Design of a miniaturized lumped-element bandpass filter in multilayer liquid crystal polymer technology is proposed.Fractional bandwidth of the bandpass filter is 20%,operating at a center frequency of 500 MHz.In orde...Design of a miniaturized lumped-element bandpass filter in multilayer liquid crystal polymer technology is proposed.Fractional bandwidth of the bandpass filter is 20%,operating at a center frequency of 500 MHz.In order to further reduce the size and improve the performance of the proposed filter,defected ground structure(DGS)has been implemented in the filter.Based on this structure,the volume of the inductor is reduced by 60%eficiently compared with the inductor without DGS,and the Q-factor is increased up to 257%compared with the traditional multilayer spiral inductor.The measured results indicate that the designed filter has a very sharp stopband,an insertion loss of 2.3dB,and a return loss of 18.6dB in the passband.The whole volume of the fabricated filter is 0.032入_(g)×0.05入_(g)×0.00075入_(g),where Ag is the guided wavelength of the center frequency.The proposed filter is easily integrated into radio-frequency/microwave circuitry at a low manufacturing cost,especially wireless communication.展开更多
A compact high-scanning-rate circular-polarized leaky-wave antenna(LWA)based on a meandering substrate integrated waveguide(SIW)with defected ground structures(DGSs)is presented.The meandering-SIW design is employed t...A compact high-scanning-rate circular-polarized leaky-wave antenna(LWA)based on a meandering substrate integrated waveguide(SIW)with defected ground structures(DGSs)is presented.The meandering-SIW design is employed to enhance the beam scanning rate,while circular polarization is achieved by etchingπ-shaped slots on the top plane.To suppress the open stopband at broadside,offset circular DGSs are periodically etched on the ground plane.Their impact on the reflection coefficient and axial ratio is then analyzed through a parametric study.A prototype of the antenna is simulated,fabricated,and measured.Both simulated and measured results indicate a scanning rate of approximately 8.6,with continuous beam scanning from-41°to 59°across the 11.3-12.7 GHz operating band.The antenna maintains an axial ratio below 3 dB within the 11.5-12.3 GHz range.This design shows promise for use in wireless communication systems,particularly in environments with increasingly limited spectrum resources.展开更多
Due to rapid growth in wireless communication technology,higher bandwidth requirement for advance telecommunication systems,capable of operating on two or higher bands with higher channel capacities and minimum distor...Due to rapid growth in wireless communication technology,higher bandwidth requirement for advance telecommunication systems,capable of operating on two or higher bands with higher channel capacities and minimum distortion losses is desired.In this paper,a compact Ultra-Wideband(UWB)V-shaped monopole antenna is presented.UWB response is achieved by modifying the ground plane with Chichen Itzia inspired rectangular staircase shape.The proposed V-shaped is designed by incorporating a rectangle,and an inverted isosceles triangle using FR4 substrate.The size of the antenna is 25 mm×26 mm×1.6 mm.The proposed V-shaped monopole antenna produces bandwidth response of 3 GHz Industrial,Scientific,and Medical(ISM),Worldwide Interoperability for Microwave Access(WiMAX),(IEEE 802.11/HIPERLAN band,5G sub 6 GHz)which with an additional square cut amplified the bandwidth response up to 8 GHz ranging from 3.1 GHz to 10.6 GHz attaining UWB defined by Federal Communications Commission(FCC)with a maximum gain of 3.83 dB.The antenna is designed in Ansys HFSS.Results for key performance parameters of the antenna are presented.The measured results are in good agreement with the simulated results.Due to flat gain,uniform group delay,omni directional radiation pattern characteristics and well-matched impedance,the proposed antenna is suitable for WiMAX,ISM and heterogeneous wireless systems.展开更多
In this paper,a unit cell of a single-negative metamaterial structure loaded with a meander line and defected ground structure(DGS)is investigated as the principle radiating element of an antenna.The unit cell antenna...In this paper,a unit cell of a single-negative metamaterial structure loaded with a meander line and defected ground structure(DGS)is investigated as the principle radiating element of an antenna.The unit cell antenna causes even or odd mode resonances similar to the unit cell structure depending on the orientation of the microstrip feed used to excite the unit cell.However,the orientation which gives low-frequency resonance is considered here.The unit cell antenna is then loaded with a meander line which is parallel to the split bearing side and connects the other two sides