fatigue crack propagation(FCP)performance.During FCP process,β-hetero structure,through hetero-deformation induced(HDI)strengthening effects,promoted the accumulation of geometric necessary dislocations(GNDs)within coarseα_(S) phase,enabling faster attainment of the critical shear stress of twinning and increasing twinning density.This facilitated stress relief,improved plastic deformation in the crack tip zone,and increased the critical fast fracture threshold from 30.4 to 36.0 MPa·m^(1/2)showing an enlarged steady state propagation region.This study provides valuable insights on tailoring fatigue damage tolerance through heterogeneous structure for titanium alloys.展开更多
Theβsolidifiedγ-TiAl alloy holds important application value in the aerospace industry,while its com-plex phase compositions and geometric structures pose challenges to its microstructure control during the thermal-...Theβsolidifiedγ-TiAl alloy holds important application value in the aerospace industry,while its com-plex phase compositions and geometric structures pose challenges to its microstructure control during the thermal-mechanical process.The microstructure evolution of Ti-43Al-4Nb-1Mo-0.2B alloy at 1200℃/0.01 s−1 was investigated to clarify the coupling role of dynamic recrystallization(DRX)and phase transformation.The results revealed that the rate of DRX inα2+γlamellar colonies was comparatively slower than that inβo+γmixed structure,instead being accompanied by intense lamellar kinking and rotation.The initiation and development rates of DRX inα2,βo,andγphases decreased sequentially.The asynchronous DRX of the various geometric structures and phase compositions resulted in the un-even deformed microstructure,and the dynamic softening induced by lamellar kinking and rotation was replaced by strengthened DRX as strain increased.Additionally,the blockyα2 phase and the terminals ofα2 lamellae were the preferential DRX sites owing to the abundant activated slip systems.Theα2→βo transformation within lamellar colonies facilitated DRX and fragment ofα2 lamellae,while theα2→γtransformation promoted the decomposition ofα2 lamellae and DRX ofγlamellae.Moreover,the var-iedβo+γmixed structures underwent complicated evolution:(1)Theγ→βo transformation occurred at boundaries of lamellar colonies,followed by simultaneous DRX ofγlamellar terminals and neighboringβo phase;(2)DRX occurred earlier within the band-likeβo phase,with the delayed DRX in enclosedγphase;(3)DRX within theβo synapses and neighboringγphase was accelerated owing to generation of elastic stress field;(4)Dispersedβo particles triggered particle stimulated nucleation(PSN)ofγphase.Eventually,atomic diffusion along crystal defects inβo andγphases caused fracture of band-likeβo phase and formation of massiveβo particles,impeding grain boundary migration and hindering DRXed grain growth ofγphase.展开更多
Sudden temperature drops cause soils in natural environments to freeze unidirectionally,resulting in soil expansion and deformation that can lead to damage to engineering structures.The impact of temperature-induced f...Sudden temperature drops cause soils in natural environments to freeze unidirectionally,resulting in soil expansion and deformation that can lead to damage to engineering structures.The impact of temperature-induced freezing on deformation and solute migration in saline soils,especially under extended freezing,is not well understood due to the lack of knowledge regarding the microscopic mechanisms involved.This study investigated the expansion,deformation,and water-salt migration in chlorinated saline soils,materials commonly used for canal foundations in cold and arid regions,under different roof temperatures and soil compaction levels through unidirectional freezing experiments.The microscopic structures of saline soils were observed using scanning electron microscopy(SEM)and optical microscopy.A quantitative analysis of the microstructural data was conducted before and after freezing to elucidate the microscopic mechanisms of water-salt migration and deformation.The results indicate that soil swelling is enhanced by elevated roof temperatures approaching the soil's freezing point and soil compaction,which prolongs the duration and accelerates the rate of water-salt migration.The unidirectional freezing altered the microstructure of saline soils due to the continuous temperature gradients,leading to four distinct zones:natural frozen zone,peak frozen zone,gradual frozen zone,and unfrozen zone,each exhibiting significant changes in pore types and fractal dimensions.Vacuum suction at the colder end of the soil structure facilitates the upward migration of salt and water,which subsequently undergoes crystallization.This process expands the internal pore structure and causes swelling.The findings provide a theoretical basis for understanding the evolution of soil microstructure in cold and arid regions and for the management of saline soil engineering.展开更多
