A new type jet, the oscillating & deflecting jet, is put forward and its oscillating and deflecting characteristics are investigated. The nozzle of the self-oscillating & deflecting water jet consists of an up...A new type jet, the oscillating & deflecting jet, is put forward and its oscillating and deflecting characteristics are investigated. The nozzle of the self-oscillating & deflecting water jet consists of an upstream nozzle, a downstream nozzle, an oscillating chamber and two switches. It is experimentally shown that the deflective angle may reach 9.53 degree. The generated pressure fluctuation is very regular and the jet can efficiently increase the ability for breaking and cutting by eliminating the water cushion effect associated with a continuous jet.展开更多
A 2856-MHz,π-mode,seven-cell standingwave deflecting cavity was designed and fabricated for bunch length measurement in Tsinghua Thomson scattering X-ray source(TTX)facility.This cavity was installed in the TTX and p...A 2856-MHz,π-mode,seven-cell standingwave deflecting cavity was designed and fabricated for bunch length measurement in Tsinghua Thomson scattering X-ray source(TTX)facility.This cavity was installed in the TTX and provided a deflecting voltage of 4.2 MV with an input power of 2.5 MW.Bunch length diagnoses of electron beams with energies up to 39 MeV have been performed.In this article,the RF design of the cavity using HFSS,fabrication,and RF test processes are reviewed.High-power operation with accelerated beams and calibration of the deflecting voltage are also presented.展开更多
There are more than one hundred pulse power supplies in the project of HIMM (High Ion Medical Machine).The control protocol of them is unified. But the HVPS (high voltage power supply) for deflecting plate of the beam...There are more than one hundred pulse power supplies in the project of HIMM (High Ion Medical Machine).The control protocol of them is unified. But the HVPS (high voltage power supply) for deflecting plate of the beam extracted system is different.The control of HVPS includes the current settings, the status display and the HV turn on/off.展开更多
RF deflecting cavity can be used for bunch length measurement and is designed to diagnose the beam produced by the photocathode electron gun which was built at Tsinghua University for the Thomson scattering experiment...RF deflecting cavity can be used for bunch length measurement and is designed to diagnose the beam produced by the photocathode electron gun which was built at Tsinghua University for the Thomson scattering experiment. Detailed discussion and calculation for measuring the 3.5 MeV bunch and another with further acceleration to 50 MeV, which is under development, are presented. A standing-wave deflecting cavity working at 2856 MHz is designed and the power feeding system has been planned.展开更多
The radiation of high-gain short-wavelength free-electron laser depends on the slice transverse emittance of the electron bunch. This essay introduces the method of slice emittance measurement, and shows the brief set...The radiation of high-gain short-wavelength free-electron laser depends on the slice transverse emittance of the electron bunch. This essay introduces the method of slice emittance measurement, and shows the brief setup of this experiment using the solenoid scanning and RF deflecting cavity at Tsinghua University. The preliminary experimental results show that the slice rms emittance of the electron bunch generated by photocathode RF gun has considerable variations along the bunch and is typically less than 0.55 mm mrad for the laser rms radius of 0.4 mm.展开更多
The current deep learning models for braced excavation cannot predict deformation from the beginning of excavation due to the need for a substantial corpus of sufficient historical data for training purposes.To addres...The current deep learning models for braced excavation cannot predict deformation from the beginning of excavation due to the need for a substantial corpus of sufficient historical data for training purposes.To address this issue,this study proposes a transfer learning model based on a sequence-to-sequence twodimensional(2D)convolutional long short-term memory neural network(S2SCL2D).The model can use the existing data from other adjacent similar excavations to achieve wall deflection prediction once a limited amount of monitoring data from the target excavation has been recorded.In the absence of adjacent excavation data,numerical simulation data from the target project can be employed instead.A weight update strategy is proposed to improve the prediction accuracy by integrating the stochastic gradient masking with an early stopping mechanism.To illustrate the proposed methodology,an excavation project in Hangzhou,China is adopted.The proposed deep transfer learning model,which uses either adjacent excavation data or numerical simulation data as the source domain,shows a significant improvement in performance when compared to the non-transfer learning model.Using the simulation data from the target project even leads to better prediction performance than using the actual monitoring data from other adjacent excavations.The results demonstrate that the proposed model can reasonably predict the deformation with limited data from the target project.展开更多
