A method combining theoretical analysis with experiment is adopted and the flowing process of Ti-48A1-2Cr-2Nb alloy melt poured in a permanent mould during the centrifugal casting process has been analyzed. A mathemat...A method combining theoretical analysis with experiment is adopted and the flowing process of Ti-48A1-2Cr-2Nb alloy melt poured in a permanent mould during the centrifugal casting process has been analyzed. A mathematical model of the filling process is established and the forming mechanism of internal gaseous defect is summarized. The results of calculation show that the melt fills the mould with varying cross-section area and inclined angle. The filling speed of the cross-section is a function of filling time. The cross-section area is directly proportional to the filling speed and the inclined angle is inversely proportional to the filling speed at a given rotating speed of the platform. Both of them changes more obvious near the mould entrance. The gaseous defect can be formed in several ways and the centrifugal field has an important influence on the formation of the defect. In addition, the filling process in centrifugal field has been verified by wax experiments and the theoretical analysis are consistent with experimental results.展开更多
Although ionic liquids(ILs)have been widely employed to heal the defects in perovskite solar cells(PSCs),the corresponding defect passivation mechanisms are not thoroughly understood up to now.Herein,we first reveal a...Although ionic liquids(ILs)have been widely employed to heal the defects in perovskite solar cells(PSCs),the corresponding defect passivation mechanisms are not thoroughly understood up to now.Herein,we first reveal an abnormal buried interface anion defect passivation mechanism depending on cationinduced steric hindrance.The IL molecules containing the same anion([BF4]^(-))and different sizes of imidazolium cations induced by substituent size are used to manipulate buried interface.It was revealed what passivated interfacial defects is mainly anions instead of cations.Theoretical and experimental results demonstrate that the large-sized cations can weaken the ionic bond strength between anions and cations,and facilitate the interaction between anions and SnO2as well as perovskites,which is conducive to interfacial defect passivation and ameliorating interfacial contact.It can be concluded that interfacial chemical interaction strength and defect passivation effect are positively correlated with the size of cations.The discovery breaks conventional thinking that large-sized modification molecules would weaken their chemical interaction with perovskite.Compared with the control device(21.54%),the device based on 1,3-Bis(1-adamantyl)-imidazolium tetrafluoroborate(BAIMBF4)with maximum size cations achieves a significantly enhanced efficiency of 23.61%along with much increased moisture,thermal and light stabilities.展开更多
S-doped and Al-doped GaSe crystals are promising materials for their applications in nonlinear frequency conversion devices. The optical and defect properties of pure, S-doped, and Al-doped GaSe crystals were studied ...S-doped and Al-doped GaSe crystals are promising materials for their applications in nonlinear frequency conversion devices. The optical and defect properties of pure, S-doped, and Al-doped GaSe crystals were studied by using photoluminescence(PL) and Fourier transform infrared spectroscopy(FT-IR). The micro-topography of(0001) face of these samples was observed by using scanning electron microscope(SEM) to investigate the influence of the doped defects on the intralayer and interlayer chemical bondings. The doped S or Al atoms form the SSe^0 or AlGa^+1) substitutional defects in the layer GaSe structure, and the positive center of AlGa-^+1 could induce defect complexes. The incorporations of S and Al atoms can change the optical and mechanical properties of the GaSe crystal by influencing the chemical bonding of the layer structure. The study results may provide guidance for the crystal growth and further applications of S-doped and Al-doped GaSe crystals.展开更多
We describe here a one-step method for the synthesis of Au/TiO2 nanosphere materials,which were formed by layered deposition of multiple anatase TiO2 nanosheets.The Au nanoparticles were stabilized by structural defec...We describe here a one-step method for the synthesis of Au/TiO2 nanosphere materials,which were formed by layered deposition of multiple anatase TiO2 nanosheets.The Au nanoparticles were stabilized by structural defects in each TiO2 nanosheet,including crystal steps and edges,thereby fixing the Au-TiO2 perimeter interface.Reactant transfer occurred along the gaps between these TiO2 nanosheet layers and in contact with catalytically active sites at the Au-TiO2 interface.The doped Au induced the formation of oxygen vacancies in the Au-TiO2 interface.Such vacancies are essential for generating active oxygen species(-*O^-) on the TiO2 surface and Ti^3+ ions in bulk TiO2.These ions can then form Ti^3+-O^--Ti^4+species,which are known to enhance the catalytic activity of formaldehyde(HCHO) oxidation.These studies on structural and oxygen vacancy defects in Au/TiO2 samples provide a theoretical foundation for the catalytic mechanism of HCHO oxidation on oxide-supported Au materials.展开更多