orthogonal to the split bearing side.This modified structure excites another mode of resonance at high frequency when a meander line defect is loaded on the metallic ground plane.Specific parameters of the meander line structure,the DGS shape,and the unit cell are optimized to place these two resonances at different frequencies with proper frequency intervals to enhance the bandwidth.Finally,the feed is placed in an offset position for better impedance matching without affecting the bandwidth The compact dimension of the antenna is 0.25λL×0.23λL×0.02λL,whereλL is the free space wavelength with respect to the center frequency of the impedance bandwidth.The proposed antenna is fabricated and measured.Experimental results reveal that the modified design gives monopole like radiation patterns which achieves a fractional operating bandwidth of 26.6%,from 3.26 to 4.26 GHz for|S11|<−10 dB and a pick gain of 1.26 dBi is realized.In addition,the simulated and measured crosspolarization levels are both less than−15 dB in the horizontal plane.展开更多
The filter characteristic of defected ground structure (DGS) is analyzed and the equivalent circuit of C-shaped DGS is extracted. The characteristics of non-periodic and periodic DGS with different dimensions are comp...The filter characteristic of defected ground structure (DGS) is analyzed and the equivalent circuit of C-shaped DGS is extracted. The characteristics of non-periodic and periodic DGS with different dimensions are compared. Then the DGS is simulated and optimized with software, and the circuit board is manufactured and measured.The non-periodic structure is simple in structure and small in size and ripple compared with the periodic structure.Though the stop band of the non-periodic structure is narrow, it can meet the requirement of application. The C-shaped structure with two stop bands can select frequency in a special band.展开更多
Different feeding techniques of microstrip patch antennas with different spiral defected ground structures are presented in this paper. The investigated structures illustrate some merits in designing multi-electromagn...Different feeding techniques of microstrip patch antennas with different spiral defected ground structures are presented in this paper. The investigated structures illustrate some merits in designing multi-electromagnetic band-gap structures by adjusting the capacitance and changing the inductance through varying the width and length of spiral defected ground structure. Then by applying the three different spirals shapes (one, two and four arms) as the ground plane of microstrip patch antenna with different feeding techniques to create multi or ultra wide-band, improve the antenna gain and reduce the antenna size, it is found that the four arms spiral defected ground structure of microstrip patch antenna with offset feed gives good performance, electrical size reduction to about 75% as compared to the original patch size and ultra-wide bandwidth extends from 2 GHz up to 12 GHz with ?8 dB impedance bandwidth.展开更多
A novel defected ground structure (DGS) for the microstrip line is proposed in this paper. The DGS lattice has more defect parameters so that it can provide better performance than the conventional dumbbell-shaped D...A novel defected ground structure (DGS) for the microstrip line is proposed in this paper. The DGS lattice has more defect parameters so that it can provide better performance than the conventional dumbbell-shaped DGS. Selectivity is improved by 97.2% with a sharpness factor of 24.6%. The method is applied to the design of a low-pass filter to confirm validity of the proposed DGS.展开更多
In this paper,the investigation of a novel compact 2×2,2×1,and 1×1 Ultra-Wide Band(UWB)based Multiple-Input Multiple-Output(MIMO)antenna with Defected Ground Structure(DGS)is employed.The proposed Elect...In this paper,the investigation of a novel compact 2×2,2×1,and 1×1 Ultra-Wide Band(UWB)based Multiple-Input Multiple-Output(MIMO)antenna with Defected Ground Structure(DGS)is employed.The proposed Electromagnetic Radiation Structures(ERS)is composed of multiple radiating elements.These MIMO antennas are designed and analyzed with and without DGS.The feeding is introduced by a microstrip-fed line to significantly moderate the radiating structure’s overall size,which is 60×40×1 mm.The high directivity and divergence characteristics are attained by introducing the microstripfed lines perpendicular to each other.And the projected MIMO antenna structures are compared with others by using parameters like Return Loss(RL),Voltage Standing Wave Ratio(VSWR),Radiation Pattern(RP),radiation efficiency,and directivity.The same MIMO set-up is redesigned with DGS,and the resultant parameters are compared.Finally,the Multiple Input and Multiple Output Radiating Structures with and without DGS are compared