Superconducting deflecting cavities can be used in synchrotron light source to generate subpicosecond X-ray pulses while the impedance of the lower order modes (LOM) and higher order modes (HOM) in the cavity shou...Superconducting deflecting cavities can be used in synchrotron light source to generate subpicosecond X-ray pulses while the impedance of the lower order modes (LOM) and higher order modes (HOM) in the cavity should be kept below an accepted level to avoid beam instability. These modes can be damped by adding waveguide on beam pipe. Detailed simulation of Q in CST Microwave Studio is introduced and experiment results on an aluminum model cavity with damping waveguide are reported to make a comparison.展开更多
The beam trajectory in the first deflecting magnet of "Rhodotron" TT200 has been analyzed precisely by both optical and simulation methods. We found discrepancies between these two methods at the order of (10-3) f...The beam trajectory in the first deflecting magnet of "Rhodotron" TT200 has been analyzed precisely by both optical and simulation methods. We found discrepancies between these two methods at the order of (10-3) for the slit distance and deflecting radius and at the order of (10-4) for the magnetic flux density. The main goal of the paper is beam focusing, considering the angular and momentum dispersion of the particles for the magnet designed by ANSYS.展开更多
Numerical results of three-dimensional separated flow and heat transfer in a rectangular channel with a sudden expansion are presented in this paper. Numerical simulations of Navier-Stokes and energy equations are car...Numerical results of three-dimensional separated flow and heat transfer in a rectangular channel with a sudden expansion are presented in this paper. Numerical simulations of Navier-Stokes and energy equations are carried out using the finite difference method. The results of three-dimensional calculations are compared with the two-dimensional ones, and effects of the aspect ratio of channel upon the flow are shown. The transition from symmetric to asymmetric flow appears at lower Reynolds number as increasing the aspect ratio. The details of local heat transfer characteristics in two different separated flow regions on two downstream walls are clarified. Two-dimensionality of the flow and heat transfer almost disappears for the aspect ratio considered.展开更多
Electrohydrodynamic(EHD)jet printing is a promising method for high-resolution manufacturing;however,it often suffers from jet deflection owing to the accumulation of residual charges within printed structures.These r...Electrohydrodynamic(EHD)jet printing is a promising method for high-resolution manufacturing;however,it often suffers from jet deflection owing to the accumulation of residual charges within printed structures.These residual charges lead to jet deflection.This study introduces a novel noncontact electric field-driven(NEFD)jet micro 3D printing technique to address these challenges.By decoupling the high-voltage power supply from both the printing material and substrate,NEFD jet micro 3D printing eliminates the pathway for charge injection into the printing material,reducing residual charges by a factor of five or more compared to EHD jet printing.Our research revealed an inherent attractive force between the material jet and previously deposited material,regardless of the material used.Furthermore,we demonstrate that employing a pre-defined allowance printing strategy during fabrication reduces the standard deviation of actual fiber spacing values from 11.4μm to 1.5μm,thereby improving the fiber spacing consistency.This enhanced control enabled the successful fabrication of line patterns with 20±1μm fiber diameters and 61.1±1.9μm fiber spacing,demonstrating the feasibility of NEFD jet micro 3D printing.This technique offers a novel solution for mitigating the challenges associated with electric fields and charge accumulation in EHD jet printing,paving the way for enhanced resolution and material compatibility in micro-/nanoscale additive manufacturing.展开更多
The motion characteristics of projectile during oblique penetration into concrete were studied using a three-dimensional meso-scale model.The finite element model validation and parameter chosen were conducted by comp...The motion characteristics of projectile during oblique penetration into concrete were studied using a three-dimensional meso-scale model.The finite element model validation and parameter chosen were conducted by comparing the experimental data,with computational efficiency enhanced through improved mesh refinement.Penetration simulations involving deformable projectiles at various incident angles analyzed the effects of aggregate volume fraction and particle size on ballistic trajectory and terminal deflection.Sensitivity analysis reveals a strong power-law relationship between aggregate content and the projectile's deflection angle.The increase in aggregate content will enhance the confinement effect,shorten the intrusion distance of the projectile,and lead to a decrease in the deflection angle of the projectile.The effect of aggregate particle size on the projectile deflection angle follows a Gaussian distribution.The maximum deflection angle occurs when the aggregate particle size is between 2.7 and 3.1 times the projectile diameter.An increase in particle size reduces the number of aggregate-mortar interfaces at the same aggregate volume fraction,leading to an enlargement of the damage zone in concrete,a decrease in the number of cracks,and an increase in crack length.These findings enhance the understanding of concrete penetration mechanisms and offers valuable insights for engineering structure protection.展开更多
