Pre-reading What is a Deepfake,and how is it created?What are Deepfakes?A Deepfake is a video,image or audio clip that has been created using artificial intelligence.The idea is to make it as realistic as possible.
Deep learning is an effective and useful technique that has been widely applied in a variety of fields, including computer vision, machine vision, and natural language processing. Deepfakes uses deep learning technolo...Deep learning is an effective and useful technique that has been widely applied in a variety of fields, including computer vision, machine vision, and natural language processing. Deepfakes uses deep learning technology to manipulate images and videos of a person that humans cannot differentiate them from the real one. In recent years, many studies have been conducted to understand how deepfakes work and many approaches based on deep learning have been introduced to detect deepfakes videos or images. In this paper, we conduct a comprehensive review of deepfakes creation and detection technologies using deep learning approaches. In addition, we give a thorough analysis of various technologies and their application in deepfakes detection. Our study will be beneficial for researchers in this field as it will cover the recent state-of-art methods that discover deepfakes videos or images in social contents. In addition, it will help comparison with the existing works because of the detailed description of the latest methods and dataset used in this domain.展开更多
"Deep Tom Cruise changed everything,,J Lx Metaphysic CEO Tom Graham says over a video call from Porto,Portugal.There had been plenty of other deepfakes before the Al-generated videos of the Mission:Impossible sta..."Deep Tom Cruise changed everything,,J Lx Metaphysic CEO Tom Graham says over a video call from Porto,Portugal.There had been plenty of other deepfakes before the Al-generated videos of the Mission:Impossible star were released on TikTok in 2021.But the Cruise videos were different:The quality was higher,the subject more dazzling and the reaction on the internet far more impressive.In no time at all,the videos had garnered many,many millions of views.Graham,who had previously co-founded the data analysis software company Heavy.Al,saw a business opportunity,and one month later,[he and]the videos,creator,Chris Ume,founded Metaphysic.展开更多
Images and videos play an increasingly vital role in daily life and are widely utilized as key evidentiary sources in judicial investigations and forensic analysis.Simultaneously,advancements in image and video proces...Images and videos play an increasingly vital role in daily life and are widely utilized as key evidentiary sources in judicial investigations and forensic analysis.Simultaneously,advancements in image and video processing technologies have facilitated the widespread availability of powerful editing tools,such as Deepfakes,enabling anyone to easily create manipulated or fake visual content,which poses an enormous threat to social security and public trust.To verify the authenticity and integrity of images and videos,numerous approaches have been proposed,which are primarily based on content analysis and their effectiveness is susceptible to interference from various image or video post-processing operations.Recent research has highlighted the potential of file containers analysis as a promising forensic approach that offers efficient and interpretable results.However,there is still a lack of review articles on this kind of approach.In order to fill this gap,we present a comprehensive review of file containers-based image and video forensics in this paper.Specifically,we categorize the existing methods into two distinct stages,qualitative analysis and quantitative analysis.In addition,an overall framework is proposed to organize the exiting approaches.Then,the advantages and disadvantages of the schemes used across different forensic tasks are provided.Finally,we outline the trends in this research area,aiming to provide valuable insights and technical guidance for future research.展开更多
With the rapid advancement of visual generative models such as Generative Adversarial Networks(GANs)and stable Diffusion,the creation of highly realistic Deepfake through automated forgery has significantly progressed...With the rapid advancement of visual generative models such as Generative Adversarial Networks(GANs)and stable Diffusion,the creation of highly realistic Deepfake through automated forgery has significantly progressed.This paper examines the advancements inDeepfake detection and defense technologies,emphasizing the shift from passive detection methods to proactive digital watermarking techniques.Passive detection methods,which involve extracting features from images or videos to identify forgeries,encounter challenges such as poor performance against unknown manipulation techniques and susceptibility to counter-forensic tactics.In contrast,proactive digital watermarking techniques embed specificmarkers into images or videos,facilitating real-time detection and traceability,thereby providing a preemptive defense againstDeepfake content.We offer a comprehensive analysis of digitalwatermarking-based forensic techniques,discussing their advantages over passivemethods and highlighting four key benefits:real-time detection,embedded defense,resistance to tampering,and provision of legal evidence.Additionally,the paper identifies gaps in the literature concerning proactive forensic techniques and suggests future research directions,including cross-domain watermarking and adaptive watermarking strategies.By systematically classifying and comparing existing techniques,this review aims to contribute valuable insights for the development of more effective proactive defense strategies in Deepfake forensics.展开更多