for result considerations like RL,VSWR,RP,radiation efficiency,and directivity.This projected antenna displays an omnidirectional RP with moderate gain,which is highly recommended for human healthcare applications.By introducing the defected ground structure in bottom layer the lower cut-off frequencies of 2.3,4.5 and 6.0 GHz are achieved with few biological effects on radio propagation in human body communications.The proposed design covers numerous well-known wireless standards,along with dual-function DGS slots,and it can be easily integrated into Wireless Body Area Networks(WBAN)in medical applications.This WBAN links the autonomous nodes that may be situated either in the clothes,on-body or beneath the skin of a person.This system typically advances the complete human body and the inter-connected nodes through a wireless communication channel.展开更多
The paper presents an improved equivalent circuit parameters extraction method for the dumbbell-shaped defected ground structure (DGS). The new extraction parameters equations are obtained in closed-form expressions, ...The paper presents an improved equivalent circuit parameters extraction method for the dumbbell-shaped defected ground structure (DGS). The new extraction parameters equations are obtained in closed-form expressions, which contain S11 and S21. The DGS unit with center frequency of 5 GHz is designed and fabricated on a TLX substrate with thickness of 1 mm and dielectric constant of 2.55. The circuit simulated results are in good agreement with the measured results. This parameters extraction method can be widely used for the design and analysis of DGS .展开更多
采用微波技术测量位移的方法,设计了一种基于开口环谐振器(Split Ring Resonator,SRR)的二维线性位移微波传感器。传感器由定子与动子两部分构成,其中定子由两组不同尺寸的SRR耦合一条传输微带线构成,动子采用单面覆铜的FR-4介质基板制...采用微波技术测量位移的方法,设计了一种基于开口环谐振器(Split Ring Resonator,SRR)的二维线性位移微波传感器。传感器由定子与动子两部分构成,其中定子由两组不同尺寸的SRR耦合一条传输微带线构成,动子采用单面覆铜的FR-4介质基板制成。动子二维移动时两个SRR的谐振频率将发生变化,传输零点也产生对应偏移,从而建立起位移和传输零点的关系。此外通过对SRR加载缺陷地结构,提高了检测灵敏度。经电磁建模和仿真,传感器在1 GHz至3.2 GHz范围内产生两个传输零点,可在x和y方向表征0~6 mm的位移,灵敏度分别为122 MHz/mm和82 MHz/mm。制作并测试了传感器实物,实测与仿真的数据基本吻合,证实了该传感器设计的有效性。展开更多
A compact low-profile dual-band Circularly Polarized(CP)microstrip antenna is proposed for the Bei Dou Navigation Satellite System(BDS).To achieve dual-band functionality,a single-layer multimode design is employed,in...A compact low-profile dual-band Circularly Polarized(CP)microstrip antenna is proposed for the Bei Dou Navigation Satellite System(BDS).To achieve dual-band functionality,a single-layer multimode design is employed,incorporating F-,L-,and T-shaped slots at the corners for CP performance.Additionally,a Defected Ground Structure(DGS)is implemented to further enhance the antenna's efficiency.A detailed parameter analysis is conducted to optimize the antenna's size and performance balance.After optimization,the final dimensions of the antenna are minimized while still meeting the design requirements.The prototype of the optimized antenna is fabricated and tested,demonstrating coverage of frequency bands from 1.182 GHz to 1.217 GHz and 1.547 GHz to 1.569 GHz.The antenna effectively supports dual-band CP for B1I and B2b frequency bands.A performance metric,the Ratio of relative Bandwidth to Volume(RBV),is introduced to evaluate the antenna's efficiency.Compared to similar designs,the proposed antenna offers a smaller size without sacrificing performance,making it well-suited for BDS airborne applications.展开更多
In this paper,a compact defected ground structure loaded ultra high frequency dual-band bandpass flter is designed and implemented based on multilayer liquid crystal polymer technology.This novel filter is simply comp...In this paper,a compact defected ground structure loaded ultra high frequency dual-band bandpass flter is designed and implemented based on multilayer liquid crystal polymer technology.This novel filter is simply composed with several lumped and semi-lumped elements,to create a dual-passband response.In order to enhance the out-of-band rejection,a feedback capacitor C_(z) at the in/out ports of the filter is introduced,and four transmission zeros(TZs)are obtained outside the pass band.Furthermore,the position of TZs can be determined by adjusting the value of C_(z).The schematic and design process of the filter are given in this paper.The center frequencies of dual-band bandpass filter are 0.9 GHz and 2.45 GHz,and the 3-dB bandwidths are 13.7%and 14.3%,respectively.The circuit size is 11 mm×9.5 mm×0.193 mm.The proposed filter has been fabricated and tested,and the measured result is in good agreement with the simulation result.展开更多