Glue-laminated timber(GLT)is an engineered wood product widely used in mass timber construction for its strong structural and fire-resistant properties.However,the fire performance of GLT varies significantly due to t...Glue-laminated timber(GLT)is an engineered wood product widely used in mass timber construction for its strong structural and fire-resistant properties.However,the fire performance of GLT varies significantly due to the natural and uncertain phenomena(moisture,exposure time,isotropic,homogenous properties,etc.)of fire and timber.This makes it difficult to predict the fire behaviour of the GLT structural elements.To ensure building safety,it is crucial to assess GLT’s fire behaviour and post-fire structural integrity during the design stages.This study conducted the experimental tests of GLT beams(280 mm×560 mm)without loading(1.4 m)and under a four-point bending load(5.4 m).Tests identified thermal behaviour and charring rates of GLT beam.Then,the residual stiffness of the GLT beam was calculated,and the charring rates of the beams were compared with Australian and European standards.Reliability analysis was conducted for beams for a fire exposure of 120 min,considering the charring rates observed through the analysis and simulating the fire insulations.Results show that the charring rate of GLT made with spruce pine timber varied between 0.43 and 0.81 mm/min,with a mean rate of 0.7 mm/min,aligning with both Australian and European standards.However,considering timber density and moisture content,the charring rates in Australian standards were conservative.The study also found that structural capacity significantly degrades under fire,with a 22%reduction in flexural stiffness after 120 min of exposure.Additionally,GLT beams can safely function for 30 min under 75%of their design moment capacity and for 60 min under 50%capacity.展开更多
Cold-flow experiments on planar Expansion Deflection(ED)nozzle flows are conducted under a simulated startup-shutdown process of rocket motors.The purpose is to investigate the flow and performance characteristics in ...Cold-flow experiments on planar Expansion Deflection(ED)nozzle flows are conducted under a simulated startup-shutdown process of rocket motors.The purpose is to investigate the flow and performance characteristics in ED nozzles,capture the behavior of shock flapping,and explore asymmetric flow dynamics utilizing a symmetric nozzle.A total pressure condition,characterized by rapid rise followed by a slow fall,is employed to simulate the continuous startup and shutdown processes.The schlieren imaging technique and high-frequency pressure transducers are employed to obtain the flow information.The experimental results indicate that the flow characteristics differ between the startup and shutdown processes with a hysteresis observed in the nozzle wake mode transition.During the startup process,the shock waves are pushed outward of the nozzle,while during the shutdown process,the flow propagates inward dominated by Mach stems.Counterintuitive results are demonstrated,namely,the mode transition is not the cause of the sudden thrust decrease,and the moment of maximum thrust does not coincide with the moment of maximum total pressure.During the operation of the nozzle,two stages of shock wave flapping occur,accompanied by significant wall pressure oscillations.These oscillation frequencies are demonstrated to be related to the inherent acoustic frequencies of the test chamber.An improved pressure ratio method is proposed to predict the position of the shock oscillation separation point.The prediction results revealed the shock behavior during the flapping process.展开更多
Solidification structure of casting strands significantly impacts the subsequent processing and service properties of the steel products,which correlates closely with the melt flow during the solidification process.Se...Solidification structure of casting strands significantly impacts the subsequent processing and service properties of the steel products,which correlates closely with the melt flow during the solidification process.Several abnormal solidification phenomena and segregation characteristics observed in slab casting are elucidated by referencing to their related flow patterns of molten steel calculated by a multi-field coupling model for actual casting conditions.Eventually,the effect of forced convection on the solidification structure was discussed.The results show that the forced convection generated by electromagnetic stirring and/or nozzle jet will remove the solute-enriched molten steel between the dendrite in front of the solidifying shell,and change solute distribution at the interface of dendrite