This paper provides a comprehensive bibliometric exposition on deepfake research,exploring the intersection of artificial intelligence and deepfakes as well as international collaborations,prominent researchers,organi...This paper provides a comprehensive bibliometric exposition on deepfake research,exploring the intersection of artificial intelligence and deepfakes as well as international collaborations,prominent researchers,organizations,institutions,publications,and key themes.We performed a search on theWeb of Science(WoS)database,focusing on Artificial Intelligence and Deepfakes,and filtered the results across 21 research areas,yielding 1412 articles.Using VOSviewer visualization tool,we analyzed thisWoS data through keyword co-occurrence graphs,emphasizing on four prominent research themes.Compared with existing bibliometric papers on deepfakes,this paper proceeds to identify and discuss some of the highly cited papers within these themes:deepfake detection,feature extraction,face recognition,and forensics.The discussion highlights key challenges and advancements in deepfake research.Furthermore,this paper also discusses pressing issues surrounding deepfakes such as security,regulation,and datasets.We also provide an analysis of another exhaustive search on Scopus database focusing solely on Deepfakes(while not excluding AI)revealing deep learning as the predominant keyword,underscoring AI’s central role in deepfake research.This comprehensive analysis,encompassing over 500 keywords from 8790 articles,uncovered a wide range of methods,implications,applications,concerns,requirements,challenges,models,tools,datasets,and modalities related to deepfakes.Finally,a discussion on recommendations for policymakers,researchers,and other stakeholders is also provided.展开更多
Recent advances in artificial intelligence and the availability of large-scale benchmarks have made deepfake video generation and manipulation easier.Therefore,developing reliable and robust deepfake video detection m...Recent advances in artificial intelligence and the availability of large-scale benchmarks have made deepfake video generation and manipulation easier.Therefore,developing reliable and robust deepfake video detection mechanisms is paramount.This research introduces a novel real-time deepfake video detection framework by analyzing gaze and blink patterns,addressing the spatial-temporal challenges unique to gaze and blink anomalies using the TimeSformer and hybrid Transformer-CNN models.The TimeSformer architecture leverages spatial-temporal attention mechanisms to capture fine-grained blinking intervals and gaze direction anomalies.Compared to state-of-the-art traditional convolutional models like MesoNet and EfficientNet,which primarily focus on global facial features,our approach emphasizes localized eye-region analysis,significantly enhancing detection accuracy.We evaluate our framework on four standard datasets:FaceForensics,CelebDF-V2,DFDC,and FakeAVCeleb.The proposed framework results reveal higher accuracy,with the TimeSformer model achieving accuracies of 97.5%,96.3%,95.8%,and 97.1%,and with the hybrid Transformer-CNN model demonstrating accuracies of 92.8%,91.5%,90.9%,and 93.2%,on FaceForensics,CelebDF-V2,DFDC,and FakeAVCeleb datasets,respectively,showing robustness in distinguishing manipulated from authentic videos.Our research provides a robust state-of-the-art framework for real-time deepfake video detection.This novel study significantly contributes to video forensics,presenting scalable and accurate real-world application solutions.展开更多
With expeditious advancements in AI-driven facial manipulation techniques,particularly deepfake technology,there is growing concern over its potential misuse.Deepfakes pose a significant threat to society,partic-ularl...With expeditious advancements in AI-driven facial manipulation techniques,particularly deepfake technology,there is growing concern over its potential misuse.Deepfakes pose a significant threat to society,partic-ularly by infringing on individuals’privacy.Amid significant endeavors to fabricate systems for identifying deepfake fabrications,existing methodologies often face hurdles in adjusting to innovative forgery techniques and demonstrate increased vulnerability to image and video clarity variations,thereby hindering their broad applicability to images and videos produced by unfamiliar technologies.In this manuscript,we endorse resilient training tactics to amplify generalization capabilities.In adversarial training,models are trained using deliberately crafted samples to deceive classification systems,thereby significantly enhancing their generalization ability.In response to this challenge,we propose an innovative hybrid adversarial training framework integrating Virtual Adversarial Training(VAT)with Two-Generated Blurred Adversarial Training.This combined framework bolsters the model’s resilience in detecting deepfakes made using unfamiliar deep learning technologies.Through such adversarial training,models are prompted to acquire more versatile attributes.Through experimental studies,we demonstrate that our model achieves higher accuracy than existing models.展开更多