Separated transmit and receive antennas are employed to improve transmit-receive isolation in conventional short-range radars, which greatly increases the antenna size and misaligns of the transmit/receive radiation p...Separated transmit and receive antennas are employed to improve transmit-receive isolation in conventional short-range radars, which greatly increases the antenna size and misaligns of the transmit/receive radiation patterns. In this paper,a dual circularly polarized(CP) monostatic simultaneous transmit and receive(MSTAR) antenna with enhanced isolation is proposed to alleviate the problem. The proposed antenna consists of one sequentially rotating array(SRA), two beamforming networks(BFN), and a combined decoupling structure. The SRA is shared by the transmit and receive to reduce the size of the antenna and to obtain a consistent transmit and receive pattern.The BFN achieve right-hand CP for transmit and left-hand CP for receive. By exploring the combined decoupling structure of uniplanar compact electromagnetic band gap(UC-EBG) and ringshaped defected ground structure(RS-DGS), good transmitreceive isolation is achieved. The proposed antenna prototype is fabricated and experimentally characterized. The simulated and measured results show good agreement. The demonstrate transmit/receive isolation is height than 33 dB, voltage standing wave ratio is lower than 2, axial ratio is lower than 3 dB, and consistent radiation for both transmit and receive is within4.25-4.35 GHz.展开更多
基金the Shaanxi Provincial Key Research and Development Program(No.2020GY-040)。
文摘Design of a miniaturized lumped-element bandpass filter in multilayer liquid crystal polymer technology is proposed.Fractional bandwidth of the bandpass filter is 20%,operating at a center frequency of 500 MHz.In order to further reduce the size and improve the performance of the proposed filter,defected ground structure(DGS)has been implemented in the filter.Based on this structure,the volume of the inductor is reduced by 60%eficiently compared with the inductor without DGS,and the Q-factor is increased up to 257%compared with the traditional multilayer spiral inductor.The measured results indicate that the designed filter has a very sharp stopband,an insertion loss of 2.3dB,and a return loss of 18.6dB in the passband.The whole volume of the fabricated filter is 0.032入_(g)×0.05入_(g)×0.00075入_(g),where Ag is the guided wavelength of the center frequency.The proposed filter is easily integrated into radio-frequency/microwave circuitry at a low manufacturing cost,especially wireless communication.
文摘A compact high-scanning-rate circular-polarized leaky-wave antenna(LWA)based on a meandering substrate integrated waveguide(SIW)with defected ground structures(DGSs)is presented.The meandering-SIW design is employed to enhance the beam scanning rate,while circular polarization is achieved by etchingπ-shaped slots on the top plane.To suppress the open stopband at broadside,offset circular DGSs are periodically etched on the ground plane.Their impact on the reflection coefficient and axial ratio is then analyzed through a parametric study.A prototype of the antenna is simulated,fabricated,and measured.Both simulated and measured results indicate a scanning rate of approximately 8.6,with continuous beam scanning from-41°to 59°across the 11.3-12.7 GHz operating band.The antenna maintains an axial ratio below 3 dB within the 11.5-12.3 GHz range.This design shows promise for use in wireless communication systems,particularly in environments with increasingly limited spectrum resources.
基金This work was supported by the Research Program through the National Research Foundation of Korea,NRF-2019R1A2C1005920,S.K.
文摘Due to rapid growth in wireless communication technology,higher bandwidth requirement for advance telecommunication systems,capable of operating on two or higher bands with higher channel capacities and minimum distortion losses is desired.In this paper,a compact Ultra-Wideband(UWB)V-shaped monopole antenna is presented.UWB response is achieved by modifying the ground plane with Chichen Itzia inspired rectangular staircase shape.The proposed V-shaped is designed by incorporating a rectangle,and an inverted isosceles triangle using FR4 substrate.The size of the antenna is 25 mm×26 mm×1.6 mm.The proposed V-shaped monopole antenna produces bandwidth response of 3 GHz Industrial,Scientific,and Medical(ISM),Worldwide Interoperability for Microwave Access(WiMAX),(IEEE 802.11/HIPERLAN band,5G sub 6 GHz)which with an additional square cut amplified the bandwidth response up to 8 GHz ranging from 3.1 GHz to 10.6 GHz attaining UWB defined by Federal Communications Commission(FCC)with a maximum gain of 3.83 dB.The antenna is designed in Ansys HFSS.Results for key performance parameters of the antenna are presented.The measured results are in good agreement with the simulated results.Due to flat gain,uniform group delay,omni directional radiation pattern characteristics and well-matched impedance,the proposed antenna is suitable for WiMAX,ISM and heterogeneous wireless systems.