tips,leading to the white bands and dendrite deflection.In the white band region,a dense dendrite structure without dendrite segregation appears.Moreover,forced convection results in a higher growth rate on the upstream side than the backflow side of the dendrite tip,promoting the columnar crystal deflection.In addition,dendrite fragmentation upon the forced convection during solidification will increase the equiaxed crystal ratio of the as-cast slab and the number of the spot-like semi-macrosegregation.The carbon extreme range decreased with the change in electromagnetic stirring process,indicating a significant improvement in the composition uniformity of the slab casting.It is suggested that the final quality of rolled products could be improved from the very beginning of casting and solidification through regulating the as-cast solidification structure.展开更多
In this work,the effects of transverse boundary conditions,specifically the bias voltage on the transverse wall and the gap width,on the electron beam-generated plasmas(EBPs)confined in a narrow gap,are investigated u...In this work,the effects of transverse boundary conditions,specifically the bias voltage on the transverse wall and the gap width,on the electron beam-generated plasmas(EBPs)confined in a narrow gap,are investigated using the particle-in-cell/Monte Carlo collision(PIC/MCC)simulations.Simulation results reveal that the application of bias voltage causes beam deflections,leading to the formation of band structures in the beam electron velocity space.Three branches of electrostatic waves,including electron beam mode,Langmuir wave,and electron acoustic mode,are identified.Increasing the bias voltage and reducing gap width intensify beam deflections,resulting in the suppression of waves.Both wave excitation and beam deflection significantly modify beam electron transport,leading to the plasma non-uniformity.These findings enhance the understanding of beam transport and plasma behavior in discharges confined in a narrow gap.展开更多
Coriolis effects,encompassing the dilative,compressive,and deflective manifestations,constitute pivotal considerations in the centrifugal modelling of high-speed granular run-out processes.Notably,under the deflective...Coriolis effects,encompassing the dilative,compressive,and deflective manifestations,constitute pivotal considerations in the centrifugal modelling of high-speed granular run-out processes.Notably,under the deflective Coriolis condition,the velocity component parallel to the rotational axis exerts no influence on the magnitude of Coriolis acceleration.This circumstance implies a potential mitigation of the Coriolis force's deflective impact.Regrettably,extant investigations predominantly emphasize the dilative and compressive Coriolis effects,largely neglecting the pragmatic import of the deflective Coriolis condition.In pursuit of this gap,a series of discrete element method(DEM)simulations have been conducted to scrutinize the feasibility of centrifugal modelling for dry granular run-out processes under deflective Coriolis conditions.The findings concerning the deflective Coriolis effect reveal a consistent rise in the run-out distance by 2%–16%,a modest increase in bulk flow velocity of under 4%,and a slight elevation in average flow depth by no more than 25%.These alterations display smaller dependence on the specific testing conditions due to the granular flow undergoing dual deflections in opposing directions.This underscores the significance and utility of the deflective Coriolis condition.Notably,the anticipated reduction in error in predicting the final run-out distance is substantial,potentially reaching a 150%improvement compared to predictions made under the dilative and compressive Coriolis conditions.Therefore,the deflective Coriolis condition is advised when the final run-out distance of the granular flow is the main concern.To mitigate the impact of Coriolis acceleration,a greater initial height of the granular column is recommended,with a height/width ratio exceeding 1,as the basal friction of the granular material plays a crucial role in mitigating the deflective Coriolis effect.For more transverse-uniform flow properties,the width of the granular column should be as large as possible.展开更多
In a Nature Physics report published in late September 2024[1],a team of scientists and engineers at Sandia National Laboratories(Albuquerque,NM,USA)described the results of a laboratory experiment showing that a nucl...In a Nature Physics report published in late September 2024[1],a team of scientists and engineers at Sandia National Laboratories(Albuquerque,NM,USA)described the results of a laboratory experiment showing that a nuclear blast could create a burst of X-rays powerful enough to change the path of a large asteroid that might one day be on a collision course with Earth.展开更多
