期刊文献+
共找到449篇文章
< 1 2 23 >
每页显示 20 50 100
Centrifuge modelling of dry granular run-out processes under deflective Coriolis condition
1
作者 Bei Zhang Yandong Bi Yu Huang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第2期1227-1239,共13页
Coriolis effects,encompassing the dilative,compressive,and deflective manifestations,constitute pivotal considerations in the centrifugal modelling of high-speed granular run-out processes.Notably,under the deflective... Coriolis effects,encompassing the dilative,compressive,and deflective manifestations,constitute pivotal considerations in the centrifugal modelling of high-speed granular run-out processes.Notably,under the deflective Coriolis condition,the velocity component parallel to the rotational axis exerts no influence on the magnitude of Coriolis acceleration.This circumstance implies a potential mitigation of the Coriolis force's deflective impact.Regrettably,extant investigations predominantly emphasize the dilative and compressive Coriolis effects,largely neglecting the pragmatic import of the deflective Coriolis condition.In pursuit of this gap,a series of discrete element method(DEM)simulations have been conducted to scrutinize the feasibility of centrifugal modelling for dry granular run-out processes under deflective Coriolis conditions.The findings concerning the deflective Coriolis effect reveal a consistent rise in the run-out distance by 2%–16%,a modest increase in bulk flow velocity of under 4%,and a slight elevation in average flow depth by no more than 25%.These alterations display smaller dependence on the specific testing conditions due to the granular flow undergoing dual deflections in opposing directions.This underscores the significance and utility of the deflective Coriolis condition.Notably,the anticipated reduction in error in predicting the final run-out distance is substantial,potentially reaching a 150%improvement compared to predictions made under the dilative and compressive Coriolis conditions.Therefore,the deflective Coriolis condition is advised when the final run-out distance of the granular flow is the main concern.To mitigate the impact of Coriolis acceleration,a greater initial height of the granular column is recommended,with a height/width ratio exceeding 1,as the basal friction of the granular material plays a crucial role in mitigating the deflective Coriolis effect.For more transverse-uniform flow properties,the width of the granular column should be as large as possible. 展开更多
关键词 Centrifuge modelling Granular flow Run-out process deflective coriolis condition Discrete element modelling
在线阅读 下载PDF
A deep transfer learning model for the deformation of braced excavations with limited monitoring data 被引量:1
2
作者 Yuanqin Tao Shaoxiang Zeng +3 位作者 Tiantian Ying Honglei Sun Sunjuexu Pan Yuanqiang Cai 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第3期1555-1568,共14页
The current deep learning models for braced excavation cannot predict deformation from the beginning of excavation due to the need for a substantial corpus of sufficient historical data for training purposes.To addres... The current deep learning models for braced excavation cannot predict deformation from the beginning of excavation due to the need for a substantial corpus of sufficient historical data for training purposes.To address this issue,this study proposes a transfer learning model based on a sequence-to-sequence twodimensional(2D)convolutional long short-term memory neural network(S2SCL2D).The model can use the existing data from other adjacent similar excavations to achieve wall deflection prediction once a limited amount of monitoring data from the target excavation has been recorded.In the absence of adjacent excavation data,numerical simulation data from the target project can be employed instead.A weight update strategy is proposed to improve the prediction accuracy by integrating the stochastic gradient masking with an early stopping mechanism.To illustrate the proposed methodology,an excavation project in Hangzhou,China is adopted.The proposed deep transfer learning model,which uses either adjacent excavation data or numerical simulation data as the source domain,shows a significant improvement in performance when compared to the non-transfer learning model.Using the simulation data from the target project even leads to better prediction performance than using the actual monitoring data from other adjacent excavations.The results demonstrate that the proposed model can reasonably predict the deformation with limited data from the target project. 展开更多
关键词 Braced excavation Wall deflections Transfer learning Deep learning Finite element simulation
在线阅读 下载PDF