文摘In this paper,a unit cell of a single-negative metamaterial structure loaded with a meander line and defected ground structure(DGS)is investigated as the principle radiating element of an antenna.The unit cell antenna causes even or odd mode resonances similar to the unit cell structure depending on the orientation of the microstrip feed used to excite the unit cell.However,the orientation which gives low-frequency resonance is considered here.The unit cell antenna is then loaded with a meander line which is parallel to the split bearing side and connects the other two sides orthogonal to the split bearing side.This modified structure excites another mode of resonance at high frequency when a meander line defect is loaded on the metallic ground plane.Specific parameters of the meander line structure,the DGS shape,and the unit cell are optimized to place these two resonances at different frequencies with proper frequency intervals to enhance the bandwidth.Finally,the feed is placed in an offset position for better impedance matching without affecting the bandwidth The compact dimension of the antenna is 0.25λL×0.23λL×0.02λL,whereλL is the free space wavelength with respect to the center frequency of the impedance bandwidth.The proposed antenna is fabricated and measured.Experimental results reveal that the modified design gives monopole like radiation patterns which achieves a fractional operating bandwidth of 26.6%,from 3.26 to 4.26 GHz for|S11|<−10 dB and a pick gain of 1.26 dBi is realized.In addition,the simulated and measured crosspolarization levels are both less than−15 dB in the horizontal plane.
基金Supported by Natural Science Foundation of China(No.60371029).
文摘The filter characteristic of defected ground structure (DGS) is analyzed and the equivalent circuit of C-shaped DGS is extracted. The characteristics of non-periodic and periodic DGS with different dimensions are compared. Then the DGS is simulated and optimized with software, and the circuit board is manufactured and measured.The non-periodic structure is simple in structure and small in size and ripple compared with the periodic structure.Though the stop band of the non-periodic structure is narrow, it can meet the requirement of application. The C-shaped structure with two stop bands can select frequency in a special band.
文摘Different feeding techniques of microstrip patch antennas with different spiral defected ground structures are presented in this paper. The investigated structures illustrate some merits in designing multi-electromagnetic band-gap structures by adjusting the capacitance and changing the inductance through varying the width and length of spiral defected ground structure. Then by applying the three different spirals shapes (one, two and four arms) as the ground plane of microstrip patch antenna with different feeding techniques to create multi or ultra wide-band, improve the antenna gain and reduce the antenna size, it is found that the four arms spiral defected ground structure of microstrip patch antenna with offset feed gives good performance, electrical size reduction to about 75% as compared to the original patch size and ultra-wide bandwidth extends from 2 GHz up to 12 GHz with ?8 dB impedance bandwidth.
基金Project supported by the Shanghai Leading Academic Discipline Project (Grant No.T0102)
文摘A novel defected ground structure (DGS) for the microstrip line is proposed in this paper. The DGS lattice has more defect parameters so that it can provide better performance than the conventional dumbbell-shaped DGS. Selectivity is improved by 97.2% with a sharpness factor of 24.6%. The method is applied to the design of a low-pass filter to confirm validity of the proposed DGS.
文摘In this paper,the investigation of a novel compact 2×2,2×1,and 1×1 Ultra-Wide Band(UWB)based Multiple-Input Multiple-Output(MIMO)antenna with Defected Ground Structure(DGS)is employed.The proposed Electromagnetic Radiation Structures(ERS)is composed of multiple radiating elements.These MIMO antennas are designed and analyzed with and without DGS.The feeding is introduced by a microstrip-fed line to significantly moderate the radiating structure’s overall size,which is 60×40×1 mm.The high directivity and divergence characteristics are attained by introducing the microstripfed lines perpendicular to each other.And the projected MIMO antenna structures are compared with others by using parameters like Return Loss(RL),Voltage Standing Wave Ratio(VSWR),Radiation Pattern(RP),radiation efficiency,and directivity.The same MIMO set-up is redesigned with DGS,and the resultant parameters are compared.Finally,the Multiple Input and Multiple Output Radiating Structures with and without DGS are compared for result considerations like RL,VSWR,RP,radiation efficiency,and directivity.This projected antenna displays an omnidirectional RP with moderate gain,which is highly recommended for human healthcare applications.By introducing the defected ground structure in bottom layer the lower cut-off frequencies of 2.3,4.5 and 6.0 GHz are achieved with few biological effects on radio propagation in human body communications.The proposed design covers numerous well-known wireless standards,along with dual-function DGS slots,and it can be easily integrated into Wireless Body Area Networks(WBAN)in medical applications.This WBAN links the autonomous nodes that may be situated either in the clothes,on-body or beneath the skin of a person.This system typically advances the complete human body and the inter-connected nodes through a wireless communication channel.