In weak field limits,we compute the deflection angle of a gravitational decoupling extended black hole(BH)solution.We obtained the Gaussian optical curvature by examining the null geodesic equations with the help of G...In weak field limits,we compute the deflection angle of a gravitational decoupling extended black hole(BH)solution.We obtained the Gaussian optical curvature by examining the null geodesic equations with the help of Gauss-Bonnet theorem(GBT).We also looked into the deflection angle of light by a black hole in weak field limits with the use of the Gibbons-Werner method.We verify the graphical behavior of the black hole after determining the deflection angle of light.Additionally,in the presence of the plasma medium,we also determine the deflection angle of the light and examine its graphical behavior.Furthermore,we compute the Einstein ring via gravitational decoupling extended black hole solution.We also compute the quasi-periodic oscillations and discuss their graphical behavior.展开更多
基金Funded by National Natural Science Fund of China(No. 50074035)
文摘A new type jet, the oscillating & deflecting jet, is put forward and its oscillating and deflecting characteristics are investigated. The nozzle of the self-oscillating & deflecting water jet consists of an upstream nozzle, a downstream nozzle, an oscillating chamber and two switches. It is experimentally shown that the deflective angle may reach 9.53 degree. The generated pressure fluctuation is very regular and the jet can efficiently increase the ability for breaking and cutting by eliminating the water cushion effect associated with a continuous jet.
基金This work was supported by the National Natural Science Foundation of China(No.11922504).
文摘A 2856-MHz,π-mode,seven-cell standingwave deflecting cavity was designed and fabricated for bunch length measurement in Tsinghua Thomson scattering X-ray source(TTX)facility.This cavity was installed in the TTX and provided a deflecting voltage of 4.2 MV with an input power of 2.5 MW.Bunch length diagnoses of electron beams with energies up to 39 MeV have been performed.In this article,the RF design of the cavity using HFSS,fabrication,and RF test processes are reviewed.High-power operation with accelerated beams and calibration of the deflecting voltage are also presented.
文摘There are more than one hundred pulse power supplies in the project of HIMM (High Ion Medical Machine).The control protocol of them is unified. But the HVPS (high voltage power supply) for deflecting plate of the beam extracted system is different.The control of HVPS includes the current settings, the status display and the HV turn on/off.
基金National Natural Science Foundation of China (10775080)
文摘RF deflecting cavity can be used for bunch length measurement and is designed to diagnose the beam produced by the photocathode electron gun which was built at Tsinghua University for the Thomson scattering experiment. Detailed discussion and calculation for measuring the 3.5 MeV bunch and another with further acceleration to 50 MeV, which is under development, are presented. A standing-wave deflecting cavity working at 2856 MHz is designed and the power feeding system has been planned.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10735050, 10805031, 10875070 and 10925523)the National Basic Research Program of China (Grant No. 2007CB815102)the Tsinghua University Initiative Scientific Research Program
文摘The radiation of high-gain short-wavelength free-electron laser depends on the slice transverse emittance of the electron bunch. This essay introduces the method of slice emittance measurement, and shows the brief setup of this experiment using the solenoid scanning and RF deflecting cavity at Tsinghua University. The preliminary experimental results show that the slice rms emittance of the electron bunch generated by photocathode RF gun has considerable variations along the bunch and is typically less than 0.55 mm mrad for the laser rms radius of 0.4 mm.
基金supported by the National Key Research and Development Program of China(Grant No.2023YFC3009400)the National Natural Science Foundation of China(Grant Nos.42307218 and U2239251).
文摘The current deep learning models for braced excavation cannot predict deformation from the beginning of excavation due to the need for a substantial corpus of sufficient historical data for training purposes.To address this issue,this study proposes a transfer learning model based on a sequence-to-sequence twodimensional(2D)convolutional long short-term memory neural network(S2SCL2D).The model can use the existing data from other adjacent similar excavations to achieve wall deflection prediction once a limited amount of monitoring data from the target excavation has been recorded.In the absence of adjacent excavation data,numerical simulation data from the target project can be employed instead.A weight update strategy is proposed to improve the prediction accuracy by integrating the stochastic gradient masking with an early stopping mechanism.To illustrate the proposed methodology,an excavation project in Hangzhou,China is adopted.The proposed deep transfer learning model,which uses either adjacent excavation data or numerical simulation data as the source domain,shows a significant improvement in performance when compared to the non-transfer learning model.Using the simulation data from the target project even leads to better prediction performance than using the actual monitoring data from other adjacent excavations.The results demonstrate that the proposed model can reasonably predict the deformation with limited data from the target project.