River embankments are designed to defend against floods over coastal and riparian areas.It is important to early detect unexpected damages on embankments before they exacerbate.To continuously monitor the stability of...River embankments are designed to defend against floods over coastal and riparian areas.It is important to early detect unexpected damages on embankments before they exacerbate.To continuously monitor the stability of the embankments and efficiently recognize such potential damages,this study takes SAR(Synthetic Aperture Radar)derived deformation as an indicator of the embankment instability,and customizes a multi-temporal InSAR(Interferometric SAR)approach-small baseline subset.Specifically,during InSAR processing,we apply a two-step amplitude difference dispersion threshold method to extract InSAR measurement points,thus improving the point density within the embankment.We applied this method to the Kangshan Embankment(KE)using 147 Sentinel-1 acquired between 2017 and 2021.We categorized KE into Waterside Slope(WS),Embankment Top(ET),and Landside Slope(LS)using InSAR height estimation.Given the dominance of downslope movement,we developed a projection matrix from InSAR-derived deformation in the satellite line-of-sight direction onto WS and LS.The study shows that KE was generally stable during the five-year period,while WS,ET,and LS experienced different deformation processes.For instance,seasonal variation was observed from the deformation time series,especially between every April and November.We applied the principal component analysis to the time-series displacement and analyzed the results in conjunction with the rainfall data of Kangshan Township.It showed that deformation due to rainfall equals 80.93%,81.30%,and 82.46%of the total deformation for WS,ET,and LS,respectively,indicating that rainfall is one of the environmental driving factors affecting the deformations.We conclude that the proposed methodology is suited for systematic embankment monitoring and identifies major driving forces.展开更多
Dislocations and disclinations are fundamental topological defects within crystals,which determine the mechanical properties of metals and alloys.Despite their important roles in multiple physical mechanisms,e.g.,dyna...Dislocations and disclinations are fundamental topological defects within crystals,which determine the mechanical properties of metals and alloys.Despite their important roles in multiple physical mechanisms,e.g.,dynamic recovery and grain boundary mediated plasticity,the intrinsic coupling and correlation between disclinations and dislocations,and their impacts on the deformation behavior of metallic materials still remain obscure,partially due to the lack of a theoretical tool to capture the rotational nature of disclinations.By using a Lie-algebra-based theoretical framework,we obtain a general equation to quantify the intrinsic coupling of disclinations and dislocations.Through quasi in-situ electron backscatter diffraction characterizations and disclination/dislocation density analyses in Mg alloys,the generation,coevolution and reactions of disclinations and dislocations during dynamic recovery and superplastic deformation have been quantitatively analyzed.It has been demonstrated that the obtained governing equation can capture multiple physical processes associated with mechanical deformation of metals,e.g.,grain rotation and grain boundary migration,at both room temperature and high temperature.By establishing the disclination-dislocation coupling equation within a Lie algebra description,our work provides new insights for exploring the coevolution and reaction of disclinations/dislocations,with profound implications for elucidating the microstructure-property relationship and underlying deformation mechanisms in metallic materials.展开更多
When the expressway crosses the goafs inevitably,the design is generally to build the road on coal pillars as much as possible.However,the existing coal pillars are often unable to meet relevant requirements of highwa...When the expressway crosses the goafs inevitably,the design is generally to build the road on coal pillars as much as possible.However,the existing coal pillars are often unable to meet relevant requirements of highway construction.Combining three-dimensional physical model tests,numerical simulations and field monitoring,with the Urumqi East Second Ring Road passing through acute inclined goafs as a background,the deformation and failure mechanism of the overlying rock and coal pillars in acute inclined goafs under expressway load were studied.And in accordance with construction requirements of subgrade,comprehensive consideration of the deformation and instability mechanism of acute inclined goafs,the treatment measures and suggestions for this type of geological disasters were put forward.The research results confirmed the rationality of coal pillars in acute inclined goafs under the expressway through grouting.According to the ratio of diff erent overlying rock thickness to coal pillar height,the change trend and value of the required grouting range were summarized,which can provide reference for similar projects.展开更多