To improve the osteogenic property of bone repairing materials and to accelerate bone healing are major tasks in bone biomaterials research. The objective of this study was to investigate if the mechanical force could...To improve the osteogenic property of bone repairing materials and to accelerate bone healing are major tasks in bone biomaterials research. The objective of this study was to investigate if the mechanical force could be used to accelerate bone formation in a bony defect in vivo. The calcium sulfate cement was implanted into the left distal femoral epiphyses surgically in 16 rats. The half of rats were subjected to external mechanical force via treadmill exercise, the exercise started at day 7 postoperatively for 30 consecutive days and at a constant speed 8 m·min-1 for 45 min·day-1, while the rest served as a control. The rats were scanned four times longitudinally after surgery using microcomputed tomography and newly formed bone was evaluated. After sacrificing, the femurs had biomechanical test of three-point bending and histological analysis. The results showed that bone healing under mechanical force were better than the control with residual defect areas of 0.64±0.19 mm2 and 1.78±0.39 mm2(P〈0.001), and the ultimate loads to failure under mechanical force were 69.56±4.74 N, stronger than the control with ultimate loads to failure of 59.17±7.48 N(P=0.039). This suggests that the mechanical force might be used to improve new bone formation and potentially offer a clinical strategy to accelerate bone healing.展开更多
Low temperature(77 K)photoluminescence measurements have been performed on different GaAs substrates to evaluate the GaAs crystal quality.Several defect-related luminescence peaks have been observed,including 1.452 eV...Low temperature(77 K)photoluminescence measurements have been performed on different GaAs substrates to evaluate the GaAs crystal quality.Several defect-related luminescence peaks have been observed,including 1.452 eV,1.476 eV,1.326 eV peaks deriving from 78 meV GaAs antisite defects,and 1.372 eV,1.289 eV peaks resulting from As vacancy related defects.Changes in photoluminescence emission intensity and emission energy as a function of temperature and excitation power lead to the identification of the defect states.The luminescence mechanisms of the defect states were studied by photoluminescence spectroscopy and the growth quality of GaAs crystal was evaluated.展开更多
In recent years,the issue of defects in the buffer layers of high-voltage cables has garnered significant attention due to their widespread occurrence and the substantial potential damages they pose.Although progress ...In recent years,the issue of defects in the buffer layers of high-voltage cables has garnered significant attention due to their widespread occurrence and the substantial potential damages they pose.Although progress has been made in understanding the mechanisms behind these defects and in developing detection methods,effective repair solutions remain limited.This study addresses this challenge by proposing a novel repair material:a two-component,additive liquid silicone rubber-based compound that utilises vinyl silicone oil as its base.The electrical,thermal,and mechanical properties of the cured silicone-based repair fluid are thoroughly analysed.To evaluate its effectiveness,an experimental platform was constructed using a 17-m-long,110 kV retired cable with known buffer layer defects.A specialised injection process was developed to facilitate the application of the repair fluid.The thermal characteristics,buffer layer voltage distribution,and partial discharge behaviour of the defective cable were analysed both before and after the repair.The results indicate that following the repair,the cable's heat dissipation capacity under full load increased by 6.25%.Additionally,the buffer layer voltage at the rated voltage(U0)decreased from 1.97 to 0.34 V,representing an 82.74%reduction.Notably,no partial discharge signals exceeding background noise were detected postrepair.This study demonstrates the effectiveness of the addition-cure liquid silicone rubber-based semi-conductive material in repairing cable buffer layer defects and provides valuable experimental support for its practical application in engineering.展开更多
The g-C_3N_4 with different structures was prepared by heat treatment using urea(CN-U) and thiourea(CN-T) as precursors under the same conditions. The microstructure and optical properties of the photocatalyst were an...The g-C_3N_4 with different structures was prepared by heat treatment using urea(CN-U) and thiourea(CN-T) as precursors under the same conditions. The microstructure and optical properties of the photocatalyst were analyzed with advanced tools. The results showed that the CN-U has a porous structure, a high specific surface area and a wide band gap in comparison with CN-T. The in situ FT-IR technique was used to monitor the adsorption and reaction process of visible photocatalytic NO oxidation on g-C_3N_4. The corresponding reaction mechanism was proposed based on the results of reaction intermediate observation and electron paramagnetic resonance(EPR) radical scavenging. It was revealed that(1) the presence of defective sites favored the adsorption of gas molecules and electronically compensated it leading to promoted formation of the final products;(2) the high separation efficiency of photogenerated electron-hole pairs enhanced the production of radicals during the photocatalytic reaction;(3) the hydroxyl radicals(-OH) are not selective for the decomposition of pollutants, which are favorable to the complete oxidation of the reaction intermediates. The above three aspects are the main reasons for the CN-U possessing the efficient visible light photocatalytic activity. The present work could provide new insights and methods for understanding the mechanism of photocatalysis.展开更多