文摘Superconducting deflecting cavities can be used in synchrotron light source to generate subpicosecond X-ray pulses while the impedance of the lower order modes (LOM) and higher order modes (HOM) in the cavity should be kept below an accepted level to avoid beam instability. These modes can be damped by adding waveguide on beam pipe. Detailed simulation of Q in CST Microwave Studio is introduced and experiment results on an aluminum model cavity with damping waveguide are reported to make a comparison.
文摘The beam trajectory in the first deflecting magnet of "Rhodotron" TT200 has been analyzed precisely by both optical and simulation methods. We found discrepancies between these two methods at the order of (10-3) for the slit distance and deflecting radius and at the order of (10-4) for the magnetic flux density. The main goal of the paper is beam focusing, considering the angular and momentum dispersion of the particles for the magnet designed by ANSYS.
文摘Numerical results of three-dimensional separated flow and heat transfer in a rectangular channel with a sudden expansion are presented in this paper. Numerical simulations of Navier-Stokes and energy equations are carried out using the finite difference method. The results of three-dimensional calculations are compared with the two-dimensional ones, and effects of the aspect ratio of channel upon the flow are shown. The transition from symmetric to asymmetric flow appears at lower Reynolds number as increasing the aspect ratio. The details of local heat transfer characteristics in two different separated flow regions on two downstream walls are clarified. Two-dimensionality of the flow and heat transfer almost disappears for the aspect ratio considered.
基金supported by National Natural Science Foundation of China(Grant Nos.52275345,52175331,51875300)Support Plan for Outstanding Youth Innovation Team in Universities of Shandong Province,China(Grant No.2021KJ044)Natural Science Foundation of Shandong Province,China(Grant No.ZR2020ZD04).
文摘Electrohydrodynamic(EHD)jet printing is a promising method for high-resolution manufacturing;however,it often suffers from jet deflection owing to the accumulation of residual charges within printed structures.These residual charges lead to jet deflection.This study introduces a novel noncontact electric field-driven(NEFD)jet micro 3D printing technique to address these challenges.By decoupling the high-voltage power supply from both the printing material and substrate,NEFD jet micro 3D printing eliminates the pathway for charge injection into the printing material,reducing residual charges by a factor of five or more compared to EHD jet printing.Our research revealed an inherent attractive force between the material jet and previously deposited material,regardless of the material used.Furthermore,we demonstrate that employing a pre-defined allowance printing strategy during fabrication reduces the standard deviation of actual fiber spacing values from 11.4μm to 1.5μm,thereby improving the fiber spacing consistency.This enhanced control enabled the successful fabrication of line patterns with 20±1μm fiber diameters and 61.1±1.9μm fiber spacing,demonstrating the feasibility of NEFD jet micro 3D printing.This technique offers a novel solution for mitigating the challenges associated with electric fields and charge accumulation in EHD jet printing,paving the way for enhanced resolution and material compatibility in micro-/nanoscale additive manufacturing.
基金funded by the National Natural Science Foundation of China(Grant Nos.12472390 and 12102292)the special fund for Science and Technology Innovation Teams of Shanxi Province(Grant No.202204051002006)。
文摘The motion characteristics of projectile during oblique penetration into concrete were studied using a three-dimensional meso-scale model.The finite element model validation and parameter chosen were conducted by comparing the experimental data,with computational efficiency enhanced through improved mesh refinement.Penetration simulations involving deformable projectiles at various incident angles analyzed the effects of aggregate volume fraction and particle size on ballistic trajectory and terminal deflection.Sensitivity analysis reveals a strong power-law relationship between aggregate content and the projectile's deflection angle.The increase in aggregate content will enhance the confinement effect,shorten the intrusion distance of the projectile,and lead to a decrease in the deflection angle of the projectile.The effect of aggregate particle size on the projectile deflection angle follows a Gaussian distribution.The maximum deflection angle occurs when the aggregate particle size is between 2.7 and 3.1 times the projectile diameter.An increase in particle size reduces the number of aggregate-mortar interfaces at the same aggregate volume fraction,leading to an enlargement of the damage zone in concrete,a decrease in the number of cracks,and an increase in crack length.These findings enhance the understanding of concrete penetration mechanisms and offers valuable insights for engineering structure protection.