基金supported by the Korea Institute of Energy Technology Evaluation and Planning(KETEP)the Ministry of Trade,Industry&Energy(MOTIE)of the Republic of Korea Program(No.RS-2025-02603127,Innovation Research Center for Zero-carbon Fuel Gas Turbine Design,Manufacture,and Safety)。
文摘Understanding the temperature dependent deformation behavior of Mg alloys is crucial for their expanding use in the aerospace sector.This study investigates the deformation mechanisms of hot-rolled AZ61 Mg alloy under uniaxial tension along rolling direction(RD)and transverse direction(TD)at-50,25,50,and 150℃.Results reveal a transition from high strength with limited elongation at-50℃ to significant softening and maximum ductility at 150℃.TD samples consistently showed 2%-6%higher strength than RD;however,this yield anisotropy diminished at 150℃ due to the shift from twinning to thermally activated slip and recovery.Fractography indicated a change from semi-brittle to fully ductile fracture with increasing temperature.Electron backscattered diffraction(EBSD)analysis confirmed twinning-driven grain refinement at low temperatures,while deformation at high temperatures involved grain elongation along shear zones,enabling greater strain accommodation before material failure.
基金Supported by the National Natural Science Foundation of China under Grant No.51975138the High-Tech Ship Scientific Research Project from the Ministry of Industry and Information Technology under Grant No.CJ05N20the National Defense Basic Research Project under Grant No.JCKY2023604C006.
文摘Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The traditional thermal elastic-plastic finite element method(TEP-FEM)can accurately predict welding deformation.However,its efficiency is low because of the complex nonlinear transient computation,making it difficult to meet the needs of rapid engineering evaluation.To address this challenge,this study proposes an efficient prediction method for welding deformation in marine thin plate butt welds.This method is based on the coupled temperature gradient-thermal strain method(TG-TSM)that integrates inherent strain theory with a shell element finite element model.The proposed method first extracts the distribution pattern and characteristic value of welding-induced inherent strain through TEP-FEM analysis.This strain is then converted into the equivalent thermal load applied to the shell element model for rapid computation.The proposed method-particularly,the gradual temperature gradient-thermal strain method(GTG-TSM)-achieved improved computational efficiency and consistent precision.Furthermore,the proposed method required much less computation time than the traditional TEP-FEM.Thus,this study lays the foundation for future prediction of welding deformation in more complex marine thin plates.
基金supported by the Distinguished Young Scholars of China(No.52025014)Natural Science Foundation of Zhejiang Province(No.LQ23E010002)Innovation 2025 Major Project of Ningbo(Nos.2022Z011 and 2023Z022).
文摘The recently established theory has built clear connections between hardness and toughness and electron structure involving both valence electron concentration(VEC)and core electron count(CEC)in transition metal nitride(TMN)ceramics.However,the underlying deformation mechanisms remain unclear.Herein,we conduct in-depth analysis on microstructure evolution during deformation of the high VEC-CEC solution TiMoN coatings having desired combination of high hardness and toughness.The effects of solid solution,preferred orientation linked with symbiotic compressive stress,grain size and dislocations are systematically discussed.We discover that numerous dislocations have been implanted into the nanocrystals of the TiMoN coating during the high-ionization arc deposition.Using two-beam bright-field imaging,we count the dislocation density and confirm occurrence of dislocation multiplication to form effective plastic deformation,which contributes to significant strain hardening,comparable to solid solution hardening,fine-grain hardening and compressive stress hardening.The improved dislocation activities also play a crucial role in enhancing the toughness by providing extra energy dissipation paths.This work gains new insights into the origins of mechanical properties of ceramic coatings and possibility to tune them via defects.