The importance of oxygen non-stoichiometry induced expansion, known as chemical expansion, for the mechanical properties of solid oxide fuel cells (SOFCs) is discussed. The methods used to measure chemical expansion...The importance of oxygen non-stoichiometry induced expansion, known as chemical expansion, for the mechanical properties of solid oxide fuel cells (SOFCs) is discussed. The methods used to measure chemical expansion and the defects responsible for its existence are introduced. Recent work demonstrating the origin of chemical expansion in fluorite structured oxides for SOFCs is presented. Models used to predict stress induced by chemical expansion in SOFCs, highlighting the necessity of considering electro-chemo-mechanical coupling relationships, are discussed.展开更多
Heat transport is a key energetic process in materials and devices. The reduced sample size, low dimension of the problem and the rich spectrum of material imperfections introduce fruitful phenomena at nanoscale. In t...Heat transport is a key energetic process in materials and devices. The reduced sample size, low dimension of the problem and the rich spectrum of material imperfections introduce fruitful phenomena at nanoscale. In this review, we summarize recent progresses in the understanding of heat transport process in low-dimensional materials, with focus on the roles of defects, disorder, interfaces, and the quantum- mechanical effect. New physics uncovered from computational simulations, experimental studies, and predictable models will be reviewed, followed by a perspective on open challenges.展开更多
High entropy bulk metallic glasses show promising mechanical and physical properties.Dynamic mechanical properties of Ti_(16.7)Zr_(16.7)Hf_(16.7)Cu_(16.7)Ni_(16.7)Be_(16.7)high entropy bulk metallic glass ...High entropy bulk metallic glasses show promising mechanical and physical properties.Dynamic mechanical properties of Ti_(16.7)Zr_(16.7)Hf_(16.7)Cu_(16.7)Ni_(16.7)Be_(16.7)high entropy bulk metallic glass were investigated by mechanical spectroscopy(or called dynamic mechanical analysis).The main(α)relaxation was observed in the framework of the loss modulus G″,which is related to the dynamic glass transition behaviour for the glassy materials.From physical model point of view,dynamic mechanical properties of the Ti_(16.7)Zr_(16.7)Hf_(16.7)Cu_(16.7)Ni_(16.7)Be_(16.7)high entropy bulk metallic glass show good agreement compared with the quasi-point defects theory.展开更多
Mechanical defects,in gas-insulated switchgear(GIS)equipment,have weak response characteristics,leading to significant difficulties in the classification of defects.Therefore,this paper proposes a novel mechanical def...Mechanical defects,in gas-insulated switchgear(GIS)equipment,have weak response characteristics,leading to significant difficulties in the classification of defects.Therefore,this paper proposes a novel mechanical defect feature extraction and classification method that combines independent intrinsic mode function(IIMF)analysis and an improved multikernel mapping fast multi-classification relevance vector machine(MKF-mRVM).Enlightened by the differences in the GIS operating vibration mode,the IIMF series were first obtained based on regenerated phase-shifted sinusoid-assisted empirical mode decomposition(RPSEMD)and modal judgments.Then singular value decomposition and time-frequency conversions were performed to construct combined feature matrices.Finally,multikernel mapping and domain sampling were introduced to improve the calculation speed and recognition accuracy of the mRVM,which was more suitable for on-line monitoring.Results show that the proposed RPSEMD-MKF-mRVM model achieves a faster training speed(14.23 s)and higher accuracy(98.21%)than other algorithms,and it can adapt to variable loads.展开更多
文摘A method combining theoretical analysis with experiment is adopted and the flowing process of Ti-48A1-2Cr-2Nb alloy melt poured in a permanent mould during the centrifugal casting process has been analyzed. A mathematical model of the filling process is established and the forming mechanism of internal gaseous defect is summarized. The results of calculation show that the melt fills the mould with varying cross-section area and inclined angle. The filling speed of the cross-section is a function of filling time. The cross-section area is directly proportional to the filling speed and the inclined angle is inversely proportional to the filling speed at a given rotating speed of the platform. Both of them changes more obvious near the mould entrance. The gaseous defect can be formed in several ways and the centrifugal field has an important influence on the formation of the defect. In addition, the filling process in centrifugal field has been verified by wax experiments and the theoretical analysis are consistent with experimental results.