The Jet Behavior of Non-Contact Electric Field-Driven Jet Micro 3D Printing
3
作者 Chenxu Guo Wenhai Li +5 位作者 Guangming Zhang Daosen Song Yin Li Zhiguo Fu Wei Zhou Hongbo Lan 《Additive Manufacturing Frontiers》 2025年第1期177-186,共10页
Electrohydrodynamic(EHD)jet printing is a promising method for high-resolution manufacturing;however,it often suffers from jet deflection owing to the accumulation of residual charges within printed structures.These r... Electrohydrodynamic(EHD)jet printing is a promising method for high-resolution manufacturing;however,it often suffers from jet deflection owing to the accumulation of residual charges within printed structures.These residual charges lead to jet deflection.This study introduces a novel noncontact electric field-driven(NEFD)jet micro 3D printing technique to address these challenges.By decoupling the high-voltage power supply from both the printing material and substrate,NEFD jet micro 3D printing eliminates the pathway for charge injection into the printing material,reducing residual charges by a factor of five or more compared to EHD jet printing.Our research revealed an inherent attractive force between the material jet and previously deposited material,regardless of the material used.Furthermore,we demonstrate that employing a pre-defined allowance printing strategy during fabrication reduces the standard deviation of actual fiber spacing values from 11.4μm to 1.5μm,thereby improving the fiber spacing consistency.This enhanced control enabled the successful fabrication of line patterns with 20±1μm fiber diameters and 61.1±1.9μm fiber spacing,demonstrating the feasibility of NEFD jet micro 3D printing.This technique offers a novel solution for mitigating the challenges associated with electric fields and charge accumulation in EHD jet printing,paving the way for enhanced resolution and material compatibility in micro-/nanoscale additive manufacturing. 展开更多
关键词 NON-CONTACT Electric field-driven Jet deflection Biological scaffold
在线阅读 下载PDF
Mesoscopic analysis on projectile motion characteristics in oblique penetration into concrete
4
作者 Xiaoyu Li Jie Zhang +1 位作者 Yu Rong Zhihua Wang 《Defence Technology(防务技术)》 2025年第9期220-233,共14页
The motion characteristics of projectile during oblique penetration into concrete were studied using a three-dimensional meso-scale model.The finite element model validation and parameter chosen were conducted by comp... The motion characteristics of projectile during oblique penetration into concrete were studied using a three-dimensional meso-scale model.The finite element model validation and parameter chosen were conducted by comparing the experimental data,with computational efficiency enhanced through improved mesh refinement.Penetration simulations involving deformable projectiles at various incident angles analyzed the effects of aggregate volume fraction and particle size on ballistic trajectory and terminal deflection.Sensitivity analysis reveals a strong power-law relationship between aggregate content and the projectile's deflection angle.The increase in aggregate content will enhance the confinement effect,shorten the intrusion distance of the projectile,and lead to a decrease in the deflection angle of the projectile.The effect of aggregate particle size on the projectile deflection angle follows a Gaussian distribution.The maximum deflection angle occurs when the aggregate particle size is between 2.7 and 3.1 times the projectile diameter.An increase in particle size reduces the number of aggregate-mortar interfaces at the same aggregate volume fraction,leading to an enlargement of the damage zone in concrete,a decrease in the number of cracks,and an increase in crack length.These findings enhance the understanding of concrete penetration mechanisms and offers valuable insights for engineering structure protection. 展开更多
关键词 CONCRETE Oblique penetration Meso-scale model Projectile deflection Coarse aggregate
在线阅读 下载PDF
Experimental and reliability assessment of fire resistance of glue laminated timber beams
5
作者 Satheeskumar Navaratnam Thisari Munmulla +2 位作者 Pathmanthan Rajeev Thusiyanthan Ponnampalam Solomon Tesfamariam 《Resilient Cities and Structures》 2025年第1期101-114,共14页