基金supported by the National Key Research and Development Project(No.2023YFA1600082)the National Natural Science Foundation of China(Nos.U2141207,52001083,52171111)+3 种基金Natural Science Foundation of Heilongjiang(No.YQ2023E026)the Fundamental Research Funds for the Central Universities(No.3072022JIP1002)Key Laboratory Found of the Ministry of Industry and Information Technology(No.GXB202201)Youth Talent Project of China National Nuclear Corporation(No.CNNC2021YTEP-HEU01).
文摘How to achieve high-entropy alloys(HEAs)with ultrahigh strength and ductility is a challenging issue.Precipitation strengthening is one of the methods to significantly enhance strength,but unfortunately,ductility will be lost.To overcome the strength-ductility trade-off,the strategy of this study is to induce the formation of high-density nanoprecipitates through dual aging(DA),triggering multiple deformation mechanisms,to obtain HEAs with ultrahigh strength and ductility.First,the effect of precold deformation on precipitation behavior was studied using Ni_(35)(CoFe)_(55)V_(5)Nb_(5)(at.%)HEAas the object.The results reveal that the activation energy of recrystallization is 112.2 kJ/mol.As the precold-deformation amount increases from 15%to 65%,the activation energy of precipitation gradually decreases from 178.8 to 159.7 kJ/mol.The precipitation time shortens,the size of the nanoprecipitate decreases,and the density increases.Subsequently,the thermal treatment parameters were optimized,and the DA process was customized based on the effect of precold deformation on precipitation behavior.High-density L1_(2) nanoprecipitates(~3.21×10^(25) m^(-3))were induced in the 65% precold-deformed HEA,which led to the simultaneous formation of twins and stacking fault(SF)networks during deformation.The yield strength(YS),ultimate tensile strength,and ductility of the DA-HEA are~2.0 GPa,~2.2 GPa,and~12.3%,respectively.Compared with the solid solution HEA,the YS of the DA-HEA increased by 1,657 MPa,possessing an astonishing increase of~440%.The high YS stems from the precipitation strengthening contributed by the L1_(2) nanoprecipitates and the dislocation strengthening contributed by precold deformation.The synergistically enhanced ductility stems from the high strain-hardening ability under the dual support of twinning-induced plasticity and SF-induced plasticity.
基金supported by the National Natural Science Foundation of China (Grant Nos.52008039 and 52308425)the Natural Science Foundation of Hunan Province (Grant No.2021JJ40592).
文摘Deep excavations in silt strata can lead to large deformation problems,posing risks to both the excavation and adjacent structures.This study combines field monitoring with numerical simulation to investigate the underlying mechanisms and key aspects associated with large deformation problems induced by deep excavation in silt strata in Shenzhen,China.The monitoring results reveal that,due to the weak property and creep effect of the silt strata,the maximum wall deflection in the first excavated section(Section 1)exceeds its controlled value at more than 93%of measurement points,reaching a peak value of 137.46 mm.Notably,the deformation exhibits prolonged development characteristics,with the diaphragm wall deflections contributing to 39%of the overall deformation magnitude during the construction of the base slab.Subsequently,numerical simulations are carried out to analyze and assess the primary factors influencing excavation-induced deformations,following the observation of large deformations.The simulations indicate that the low strength of the silt soil is a pivotal factor that results in significant deformations.Furthermore,the flexural stiffness of the diaphragm walls exerts a notable influence on the development of deformations.To address these concerns,an optimization study of potential treatment measures was performed during the subsequent excavation of Section 2.The combined treatment approach,which comprises the reinforcement of the silt layer within the excavation and the increase in the thickness of the diaphragm walls,has been demonstrated to offer an economically superior solution for the handling of thick silt strata.This approach has the effect of reducing the lateral wall displacement by 83.1%and the ground settlement by 70.8%,thereby ensuring the safe construction of the deep excavation.
基金supported by the National Science Fund for Distinguished Young Scholars(No.52025053)National Natural Science Foundation of China(No.52305302)+1 种基金the Natural Science Foundation of Jilin Province(No.20220101216JC)the asterisk indicates the corresponding authors.