基金financially supported by the Support Plan for Overseas Students to Return to China for Entrepreneurship and Innovation(cx2020003)the Fundamental Research Funds for the Central Universities(2020CDJ-LHZZ-074 and 2021CDJQY-022)Natural Science Foundation of Chongqing(cstc2020jcyjmsxmX0629)。
文摘Although ionic liquids(ILs)have been widely employed to heal the defects in perovskite solar cells(PSCs),the corresponding defect passivation mechanisms are not thoroughly understood up to now.Herein,we first reveal an abnormal buried interface anion defect passivation mechanism depending on cationinduced steric hindrance.The IL molecules containing the same anion([BF4]^(-))and different sizes of imidazolium cations induced by substituent size are used to manipulate buried interface.It was revealed what passivated interfacial defects is mainly anions instead of cations.Theoretical and experimental results demonstrate that the large-sized cations can weaken the ionic bond strength between anions and cations,and facilitate the interaction between anions and SnO2as well as perovskites,which is conducive to interfacial defect passivation and ameliorating interfacial contact.It can be concluded that interfacial chemical interaction strength and defect passivation effect are positively correlated with the size of cations.The discovery breaks conventional thinking that large-sized modification molecules would weaken their chemical interaction with perovskite.Compared with the control device(21.54%),the device based on 1,3-Bis(1-adamantyl)-imidazolium tetrafluoroborate(BAIMBF4)with maximum size cations achieves a significantly enhanced efficiency of 23.61%along with much increased moisture,thermal and light stabilities.
基金Project supported by Knowledge Innovation Program of the Chinese Academy of Sciences(Grant No.CXJJ-16M128)
文摘S-doped and Al-doped GaSe crystals are promising materials for their applications in nonlinear frequency conversion devices. The optical and defect properties of pure, S-doped, and Al-doped GaSe crystals were studied by using photoluminescence(PL) and Fourier transform infrared spectroscopy(FT-IR). The micro-topography of(0001) face of these samples was observed by using scanning electron microscope(SEM) to investigate the influence of the doped defects on the intralayer and interlayer chemical bondings. The doped S or Al atoms form the SSe^0 or AlGa^+1) substitutional defects in the layer GaSe structure, and the positive center of AlGa-^+1 could induce defect complexes. The incorporations of S and Al atoms can change the optical and mechanical properties of the GaSe crystal by influencing the chemical bonding of the layer structure. The study results may provide guidance for the crystal growth and further applications of S-doped and Al-doped GaSe crystals.
基金supported by the National Natural Science Foundation of China (21107124, 21337003)the Youth Innovation Promotion Association (2011037)Science Promotion Program of Research Center for Eco-Environmental Sciences, Chinese Academic Sciences (No. 121311RCEES-QN-20130046F)
文摘We describe here a one-step method for the synthesis of Au/TiO2 nanosphere materials,which were formed by layered deposition of multiple anatase TiO2 nanosheets.The Au nanoparticles were stabilized by structural defects in each TiO2 nanosheet,including crystal steps and edges,thereby fixing the Au-TiO2 perimeter interface.Reactant transfer occurred along the gaps between these TiO2 nanosheet layers and in contact with catalytically active sites at the Au-TiO2 interface.The doped Au induced the formation of oxygen vacancies in the Au-TiO2 interface.Such vacancies are essential for generating active oxygen species(-*O^-) on the TiO2 surface and Ti^3+ ions in bulk TiO2.These ions can then form Ti^3+-O^--Ti^4+species,which are known to enhance the catalytic activity of formaldehyde(HCHO) oxidation.These studies on structural and oxygen vacancy defects in Au/TiO2 samples provide a theoretical foundation for the catalytic mechanism of HCHO oxidation on oxide-supported Au materials.