Glue-laminated timber(GLT)is an engineered wood product widely used in mass timber construction for its strong structural and fire-resistant properties.However,the fire performance of GLT varies significantly due to t... Glue-laminated timber(GLT)is an engineered wood product widely used in mass timber construction for its strong structural and fire-resistant properties.However,the fire performance of GLT varies significantly due to the natural and uncertain phenomena(moisture,exposure time,isotropic,homogenous properties,etc.)of fire and timber.This makes it difficult to predict the fire behaviour of the GLT structural elements.To ensure building safety,it is crucial to assess GLT’s fire behaviour and post-fire structural integrity during the design stages.This study conducted the experimental tests of GLT beams(280 mm×560 mm)without loading(1.4 m)and under a four-point bending load(5.4 m).Tests identified thermal behaviour and charring rates of GLT beam.Then,the residual stiffness of the GLT beam was calculated,and the charring rates of the beams were compared with Australian and European standards.Reliability analysis was conducted for beams for a fire exposure of 120 min,considering the charring rates observed through the analysis and simulating the fire insulations.Results show that the charring rate of GLT made with spruce pine timber varied between 0.43 and 0.81 mm/min,with a mean rate of 0.7 mm/min,aligning with both Australian and European standards.However,considering timber density and moisture content,the charring rates in Australian standards were conservative.The study also found that structural capacity significantly degrades under fire,with a 22%reduction in flexural stiffness after 120 min of exposure.Additionally,GLT beams can safely function for 30 min under 75%of their design moment capacity and for 60 min under 50%capacity. 展开更多
关键词 Fire test Thermal behaviour GLT beam Charring rate Residual stiffness Deflection under fire
在线阅读 下载PDF
Experimental study on startup-shutdown process of a planar expansion deflection nozzle
6
作者 Bocheng ZHOU Ben GUAN +2 位作者 Shuai WANG Yan CHEN Ge WANG 《Chinese Journal of Aeronautics》 2025年第7期84-98,共15页
Cold-flow experiments on planar Expansion Deflection(ED)nozzle flows are conducted under a simulated startup-shutdown process of rocket motors.The purpose is to investigate the flow and performance characteristics in ... Cold-flow experiments on planar Expansion Deflection(ED)nozzle flows are conducted under a simulated startup-shutdown process of rocket motors.The purpose is to investigate the flow and performance characteristics in ED nozzles,capture the behavior of shock flapping,and explore asymmetric flow dynamics utilizing a symmetric nozzle.A total pressure condition,characterized by rapid rise followed by a slow fall,is employed to simulate the continuous startup and shutdown processes.The schlieren imaging technique and high-frequency pressure transducers are employed to obtain the flow information.The experimental results indicate that the flow characteristics differ between the startup and shutdown processes with a hysteresis observed in the nozzle wake mode transition.During the startup process,the shock waves are pushed outward of the nozzle,while during the shutdown process,the flow propagates inward dominated by Mach stems.Counterintuitive results are demonstrated,namely,the mode transition is not the cause of the sudden thrust decrease,and the moment of maximum thrust does not coincide with the moment of maximum total pressure.During the operation of the nozzle,two stages of shock wave flapping occur,accompanied by significant wall pressure oscillations.These oscillation frequencies are demonstrated to be related to the inherent acoustic frequencies of the test chamber.An improved pressure ratio method is proposed to predict the position of the shock oscillation separation point.The prediction results revealed the shock behavior during the flapping process. 展开更多
关键词 Cold-flow experiment Expansion deflection nozzle Mode transition Shock flapping Shock waves
原文传递
Insight into effect of forced convection during slab casting on as-cast solidification structure
7
作者 Hao Geng Yun-he Chang +3 位作者 Zhuang Zhang Peng Lan Pu Wang Jia-quan Zhang 《Journal of Iron and Steel Research International》 2025年第6期1568-1583,共16页
Solidification structure of casting strands significantly impacts the subsequent processing and service properties of the steel products,which correlates closely with the melt flow during the solidification process.Se... Solidification structure of casting strands significantly impacts the subsequent processing and service properties of the steel products,which correlates closely with the melt flow during the solidification process.Several abnormal solidification phenomena and segregation characteristics observed in slab casting are elucidated by referencing to their related flow patterns of molten steel calculated by a multi-field coupling model for actual casting conditions.Eventually,the effect of forced convection on the solidification structure was discussed.The results show that the forced convection generated by