文摘Glue-laminated timber(GLT)is an engineered wood product widely used in mass timber construction for its strong structural and fire-resistant properties.However,the fire performance of GLT varies significantly due to the natural and uncertain phenomena(moisture,exposure time,isotropic,homogenous properties,etc.)of fire and timber.This makes it difficult to predict the fire behaviour of the GLT structural elements.To ensure building safety,it is crucial to assess GLT’s fire behaviour and post-fire structural integrity during the design stages.This study conducted the experimental tests of GLT beams(280 mm×560 mm)without loading(1.4 m)and under a four-point bending load(5.4 m).Tests identified thermal behaviour and charring rates of GLT beam.Then,the residual stiffness of the GLT beam was calculated,and the charring rates of the beams were compared with Australian and European standards.Reliability analysis was conducted for beams for a fire exposure of 120 min,considering the charring rates observed through the analysis and simulating the fire insulations.Results show that the charring rate of GLT made with spruce pine timber varied between 0.43 and 0.81 mm/min,with a mean rate of 0.7 mm/min,aligning with both Australian and European standards.However,considering timber density and moisture content,the charring rates in Australian standards were conservative.The study also found that structural capacity significantly degrades under fire,with a 22%reduction in flexural stiffness after 120 min of exposure.Additionally,GLT beams can safely function for 30 min under 75%of their design moment capacity and for 60 min under 50%capacity.
基金supported by the National Natural Science Foundation of China(No.12002102)。
文摘Cold-flow experiments on planar Expansion Deflection(ED)nozzle flows are conducted under a simulated startup-shutdown process of rocket motors.The purpose is to investigate the flow and performance characteristics in ED nozzles,capture the behavior of shock flapping,and explore asymmetric flow dynamics utilizing a symmetric nozzle.A total pressure condition,characterized by rapid rise followed by a slow fall,is employed to simulate the continuous startup and shutdown processes.The schlieren imaging technique and high-frequency pressure transducers are employed to obtain the flow information.The experimental results indicate that the flow characteristics differ between the startup and shutdown processes with a hysteresis observed in the nozzle wake mode transition.During the startup process,the shock waves are pushed outward of the nozzle,while during the shutdown process,the flow propagates inward dominated by Mach stems.Counterintuitive results are demonstrated,namely,the mode transition is not the cause of the sudden thrust decrease,and the moment of maximum thrust does not coincide with the moment of maximum total pressure.During the operation of the nozzle,two stages of shock wave flapping occur,accompanied by significant wall pressure oscillations.These oscillation frequencies are demonstrated to be related to the inherent acoustic frequencies of the test chamber.An improved pressure ratio method is proposed to predict the position of the shock oscillation separation point.The prediction results revealed the shock behavior during the flapping process.
基金The authors are grateful to Weifang Science and Technology Development Plan Project(2023ZJ1166)for supporting this work.
文摘Solidification structure of casting strands significantly impacts the subsequent processing and service properties of the steel products,which correlates closely with the melt flow during the solidification process.Several abnormal solidification phenomena and segregation characteristics observed in slab casting are elucidated by referencing to their related flow patterns of molten steel calculated by a multi-field coupling model for actual casting conditions.Eventually,the effect of forced convection on the solidification structure was discussed.The results show that the forced convection generated by electromagnetic stirring and/or nozzle jet will remove the solute-enriched molten steel between the dendrite in front of the solidifying shell,and change solute distribution at the interface of dendrite tips,leading to the white bands and dendrite deflection.In the white band region,a dense dendrite structure without dendrite segregation appears.Moreover,forced convection results in a higher growth rate on the upstream side than the backflow side of the dendrite tip,promoting the columnar crystal deflection.In addition,dendrite fragmentation upon the forced convection during solidification will increase the equiaxed crystal ratio of the as-cast slab and the number of the spot-like semi-macrosegregation.The carbon extreme range decreased with the change in electromagnetic stirring process,indicating a significant improvement in the composition uniformity of the slab casting.It is suggested that the final quality of rolled products could be improved from the very beginning of casting and solidification through regulating the as-cast solidification structure.