基金supported in part by the Natural Science Foundation of China under the grants of 11072165,31270995 and 81320108018
文摘To improve the osteogenic property of bone repairing materials and to accelerate bone healing are major tasks in bone biomaterials research. The objective of this study was to investigate if the mechanical force could be used to accelerate bone formation in a bony defect in vivo. The calcium sulfate cement was implanted into the left distal femoral epiphyses surgically in 16 rats. The half of rats were subjected to external mechanical force via treadmill exercise, the exercise started at day 7 postoperatively for 30 consecutive days and at a constant speed 8 m·min-1 for 45 min·day-1, while the rest served as a control. The rats were scanned four times longitudinally after surgery using microcomputed tomography and newly formed bone was evaluated. After sacrificing, the femurs had biomechanical test of three-point bending and histological analysis. The results showed that bone healing under mechanical force were better than the control with residual defect areas of 0.64±0.19 mm2 and 1.78±0.39 mm2(P〈0.001), and the ultimate loads to failure under mechanical force were 69.56±4.74 N, stronger than the control with ultimate loads to failure of 59.17±7.48 N(P=0.039). This suggests that the mechanical force might be used to improve new bone formation and potentially offer a clinical strategy to accelerate bone healing.
基金Project supported by the National Natural Science Foundation of China(Grant No.21972103)the National Key Research and Development Program of China(Grant No.2016YFB040183)Research and Development Program of Shanxi Province,China(Grant No.201703D111026)
文摘Low temperature(77 K)photoluminescence measurements have been performed on different GaAs substrates to evaluate the GaAs crystal quality.Several defect-related luminescence peaks have been observed,including 1.452 eV,1.476 eV,1.326 eV peaks deriving from 78 meV GaAs antisite defects,and 1.372 eV,1.289 eV peaks resulting from As vacancy related defects.Changes in photoluminescence emission intensity and emission energy as a function of temperature and excitation power lead to the identification of the defect states.The luminescence mechanisms of the defect states were studied by photoluminescence spectroscopy and the growth quality of GaAs crystal was evaluated.
基金Guangdong Key Laboratory of Efficient and Clean Energy Utilization,South China University of Technology,Grant/Award Number:2008A060301002Basic and Applied Basic Research Foundation of Guangdong Province,Grant/Award Number:2022A1515012523。
文摘In recent years,the issue of defects in the buffer layers of high-voltage cables has garnered significant attention due to their widespread occurrence and the substantial potential damages they pose.Although progress has been made in understanding the mechanisms behind these defects and in developing detection methods,effective repair solutions remain limited.This study addresses this challenge by proposing a novel repair material:a two-component,additive liquid silicone rubber-based compound that utilises vinyl silicone oil as its base.The electrical,thermal,and mechanical properties of the cured silicone-based repair fluid are thoroughly analysed.To evaluate its effectiveness,an experimental platform was constructed using a 17-m-long,110 kV retired cable with known buffer layer defects.A specialised injection process was developed to facilitate the application of the repair fluid.The thermal characteristics,buffer layer voltage distribution,and partial discharge behaviour of the defective cable were analysed both before and after the repair.The results indicate that following the repair,the cable's heat dissipation capacity under full load increased by 6.25%.Additionally,the buffer layer voltage at the rated voltage(U0)decreased from 1.97 to 0.34 V,representing an 82.74%reduction.Notably,no partial discharge signals exceeding background noise were detected postrepair.This study demonstrates the effectiveness of the addition-cure liquid silicone rubber-based semi-conductive material in repairing cable buffer layer defects and provides valuable experimental support for its practical application in engineering.