electromagnetic stirring and/or nozzle jet will remove the solute-enriched molten steel between the dendrite in front of the solidifying shell,and change solute distribution at the interface of dendrite tips,leading to the white bands and dendrite deflection.In the white band region,a dense dendrite structure without dendrite segregation appears.Moreover,forced convection results in a higher growth rate on the upstream side than the backflow side of the dendrite tip,promoting the columnar crystal deflection.In addition,dendrite fragmentation upon the forced convection during solidification will increase the equiaxed crystal ratio of the as-cast slab and the number of the spot-like semi-macrosegregation.The carbon extreme range decreased with the change in electromagnetic stirring process,indicating a significant improvement in the composition uniformity of the slab casting.It is suggested that the final quality of rolled products could be improved from the very beginning of casting and solidification through regulating the as-cast solidification structure. 展开更多
关键词 Solidification structure Forced convection Electromagnetic stirring White band Dendrite deflection
原文传递
Particle-in-cell simulations of electron beam-plasma discharge in a narrow gap with varying transverse boundary conditions
8
作者 Jiahong CHEN Jian CHEN +1 位作者 Qinchuang CAO Zhibin WANG 《Plasma Science and Technology》 2025年第4期50-57,共8页
In this work,the effects of transverse boundary conditions,specifically the bias voltage on the transverse wall and the gap width,on the electron beam-generated plasmas(EBPs)confined in a narrow gap,are investigated u... In this work,the effects of transverse boundary conditions,specifically the bias voltage on the transverse wall and the gap width,on the electron beam-generated plasmas(EBPs)confined in a narrow gap,are investigated using the particle-in-cell/Monte Carlo collision(PIC/MCC)simulations.Simulation results reveal that the application of bias voltage causes beam deflections,leading to the formation of band structures in the beam electron velocity space.Three branches of electrostatic waves,including electron beam mode,Langmuir wave,and electron acoustic mode,are identified.Increasing the bias voltage and reducing gap width intensify beam deflections,resulting in the suppression of waves.Both wave excitation and beam deflection significantly modify beam electron transport,leading to the plasma non-uniformity.These findings enhance the understanding of beam transport and plasma behavior in discharges confined in a narrow gap. 展开更多
关键词 electron beam-generated plasmas gap width bias voltage beam deflection wave excitation
在线阅读 下载PDF
The Nuclear Option-Could It Work for Planetary Defense?
9
作者 Chris Palmer 《Engineering》 2025年第6期6-8,共3页
In a Nature Physics report published in late September 2024[1],a team of scientists and engineers at Sandia National Laboratories(Albuquerque,NM,USA)described the results of a laboratory experiment showing that a nucl... In a Nature Physics report published in late September 2024[1],a team of scientists and engineers at Sandia National Laboratories(Albuquerque,NM,USA)described the results of a laboratory experiment showing that a nuclear blast could create a burst of X-rays powerful enough to change the path of a large asteroid that might one day be on a collision course with Earth. 展开更多
关键词 large asteroid nature physics report asteroid deflection laboratory experiment planetary defense nuclear blast change path X rays
在线阅读 下载PDF
The deflection angle and quasi-periodic oscillations of an extended gravitational decoupled black hole solution
10
作者 Farzan Mushtaq Xia Tiecheng +2 位作者 Allah Ditta G Mustafa S K Maurya 《Communications in Theoretical Physics》 2025年第2期130-145,共16页
In weak field limits,we compute the deflection angle of a gravitational decoupling extended black hole(BH)solution.We obtained the Gaussian optical curvature by examining the null geodesic equations with the help of G... In weak field limits,we compute the deflection angle of a gravitational decoupling extended black hole(BH)solution.We obtained the Gaussian optical curvature by examining the null geodesic equations with the help of Gauss-Bonnet theorem(GBT).We also looked into the deflection angle of light by a black hole in weak field limits with the use of the Gibbons-Werner method.We verify the graphical behavior of the black hole after determining the deflection angle of light.Additionally,in the presence of the plasma medium,we also determine the deflection angle of the light and examine its graphical behavior.Furthermore,we compute the Einstein ring via gravitational decoupling extended black hole solution.We also compute the quasi-periodic oscillations and discuss their graphical behavior. 展开更多