文摘The paper presents an improved equivalent circuit parameters extraction method for the dumbbell-shaped defected ground structure (DGS). The new extraction parameters equations are obtained in closed-form expressions, which contain S11 and S21. The DGS unit with center frequency of 5 GHz is designed and fabricated on a TLX substrate with thickness of 1 mm and dielectric constant of 2.55. The circuit simulated results are in good agreement with the measured results. This parameters extraction method can be widely used for the design and analysis of DGS .
基金co-supported by the Natural Science Foundation of Tianjin,China(No.21JCZDJC00860)the Civil Aviation Security Capacity Building Funding Project,China(No.2020[142])。
文摘A compact low-profile dual-band Circularly Polarized(CP)microstrip antenna is proposed for the Bei Dou Navigation Satellite System(BDS).To achieve dual-band functionality,a single-layer multimode design is employed,incorporating F-,L-,and T-shaped slots at the corners for CP performance.Additionally,a Defected Ground Structure(DGS)is implemented to further enhance the antenna's efficiency.A detailed parameter analysis is conducted to optimize the antenna's size and performance balance.After optimization,the final dimensions of the antenna are minimized while still meeting the design requirements.The prototype of the optimized antenna is fabricated and tested,demonstrating coverage of frequency bands from 1.182 GHz to 1.217 GHz and 1.547 GHz to 1.569 GHz.The antenna effectively supports dual-band CP for B1I and B2b frequency bands.A performance metric,the Ratio of relative Bandwidth to Volume(RBV),is introduced to evaluate the antenna's efficiency.Compared to similar designs,the proposed antenna offers a smaller size without sacrificing performance,making it well-suited for BDS airborne applications.
基金the Shaanxi Provincial Innovation Team Project(No.2020TD-019)the Xi'an Sciences Plan Project(No.2021XJZZ0075)。
文摘In this paper,a compact defected ground structure loaded ultra high frequency dual-band bandpass flter is designed and implemented based on multilayer liquid crystal polymer technology.This novel filter is simply composed with several lumped and semi-lumped elements,to create a dual-passband response.In order to enhance the out-of-band rejection,a feedback capacitor C_(z) at the in/out ports of the filter is introduced,and four transmission zeros(TZs)are obtained outside the pass band.Furthermore,the position of TZs can be determined by adjusting the value of C_(z).The schematic and design process of the filter are given in this paper.The center frequencies of dual-band bandpass filter are 0.9 GHz and 2.45 GHz,and the 3-dB bandwidths are 13.7%and 14.3%,respectively.The circuit size is 11 mm×9.5 mm×0.193 mm.The proposed filter has been fabricated and tested,and the measured result is in good agreement with the simulation result.
基金supported by Guangdong Natural Science Foundation(2019A1515011622)Guangdong Provincial Laboratory of Southern Marine Science and Engineering (Zhuhai)(SML2021SP407)。
文摘Separated transmit and receive antennas are employed to improve transmit-receive isolation in conventional short-range radars, which greatly increases the antenna size and misaligns of the transmit/receive radiation patterns. In this paper,a dual circularly polarized(CP) monostatic simultaneous transmit and receive(MSTAR) antenna with enhanced isolation is proposed to alleviate the problem. The proposed antenna consists of one sequentially rotating array(SRA), two beamforming networks(BFN), and a combined decoupling structure. The SRA is shared by the transmit and receive to reduce the size of the antenna and to obtain a consistent transmit and receive pattern.The BFN achieve right-hand CP for transmit and left-hand CP for receive. By exploring the combined decoupling structure of uniplanar compact electromagnetic band gap(UC-EBG) and ringshaped defected ground structure(RS-DGS), good transmitreceive isolation is achieved. The proposed antenna prototype is fabricated and experimentally characterized. The simulated and measured results show good agreement. The demonstrate transmit/receive isolation is height than 33 dB, voltage standing wave ratio is lower than 2, axial ratio is lower than 3 dB, and consistent radiation for both transmit and receive is within4.25-4.35 GHz.