文摘Birds have developed near-perfect structures and functionality over millions of years of natural evolution.To improve the efficiency of fixed-wing vehicles in different environments,researchers have developed deformable wings inspired by the wing structures of birds.Shape Memory Alloy(SMA)is applied as a smart material to the deformable wing.Compared with other drive methods,SMA actuators have the advantages of high drive capacity and a simple structure for driving wing deformation.According to the shape memory effect,SMA actuators are classified as single-range and dual-range actuators.The wing structure designed for each SMA drive is unique.By comparing and analyzing the structures of airfoils,airfoils with similar drive forms and deformation structures are put together for review and discussion.The deformable wings are categorized into out-of-face deformation,in-face deformation,airfoil curvature deformation,and combined deformation with multiple degrees of freedom based on the structure and location of the wing that produces the deformation.An overview of the deformed wing is introduced by telling the bionic theory of seagulls.The principles of deformation of the wing,the mechanics of the SMA actuator mechanism,and the aerodynamic characteristics of the deformable wing are presented.The structure and working principle of SMA actuators for each type of deformable wing are explained in detail.Methods and approaches to study the deformability of deformable wings are analyzed and summarized.This work provides comprehensive insights and perspectives for future studies of SMA-driven deformable airfoils.
基金supported by the National Natural Science Foundation of China(Grant Nos.12202339 and 12172273)Xi’an Jiaotong University Tang Scholar.
文摘Current hyperelastic constitutive models of hydrogels face difficulties in capturing the stress-strain behaviors of hydrogels under extremely large deformation because the effect of non-affine deformation of the polymer network inside is ambiguous.In this work,we construct periodic random network(PRN)models for the effective polymer network in hydrogels and investigate the non-affine deformation of polymer chains intrinsically originates from the structural randomness from bottom up.The non-affine deformation in PRN models is manifested as the actual stretch of polymer chains randomly deviated from the chain stretch predicted by affine assumption,and quantified by a non-affine ratio of each polymer chain.It is found that the non-affine ratios of polymer chains are closely related to bulk deformation state,chain orientation,and initial chain elongation.By fitting the non-affine ratio of polymer chains in all PRN models,we propose a non-affine constitutive model for the hydrogel polymer network based on micro-sphere model.The stress-strain curves of the proposed constitutive models under uniaxial tension condition agree with the simulation results of different PRN models of hydrogels very well.
文摘Almost all solid surfaces are rough.The randomness and complexity of roughness make the behavior of contact deformation,electrical conductivity,and heat transfer between solids elusive.If the solids are subjected to further tensile,bending,or torsional deformation,will more complex or new contact phenomena occur?Clarifying this issue is of great significance to developing and designing some major equipment serving in extreme environments.
基金supported by the National Natural Science Foundation of China(52174361,52074114)Science and Technology Innovation Program of Hunan Province(2023RC3106)+2 种基金Open Fund of the China Spallation Neutron Source Songshan Lake Science City(KFKT2023B13)Graduate Training and Innovation Practice Base of Hunan Province,China Scholarship Council(202106130051)Postgraduate Scientific Research Innovation Project of Hunan Province(QL20220100,QL20230094).
文摘Multi-pass hot processing methods are commonly used in magnesium(Mg)alloys to overcome the poor workability due to limited slip systems,which generally involve complicated post-deformation softening and hardening behaviors.In this work,to reveal post-deformation softening and hardening mechanisms of a Mg-2Y-1Zn alloy,double-stage hot compression tests and microstructural observations were conducted.The results showed that the softening fraction of Mg-2Y-1Zn alloy showed a non-linear dependence on deformation conditions and could be general coupled by Z parameter.Due to the formation and cross-overlapping of twins and kinks,only static recovery(SRV)occurred during holding process at 300℃/0.001 s^(-1) which led to the least static softening:5.52% after 10 s of holding.For samples at 400℃/0.001s^(-1),the enhanced post-deformation softening,which is 11.93% after 10 s of holding,was attributed to static recrystallization(SRX)followed continuous dynamic recrystallization(CDRX)happened during first deformation stage as well as SRV influenced by the LPSO phases.Under deformation condition of 400℃/0.1 s^(-1),the coupled meta-dynamic recrystallization(MDRX)and SRX resulted in serious stress relaxation,which is 42.83% after 10 s of holding,and caused hardening phenomenon at reloading stage.The 18R-LPSO and 14H-LPSO phases synchronously worked on deformation behaviors and limited the growth of recrystallized grains.Further,a simplified static softening kinetics model was established based on Johnson-Mehl-Avrami-Kolmogorov equation and employed to rationalize experimental data.