基金supported by National Natural Science Foundation of China(Nos.12175322 and 12305223)the National Natural Science Foundation of Guangdong Province(No.2023A1515010762)。
文摘In this work,the effects of transverse boundary conditions,specifically the bias voltage on the transverse wall and the gap width,on the electron beam-generated plasmas(EBPs)confined in a narrow gap,are investigated using the particle-in-cell/Monte Carlo collision(PIC/MCC)simulations.Simulation results reveal that the application of bias voltage causes beam deflections,leading to the formation of band structures in the beam electron velocity space.Three branches of electrostatic waves,including electron beam mode,Langmuir wave,and electron acoustic mode,are identified.Increasing the bias voltage and reducing gap width intensify beam deflections,resulting in the suppression of waves.Both wave excitation and beam deflection significantly modify beam electron transport,leading to the plasma non-uniformity.These findings enhance the understanding of beam transport and plasma behavior in discharges confined in a narrow gap.
基金supported by the National Natural Science Foundation of China(Grant Nos.42120104008 and 42307214)the Postdoctoral Fellowship Program of CPSF(Grant No.GZB20230620).
文摘Coriolis effects,encompassing the dilative,compressive,and deflective manifestations,constitute pivotal considerations in the centrifugal modelling of high-speed granular run-out processes.Notably,under the deflective Coriolis condition,the velocity component parallel to the rotational axis exerts no influence on the magnitude of Coriolis acceleration.This circumstance implies a potential mitigation of the Coriolis force's deflective impact.Regrettably,extant investigations predominantly emphasize the dilative and compressive Coriolis effects,largely neglecting the pragmatic import of the deflective Coriolis condition.In pursuit of this gap,a series of discrete element method(DEM)simulations have been conducted to scrutinize the feasibility of centrifugal modelling for dry granular run-out processes under deflective Coriolis conditions.The findings concerning the deflective Coriolis effect reveal a consistent rise in the run-out distance by 2%–16%,a modest increase in bulk flow velocity of under 4%,and a slight elevation in average flow depth by no more than 25%.These alterations display smaller dependence on the specific testing conditions due to the granular flow undergoing dual deflections in opposing directions.This underscores the significance and utility of the deflective Coriolis condition.Notably,the anticipated reduction in error in predicting the final run-out distance is substantial,potentially reaching a 150%improvement compared to predictions made under the dilative and compressive Coriolis conditions.Therefore,the deflective Coriolis condition is advised when the final run-out distance of the granular flow is the main concern.To mitigate the impact of Coriolis acceleration,a greater initial height of the granular column is recommended,with a height/width ratio exceeding 1,as the basal friction of the granular material plays a crucial role in mitigating the deflective Coriolis effect.For more transverse-uniform flow properties,the width of the granular column should be as large as possible.
文摘In a Nature Physics report published in late September 2024[1],a team of scientists and engineers at Sandia National Laboratories(Albuquerque,NM,USA)described the results of a laboratory experiment showing that a nuclear blast could create a burst of X-rays powerful enough to change the path of a large asteroid that might one day be on a collision course with Earth.
基金funded by the National Natural Science Foundation of China under Grant No.11975145。
文摘In weak field limits,we compute the deflection angle of a gravitational decoupling extended black hole(BH)solution.We obtained the Gaussian optical curvature by examining the null geodesic equations with the help of Gauss-Bonnet theorem(GBT).We also looked into the deflection angle of light by a black hole in weak field limits with the use of the Gibbons-Werner method.We verify the graphical behavior of the black hole after determining the deflection angle of light.Additionally,in the presence of the plasma medium,we also determine the deflection angle of the light and examine its graphical behavior.Furthermore,we compute the Einstein ring via gravitational decoupling extended black hole solution.We also compute the quasi-periodic oscillations and discuss their graphical behavior.