基金supported by the National Key Research and Development Plan (2016YFC02047)the National Natural Science Foundation of China (51478070, 21777011 and 21501016)+1 种基金the Innovative Research Team of Chongqing (CXTDG201602014)the Natural Science Foundation of Chongqing (cstc2017jcyj BX0052, cstc2016jcyj A0481)
文摘The g-C_3N_4 with different structures was prepared by heat treatment using urea(CN-U) and thiourea(CN-T) as precursors under the same conditions. The microstructure and optical properties of the photocatalyst were analyzed with advanced tools. The results showed that the CN-U has a porous structure, a high specific surface area and a wide band gap in comparison with CN-T. The in situ FT-IR technique was used to monitor the adsorption and reaction process of visible photocatalytic NO oxidation on g-C_3N_4. The corresponding reaction mechanism was proposed based on the results of reaction intermediate observation and electron paramagnetic resonance(EPR) radical scavenging. It was revealed that(1) the presence of defective sites favored the adsorption of gas molecules and electronically compensated it leading to promoted formation of the final products;(2) the high separation efficiency of photogenerated electron-hole pairs enhanced the production of radicals during the photocatalytic reaction;(3) the hydroxyl radicals(-OH) are not selective for the decomposition of pollutants, which are favorable to the complete oxidation of the reaction intermediates. The above three aspects are the main reasons for the CN-U possessing the efficient visible light photocatalytic activity. The present work could provide new insights and methods for understanding the mechanism of photocatalysis.
基金support from I2CNER, supported by the World Premier International Research Center Initiative (WPI), MEXT, Japan
文摘The importance of oxygen non-stoichiometry induced expansion, known as chemical expansion, for the mechanical properties of solid oxide fuel cells (SOFCs) is discussed. The methods used to measure chemical expansion and the defects responsible for its existence are introduced. Recent work demonstrating the origin of chemical expansion in fluorite structured oxides for SOFCs is presented. Models used to predict stress induced by chemical expansion in SOFCs, highlighting the necessity of considering electro-chemo-mechanical coupling relationships, are discussed.
基金supported by the National Natural Science Foundation of China(11222217)the State Key Laboratory of Mechanics and Control of Mechanical Structures,Nanjing University of Aeronautics and Astronautics(MCMS-0414G01)
文摘Heat transport is a key energetic process in materials and devices. The reduced sample size, low dimension of the problem and the rich spectrum of material imperfections introduce fruitful phenomena at nanoscale. In this review, we summarize recent progresses in the understanding of heat transport process in low-dimensional materials, with focus on the roles of defects, disorder, interfaces, and the quantum- mechanical effect. New physics uncovered from computational simulations, experimental studies, and predictable models will be reviewed, followed by a perspective on open challenges.
基金Item Sponsored by National Natural Science Foundation of China(51401192,51301136)Fundamental Research Funds for the Central Universities of China(3102015ZY027,3102015BJ(Ⅱ)JGZ019)+2 种基金Aerospace Technology Foundation of China(N2014KC0068,2015ZF53072)Space Technology Foundation of China(N2014KC0073)Project of State Key Laboratory of Materials Processing and Die & Mould Technology,Huazhong University of Science and Technology(P2016-12)
文摘High entropy bulk metallic glasses show promising mechanical and physical properties.Dynamic mechanical properties of Ti_(16.7)Zr_(16.7)Hf_(16.7)Cu_(16.7)Ni_(16.7)Be_(16.7)high entropy bulk metallic glass were investigated by mechanical spectroscopy(or called dynamic mechanical analysis).The main(α)relaxation was observed in the framework of the loss modulus G″,which is related to the dynamic glass transition behaviour for the glassy materials.From physical model point of view,dynamic mechanical properties of the Ti_(16.7)Zr_(16.7)Hf_(16.7)Cu_(16.7)Ni_(16.7)Be_(16.7)high entropy bulk metallic glass show good agreement compared with the quasi-point defects theory.
基金supported by the National Natural Science Foundation Innovation Research Group Project (51321063)。
文摘Mechanical defects,in gas-insulated switchgear(GIS)equipment,have weak response characteristics,leading to significant difficulties in the classification of defects.Therefore,this paper proposes a novel mechanical defect feature extraction and classification method that combines independent intrinsic mode function(IIMF)analysis and an improved multikernel mapping fast multi-classification relevance vector machine(MKF-mRVM).Enlightened by the differences in the GIS operating vibration mode,the IIMF series were first obtained based on regenerated phase-shifted sinusoid-assisted empirical mode decomposition(RPSEMD)and modal judgments.Then singular value decomposition and time-frequency conversions were performed to construct combined feature matrices.Finally,multikernel mapping and domain sampling were introduced to improve the calculation speed and recognition accuracy of the mRVM,which was more suitable for on-line monitoring.Results show that the proposed RPSEMD-MKF-mRVM model achieves a faster training speed(14.23 s)and higher accuracy(98.21%)than other algorithms,and it can adapt to variable loads.