关键词 deflection of light Gauss-Bonnet theorem gravitational decoupling
原文传递
A sixth-order method for large deflection bending analysis of complex plates with multiple holes
11
作者 Yonggu Feng Youhe Zhou Jizeng Wang 《Acta Mechanica Sinica》 2025年第6期105-124,共20页
The challenge of solving nonlinear problems in multi-connected domains with high accuracy has garnered significant interest.In this paper,we propose a unified wavelet solution method for accurately solving nonlinear b... The challenge of solving nonlinear problems in multi-connected domains with high accuracy has garnered significant interest.In this paper,we propose a unified wavelet solution method for accurately solving nonlinear boundary value problems on a two-dimensional(2D)arbitrary multi-connected domain.We apply this method to solve large deflection bending problems of complex plates with holes.Our solution method simplifies the treatment of the 2D multi-connected domain by utilizing a natural discretization approach that divides it into a series of one-dimensional(1D)intervals.This approach establishes a fundamental relationship between the highest-order derivative in the governing equation of the problem and the remaining lower-order derivatives.By combining a wavelet high accuracy integral approximation format on 1D intervals,where the convergence order remains constant regardless of the number of integration folds,with the collocation method,we obtain a system of algebraic equations that only includes discrete point values of the highest order derivative.In this process,the boundary conditions are automatically replaced using integration constants,eliminating the need for additional processing.Error estimation and numerical results demonstrate that the accuracy of this method is unaffected by the degree of nonlinearity of the equations.When solving the bending problem of multi-perforated complex-shaped plates under consideration,it is evident that directly using higher-order derivatives as unknown functions significantly improves the accuracy of stress calculation,even when the stress exhibits large gradient variations.Moreover,compared to the finite element method,the wavelet method requires significantly fewer nodes to achieve the same level of accuracy.Ultimately,the method achieves a sixth-order accuracy and resembles the treatment of one-dimensional problems during the solution process,effectively avoiding the need for the complex 2D meshing process typically required by conventional methods when solving problems with multi-connected domains. 展开更多
关键词 Wavelet integral collocation method Multi-connected domain Large deflection bending Plate with holes Highaccuracy
原文传递
A spatiotemporal deep learning method for excavation-induced wall deflections 被引量:3
12
作者 Yuanqin Tao Shaoxiang Zeng +3 位作者 Honglei Sun Yuanqiang Cai Jinzhang Zhang Xiaodong Pan 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第8期3327-3338,共12页
Data-driven approaches such as neural networks are increasingly used for deep excavations due to the growing amount of available monitoring data in practical projects.However,most neural network models only use the da... Data-driven approaches such as neural networks are increasingly used for deep excavations due to the growing amount of available monitoring data in practical projects.However,most neural network models only use the data from a single monitoring point and neglect the spatial relationships between multiple monitoring points.Besides,most models lack flexibility in providing predictions for multiple days after monitoring activity.This study proposes a sequence-to-sequence(seq2seq)two-dimensional(2D)convolutional long short-term memory neural network(S2SCL2D)for predicting the spatiotemporal wall deflections induced by deep excavations.The model utilizes the data from all monitoring points on the entire wall and extracts spatiotemporal features from data by combining the 2D convolutional layers and long short-term memory(LSTM)layers.The S2SCL2D model achieves a long-term prediction of wall deflections through a recursive seq2seq structure.The excavation depth,which has a significant impact on wall deflections,is also considered using a feature fusion method.An excavation project in Hangzhou,China,is used to illustrate the proposed model.The results demonstrate that the S2SCL2D model has superior prediction accuracy and robustness than that of the LSTM and S2SCL1D(one-dimensional)models.The prediction model demonstrates a strong generalizability when applied to an adjacent excavation.Based on the long-term prediction results,practitioners can plan and allocate resources in advance to address the potential engineering issues. 展开更多