基金funded by National Natural Science Foundation of China(52201084 and 52231003)Major Program(JD)of Hubei Province(2023BAA019)+2 种基金China Scholarship Council(CSC)Postdoctoral Station of metallurgical Engineering of Wuhan University of Science and Technology(WUST)Postdoctoral workstation of Zhejiang Jincheng New Material Co.,Ltd.
文摘304H austenitic stainless steel wire was investigated,emphasizing microstructural deformation,martensite phase transformation,and residual magnetic properties during drawing.Utilizing several microstructural observation techniques,the volume fraction of martensite,modes of grain deformation in distinct regions,and the phase relationship between austenite and martensite were comprehensively characterized.In addition,a finite element simulation with representative volume elements specific to different zones also offers insights into strain responses during the drawing process.Results from the first-pass drawing reveal that there exists a higher volume fraction of martensite in the central region of 304H austenitic stainless steel wire compared to edge areas.This discrepancy is attributed to a concentrated presence of shear slip system{111}<110>γcrystallographic orientation,primarily accumulating in the central region obeying the Kurdjumov-Sachs path.Subsequent to the second drawing pass,the cumulative shear deformation within distinct regions of the steel wire became more pronounced.This resulted in a progressive augmentation of the volume fraction of martensite in both the central and peripheral regions of the steel wire.Concurrently,this led to a discernible elevation in the overall residual magnetism of the steel wire.
基金Project(2021YFB3700801)supported by the National Key Research and Development Program of ChinaProject(2023JJ30683)supported by the Natural Science Foundation of Hunan Province,ChinaProject supported by the State Key Laboratory of Powder Metallurgy(Central South University),China。
文摘Heterogeneous structure exhibits superiority in improving mechanical properties,whereas their effects on fatigue damage properties have rarely been studied.In this work,we employed a high-throughput gradient heat treatment method(757−857℃)to rapidly acquire the solution microstructure of the Ti-6554 alloy with different recrystallization degrees(0%,40%and 100%),followed by the same aging treatment.The results showed that theβ-hetero structure exhibited a yield strength(σ_(YS))of 1403 MPa,an increase of 6.7%,and a remarkable improvement in uniform elongation(UE)of 109.7%,reaching 6.5%,compared to the homogeneous structure.Interestingly,introducing a heterogeneous structure not only overcame the traditional trade-off between strength and ductility but also enhanced fatigue crack propagation(FCP)performance.During FCP process,β-hetero structure,through hetero-deformation induced(HDI)strengthening effects,promoted the accumulation of geometric necessary dislocations(GNDs)within coarseα_(S) phase,enabling faster attainment of the critical shear stress of twinning and increasing twinning density.This facilitated stress relief,improved plastic deformation in the crack tip zone,and increased the critical fast fracture threshold from 30.4 to 36.0 MPa·m^(1/2)showing an enlarged steady state propagation region.This study provides valuable insights on tailoring fatigue damage tolerance through heterogeneous structure for titanium alloys.
基金financially supported by the National Key Re-search and Development Program of China(No.2021YFB3702604)the National Natural Science Foundation of China(No.52174377)+1 种基金the Chongqing Natural Science Foundation Project(No.CSTB2023NSCQ-MSX0824)This work was also supported by the Shaanxi Materials Analysis&Research Center and the Analytical&Testing Center of NPU.