关键词 Braced excavation Wall deflections Deep learning Convolutional layer Long short-term memory(LSTM) Sequence to sequence(seq2seq)
在线阅读 下载PDF
Closure Effect ofⅠ+ⅡMixed-mode Crack for EA4T Axle Steel
13
作者 Shuancheng Wang Bing Yang +2 位作者 Shuwei Zhou Jian Li Shoune Xiao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第4期327-341,共15页
The crack-closure effect is a crucial factor that affects the crack growth rate and should be considered in simulation analysis and testing.A mixed-mode I+II loading fatigue crack growth test was performed using EA4T ... The crack-closure effect is a crucial factor that affects the crack growth rate and should be considered in simulation analysis and testing.A mixed-mode I+II loading fatigue crack growth test was performed using EA4T axle steel specimens.The variation of the plastic-induced crack closure(PICC)effect and the roughness-induced crack closure(RICC)effect during crack deflection in the mixed-mode is examined in this study.The results show that the load perpendicular to the crack propagation direction hinders the slip effect caused by the load parallel to the crack propagation direction under mixed-mode loading,and the crack deflection is an intuitive manifestation of the interaction between the PICC and RICC.The proportion of the RA value change on the crack side caused by contact friction was reduced by the interaction between PICC and RICC.The roughness of the crack surface before and after the crack deflection is different,and the spatial torsion crack surface is formed during the crack propagation process.With the increase of the crack length,the roughness of the fracture surface increases.During the crack deflection process,the PICC value fluctuates around 0.2,and the RICC value is increased to 0.15. 展开更多
关键词 Crack closure Crack deflection Plasticity-induced closure Roughness-induced closure Interaction mechanism
在线阅读 下载PDF
Thermal fluctuations,deflection angle,and greybody factor of a high-dimensional Schwarzschild black hole in scalar-tensor-vector gravity
14
作者 Qian Li Yu Zhang +1 位作者 Qi-Quan Li Qi Sun 《Communications in Theoretical Physics》 SCIE CAS CSCD 2024年第11期100-112,共13页
In this study,we examined the thermal fluctuations,deflection angle,and greybody factor of a high-dimensional Schwarzschild black hole in scalar-tensor-vector gravity(STVG).We calculated some thermodynamic quantities ... In this study,we examined the thermal fluctuations,deflection angle,and greybody factor of a high-dimensional Schwarzschild black hole in scalar-tensor-vector gravity(STVG).We calculated some thermodynamic quantities related to the correction of the black hole entropy caused by thermal fluctuations and discussed the effect of the correction parameters on these quantities.By analyzing the changes in the corrected specific heat,we found that thermal fluctuations made the small black hole more stable.It is worth noting that the STVG parameter did not affect the thermodynamic stability of this black hole.Additionally,by utilizing the Gauss-Bonnet theorem,the deflection angle was obtained in the weak field limit,and the effects of the two parameters on the results were visualized.Finally,we calculated the bounds on the greybody factor of a massless scalar field.We observed that as the STVG parameter around the black hole increased,the weak deflection angle became larger,and more scalar particles can reach infinity.However,the spacetime dimension has the opposite effect on the STVG parameter on the weak deflection angle and greybody factor. 展开更多
关键词 black hole thermal fluctuations deflection angle greybody factor
原文传递
Large deflection deformation behavior of a Zr-based bulk metallic glass for compliant spinal fixation application
15
作者 Diao-Feng Li Chun-Guang Bai +3 位作者 Zhi-Qiang Zhang Hui-Bo Zhang Nan Li Jian Zhao 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第6期86-99,共14页
A novel compliant spinal fixation designed based on the concept of compliant mechanisms can reduce the stress-shielding effect and adjacent segment degeneration(ASD)effectively,but propose higher requirements for the ... A novel compliant spinal fixation designed based on the concept of compliant mechanisms can reduce the stress-shielding effect and adjacent segment degeneration(ASD)effectively,but propose higher requirements for the properties of the used materials.Bulk metallic glasses(BMGs),as a kind of young biomaterials,exhibiting excellent comprehensive properties,which are attractive for compliant spinal fixation.Here,according to the practical service condition of the basic elements in compliant spinal fixation,large deflection deformation behaviors of Zr_(61)Ti_(2)Cu_(25)Al_(12)(at.%,ZT1)BMG beam,including elastic,yielding and plastic were investigated systematically.It was shown that the theoretical nonlinear analytical solution curve as the benchmark not only with the capacity to predict the nonlinear load-deflection relation within the elastic deformation regime,but also assists to capture the yielding event roughly,which can be used as a powerful design tool for engineers.To capture the beginning of the yielding event exactly,bending proof strength(σ_(p),0.05%)accompanied with tiny permanent strain of 0.05% was proposed and determined for BMGs in biomedical implant applications,which is of significance for setting the allowable operating limits of the basic flexible elements.By approach of interrupted loading-unloading cycles,plastic deformation driven by the bending moment can be classified into two typical stages:the initial stage which mainly characterized by the nucleation and intense interaction of abundant shear bands when the plastic strain below the critical value,and the second stage which dominated by the progressive propagation of shear bands and coupled with the emergence of shear offsets on tensile side.The plasticity of BMG beam structures depends on the BMG's inherent plastic zone size(rp).When the half beam thickness less than that of the rp,the plastic deformation of BMGs will behave in a stable manner,which can be acted as the margin of safety effectively. 展开更多
关键词 Metallic glasses BIOMATERIALS Compliant spinal fixation Large deflection deformation Plastic deformation
原文传递
PDE Standardization Analysis and Solution of TypicalMechanics Problems
16
作者 Ningjie Wang Yihao Wang +1 位作者 Yongle Pei Luxian Li 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期171-186,共16页
A numerical approach is an effective means of solving boundary value problems(BVPs).This study focuses on physical problems with general partial differential equations(PDEs).It investigates the solution approach throu... A numerical approach is an effective means of solving boundary value problems(BVPs).This study focuses on physical problems with general partial differential equations(PDEs).It investigates the solution approach through the standard forms of the PDE module in COMSOL.Two typical mechanics problems are exemplified:The deflection of a thin plate,which can be addressed with the dedicated finite element module,and the stress of a pure bending beamthat cannot be tackled.The procedure for the two problems regarding the three standard forms required by the PDE module is detailed.The results were in good agreement with the literature,indicating that the PDE module provides a promising means to solve complex PDEs,especially for those a dedicated finite element module has yet to be developed. 展开更多
关键词 Three standard forms expression input PDE module deflection solution stress solution
在线阅读 下载PDF
Evolution of light deflection and shadow from a gauge-potential-like AdS black hole under the influence of a non-magnetic plasma medium
17
作者 Riasat Ali Xia Tiecheng +1 位作者 Muhammad Awais Rimsha Babar 《Communications in Theoretical Physics》 SCIE CAS CSCD 2024年第9期83-94,共12页
We investigate the light deflection in the weak field approximation from the accelerating charged AdS black hole.For this purpose,we apply the Gauss–Bonnet theorem to calculate the light deflection in the weak field ... We investigate the light deflection in the weak field approximation from the accelerating charged AdS black hole.For this purpose,we apply the Gauss–Bonnet theorem to calculate the light deflection in the weak field area and use the Gibbons–Werner approach to analyze the optical geometry of the accelerating charged AdS black hole in the non-magnetic plasma absence/presence of a non-magnetic medium.We also represent the graphical behavior of the light deflection angle w.r.t.the impact parameter.We also compute the light deflection angle using Keeton and Petters approximations under the impact of accelerating charged AdS black hole geometry.Furthermore,by using the ray-tracing approach,we determine the shadow in the nonmagnetic plasma presence and also demonstrate that graphical shadow has an impact on the gauge potential,non-magnetic plasma frequencies and charge. 展开更多
关键词 accelerating charged Ad S black hole Gibbons-Werner approach deflection angle ray-tracing approach SHADOW
原文传递
Deterministic and probabilistic analysis of great-depth braced excavations:A 32 m excavation case study in Paris
18
作者 Tingting Zhang Julien Baroth +1 位作者 Daniel Dias Khadija Nejjar 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1505-1521,共17页