文摘Theβsolidifiedγ-TiAl alloy holds important application value in the aerospace industry,while its com-plex phase compositions and geometric structures pose challenges to its microstructure control during the thermal-mechanical process.The microstructure evolution of Ti-43Al-4Nb-1Mo-0.2B alloy at 1200℃/0.01 s−1 was investigated to clarify the coupling role of dynamic recrystallization(DRX)and phase transformation.The results revealed that the rate of DRX inα2+γlamellar colonies was comparatively slower than that inβo+γmixed structure,instead being accompanied by intense lamellar kinking and rotation.The initiation and development rates of DRX inα2,βo,andγphases decreased sequentially.The asynchronous DRX of the various geometric structures and phase compositions resulted in the un-even deformed microstructure,and the dynamic softening induced by lamellar kinking and rotation was replaced by strengthened DRX as strain increased.Additionally,the blockyα2 phase and the terminals ofα2 lamellae were the preferential DRX sites owing to the abundant activated slip systems.Theα2→βo transformation within lamellar colonies facilitated DRX and fragment ofα2 lamellae,while theα2→γtransformation promoted the decomposition ofα2 lamellae and DRX ofγlamellae.Moreover,the var-iedβo+γmixed structures underwent complicated evolution:(1)Theγ→βo transformation occurred at boundaries of lamellar colonies,followed by simultaneous DRX ofγlamellar terminals and neighboringβo phase;(2)DRX occurred earlier within the band-likeβo phase,with the delayed DRX in enclosedγphase;(3)DRX within theβo synapses and neighboringγphase was accelerated owing to generation of elastic stress field;(4)Dispersedβo particles triggered particle stimulated nucleation(PSN)ofγphase.Eventually,atomic diffusion along crystal defects inβo andγphases caused fracture of band-likeβo phase and formation of massiveβo particles,impeding grain boundary migration and hindering DRXed grain growth ofγphase.
基金supported by the Open Fund of State Key Laboratory of Frozen Soil Engineering (Grant No.SKLFSE201806)the National Natural Science Foundation of China (Grant No.42177155).
文摘Sudden temperature drops cause soils in natural environments to freeze unidirectionally,resulting in soil expansion and deformation that can lead to damage to engineering structures.The impact of temperature-induced freezing on deformation and solute migration in saline soils,especially under extended freezing,is not well understood due to the lack of knowledge regarding the microscopic mechanisms involved.This study investigated the expansion,deformation,and water-salt migration in chlorinated saline soils,materials commonly used for canal foundations in cold and arid regions,under different roof temperatures and soil compaction levels through unidirectional freezing experiments.The microscopic structures of saline soils were observed using scanning electron microscopy(SEM)and optical microscopy.A quantitative analysis of the microstructural data was conducted before and after freezing to elucidate the microscopic mechanisms of water-salt migration and deformation.The results indicate that soil swelling is enhanced by elevated roof temperatures approaching the soil's freezing point and soil compaction,which prolongs the duration and accelerates the rate of water-salt migration.The unidirectional freezing altered the microstructure of saline soils due to the continuous temperature gradients,leading to four distinct zones:natural frozen zone,peak frozen zone,gradual frozen zone,and unfrozen zone,each exhibiting significant changes in pore types and fractal dimensions.Vacuum suction at the colder end of the soil structure facilitates the upward migration of salt and water,which subsequently undergoes crystallization.This process expands the internal pore structure and causes swelling.The findings provide a theoretical basis for understanding the evolution of soil microstructure in cold and arid regions and for the management of saline soil engineering.
基金National Natural Science Foundation of China(No.41830110)National Key Research Development Program of China(No.2018YFC1503603)+2 种基金State Scholarship Fund from the Chinese Scholarship Council(No.202206710096)Project of China Railway Corporation(No.2021-key-14,2021-major-08)The Joint Planning of Technology and Water Conservancy of Jiangxi Province(No.2022KSG01009).