The Fort d’Issy-Vanves-Clamart(FIVC)braced excavation in France is analyzed to provide insights into the geotechnical serviceability assessment of excavations at great depth within deterministic and probabilistic fra... The Fort d’Issy-Vanves-Clamart(FIVC)braced excavation in France is analyzed to provide insights into the geotechnical serviceability assessment of excavations at great depth within deterministic and probabilistic frameworks.The FIVC excavation is excavated at 32 m below the ground surface in Parisian sedimentary basin and a plane-strain finite element analysis is implemented to examine the wall deflections and ground surface settlements.A stochastic finite element method based on the polynomial chaos Kriging metamodel(MSFEM)is then proposed for the probabilistic analyses.Comparisons with field measurements and former studies are carried out.Several academic cases are then conducted to investigate the great-depth excavation stability regarding the maximum horizontal wall deflection and maximum ground surface settlement.The results indicate that the proposed MSFEM is effective for probabilistic analyses and can provide useful insights for the excavation design and construction.A sensitivity analysis for seven considered random parameters is then implemented.The soil friction angle at the excavation bottom layer is the most significant one for design.The soil-wall interaction effects on the excavation stability are also given. 展开更多
关键词 Braced deep excavation Soil-wall interaction Stochastic finite element method Horizontal wall deflection SETTLEMENT Failure probability
在线阅读 下载PDF
Finite Element Analysis of Effects of Improvement of Soil Between Double-Row Piles
19
作者 NIE Dongqing ZHAI Zhiyang +1 位作者 ZHANG Wei LI Zhi 《Journal of Shanghai Jiaotong university(Science)》 EI 2024年第5期919-929,共11页
Double-row pile(DRP)retaining systems have been widely used in deep excavations in China.Soil between the front and back-row piles(FBP soil)is often improved to decrease the displacement of DRPs in soft soil areas,but... Double-row pile(DRP)retaining systems have been widely used in deep excavations in China.Soil between the front and back-row piles(FBP soil)is often improved to decrease the displacement of DRPs in soft soil areas,but the improvement efficiency has rarely been researched.A large and deep excavation supported by a DRP retaining system is introduced,and the effect of FBP soil improvement is discussed by comparing the finite element analysis and the monitoring results.Then,a parametric study of DRP using the finite element method considering the small strain of soil is conducted to investigate the effect of FBP soil improvement.It was shown that the pile deflection and bending moment decrease when the FBP soil is improved.Moreover,the most efficient way to minimize the pile deflection and bending moment is to improve the FBP soil around the excavation level.The FBP soil improvement 2-4 m below the pile head is not very useful for reducing the pile deflection and can be eliminated when the pile displacement limit is not very strict. 展开更多
关键词 large excavation double-row pile(DRP) soil improvement DEFLECTION bending moment finite element analysis
原文传递
Theoretical Analysis on Deflection and Bearing Capacity of Prestressed Bamboo-Steel Composite Beams
20
作者 Qifeng Shan Ming Mao Yushun Li 《Journal of Renewable Materials》 EI CAS 2024年第1期149-166,共18页
A theoretical analysis of upward deflection and midspan deflection of prestressed bamboo-steel composite beams is presented in this study.The deflection analysis considers the influences of interface slippage and shea... A theoretical analysis of upward deflection and midspan deflection of prestressed bamboo-steel composite beams is presented in this study.The deflection analysis considers the influences of interface slippage and shear deformation.Furthermore,the calculation model for flexural capacity is proposed considering the two stages of loading.The theoretical results are verified with 8 specimens considering different prestressed load levels,load schemes,and prestress schemes.The results indicate that the proposed theoretical analysis provides a feasible prediction of the deflection and bearing capacity of bamboo-steel composite beams.For deflection analysis,the method considering the slippage and shear deformation provides better accuracy.The theoretical method for bearing capacity matches well with the test results,and the relative errors in the serviceability limit state and ultimate limit state are 4.95%and 5.85%,respectively,which meet the accuracy requirements of the engineered application. 展开更多
关键词 Bamboo scrimber composite beam PRESTRESS DEFLECTION bearing capacity
在线阅读 下载PDF
上一页 1 2 23 下一页 到第
使用帮助 返回顶部