文摘River embankments are designed to defend against floods over coastal and riparian areas.It is important to early detect unexpected damages on embankments before they exacerbate.To continuously monitor the stability of the embankments and efficiently recognize such potential damages,this study takes SAR(Synthetic Aperture Radar)derived deformation as an indicator of the embankment instability,and customizes a multi-temporal InSAR(Interferometric SAR)approach-small baseline subset.Specifically,during InSAR processing,we apply a two-step amplitude difference dispersion threshold method to extract InSAR measurement points,thus improving the point density within the embankment.We applied this method to the Kangshan Embankment(KE)using 147 Sentinel-1 acquired between 2017 and 2021.We categorized KE into Waterside Slope(WS),Embankment Top(ET),and Landside Slope(LS)using InSAR height estimation.Given the dominance of downslope movement,we developed a projection matrix from InSAR-derived deformation in the satellite line-of-sight direction onto WS and LS.The study shows that KE was generally stable during the five-year period,while WS,ET,and LS experienced different deformation processes.For instance,seasonal variation was observed from the deformation time series,especially between every April and November.We applied the principal component analysis to the time-series displacement and analyzed the results in conjunction with the rainfall data of Kangshan Township.It showed that deformation due to rainfall equals 80.93%,81.30%,and 82.46%of the total deformation for WS,ET,and LS,respectively,indicating that rainfall is one of the environmental driving factors affecting the deformations.We conclude that the proposed methodology is suited for systematic embankment monitoring and identifies major driving forces.
基金Financial supports from the National Natural Science Foundation of China(Nos.52171116,U22A20109,52334010 and T2325013)are greatly acknowledgedPartial financial support came from The Program for the Central University Youth Innovation Team,and the Fundamental Research Funds for the Central Universities,JLU.
文摘Dislocations and disclinations are fundamental topological defects within crystals,which determine the mechanical properties of metals and alloys.Despite their important roles in multiple physical mechanisms,e.g.,dynamic recovery and grain boundary mediated plasticity,the intrinsic coupling and correlation between disclinations and dislocations,and their impacts on the deformation behavior of metallic materials still remain obscure,partially due to the lack of a theoretical tool to capture the rotational nature of disclinations.By using a Lie-algebra-based theoretical framework,we obtain a general equation to quantify the intrinsic coupling of disclinations and dislocations.Through quasi in-situ electron backscatter diffraction characterizations and disclination/dislocation density analyses in Mg alloys,the generation,coevolution and reactions of disclinations and dislocations during dynamic recovery and superplastic deformation have been quantitatively analyzed.It has been demonstrated that the obtained governing equation can capture multiple physical processes associated with mechanical deformation of metals,e.g.,grain rotation and grain boundary migration,at both room temperature and high temperature.By establishing the disclination-dislocation coupling equation within a Lie algebra description,our work provides new insights for exploring the coevolution and reaction of disclinations/dislocations,with profound implications for elucidating the microstructure-property relationship and underlying deformation mechanisms in metallic materials.
基金Science and Technology Major Project of Xinjiang Uygur Autonomous Region(2020A03003-7)Fundamental Research on Natural Science Program of Shaanxi Province(2021JM-180)+2 种基金Fundamental Research Funds for the Central Universities,CHD(Project for Leading Talents)(300102211302)Tianshan Cedar Plan of Science and Technology Department of Xinjiang Uygur Autonomous Region(2017XS13)Shaanxi Province Young Talent Lifting Program(CLGC202219).
文摘When the expressway crosses the goafs inevitably,the design is generally to build the road on coal pillars as much as possible.However,the existing coal pillars are often unable to meet relevant requirements of highway construction.Combining three-dimensional physical model tests,numerical simulations and field monitoring,with the Urumqi East Second Ring Road passing through acute inclined goafs as a background,the deformation and failure mechanism of the overlying rock and coal pillars in acute inclined goafs under expressway load were studied.And in accordance with construction requirements of subgrade,comprehensive consideration of the deformation and instability mechanism of acute inclined goafs,the treatment measures and suggestions for this type of geological disasters were put forward.The research results confirmed the rationality of coal pillars in acute inclined goafs under the expressway through grouting.According to the ratio of diff erent overlying rock thickness to coal pillar height,the change trend and value of the required grouting range were summarized,which can provide reference for similar projects.