The majority of current deepfake detection methods are constrained to identifying one or two specific types of counterfeit images,which limits their ability to keep pace with the rapid advancements in deepfake technol...The majority of current deepfake detection methods are constrained to identifying one or two specific types of counterfeit images,which limits their ability to keep pace with the rapid advancements in deepfake technology.Therefore,in this study,we propose a novel algorithm,StereoMixture Density Network(SMNDNet),which can detect multiple types of deepfake face manipulations using a single network framework.SMNDNet is an end-to-end CNNbased network specially designed for detecting various manipulation types of deepfake face images.First,we design a Subtle Distinguishable Feature Enhancement Module to emphasize the differentiation between authentic and forged features.Second,we introduce aMulti-Scale Forged Region AdaptiveModule that dynamically adapts to extract forged features from images of varying synthesis scales.Third,we integrate a Nonlinear Expression Capability Enhancement Module to augment the model’s capacity for capturing intricate nonlinear patterns across various types of deepfakes.Collectively,these modules empower our model to efficiently extract forgery features fromdiverse manipulation types,ensuring a more satisfactory performance in multiple-types deepfake detection.Experiments show that the proposed method outperforms alternative approaches in detection accuracy and AUC across all four types of deepfake images.It also demonstrates strong generalization on cross-dataset and cross-type detection,along with robust performance against post-processing manipulations.展开更多
As Deepfake technology continues to evolve,the distinction between real and fake content becomes increasingly blurred.Most existing Deepfake video detectionmethods rely on single-frame facial image features,which limi...As Deepfake technology continues to evolve,the distinction between real and fake content becomes increasingly blurred.Most existing Deepfake video detectionmethods rely on single-frame facial image features,which limits their ability to capture temporal differences between frames.Current methods also exhibit limited generalization capabilities,struggling to detect content generated by unknown forgery algorithms.Moreover,the diversity and complexity of forgery techniques introduced by Artificial Intelligence Generated Content(AIGC)present significant challenges for traditional detection frameworks,whichmust balance high detection accuracy with robust performance.To address these challenges,we propose a novel Deepfake detection framework that combines a two-stream convolutional network with a Vision Transformer(ViT)module to enhance spatio-temporal feature representation.The ViT model extracts spatial features from the forged video,while the 3D convolutional network captures temporal features.The 3D convolution enables cross-frame feature extraction,allowing the model to detect subtle facial changes between frames.The confidence scores from both the ViT and 3D convolution submodels are fused at the decision layer,enabling themodel to effectively handle unknown forgery techniques.Focusing on Deepfake videos and GAN-generated images,the proposed approach is evaluated on two widely used public face forgery datasets.Compared to existing state-of-theartmethods,it achieves higher detection accuracy and better generalization performance,offering a robust solution for deepfake detection in real-world scenarios.展开更多
Deep learning is a practical and efficient technique that has been used extensively in many domains. Using deep learning technology, deepfakes create fake images of a person that people cannot distinguish from the rea...Deep learning is a practical and efficient technique that has been used extensively in many domains. Using deep learning technology, deepfakes create fake images of a person that people cannot distinguish from the real one. Recently, many researchers have focused on understanding how deepkakes work and detecting using deep learning approaches. This paper introduces an explainable deepfake framework for images creation and classification. The framework consists of three main parts: the first approach is called Instant ID which is used to create deepfacke images from the original one;the second approach called Xception classifies the real and deepfake images;the third approach called Local Interpretable Model (LIME) provides a method for interpreting the predictions of any machine learning model in a local and interpretable manner. Our study proposes deepfake approach that achieves 100% precision and 100% accuracy for deepfake creation and classification. Furthermore, the results highlight the superior performance of the proposed model in deep fake creation and classification.展开更多
Deepfake-generated fake faces,commonly utilized in identity-related activities such as political propaganda,celebrity impersonations,evidence forgery,and familiar fraud,pose new societal threats.Although current deepf...Deepfake-generated fake faces,commonly utilized in identity-related activities such as political propaganda,celebrity impersonations,evidence forgery,and familiar fraud,pose new societal threats.Although current deepfake generators strive for high realism in visual effects,they do not replicate biometric signals indicative of cardiac activity.Addressing this gap,many researchers have developed detection methods focusing on biometric characteristics.These methods utilize classification networks to analyze both temporal and spectral domain features of the remote photoplethysmography(rPPG)signal,resulting in high detection accuracy.However,in the spectral analysis,existing approaches often only consider the power spectral density and neglect the amplitude spectrum—both crucial for assessing cardiac activity.We introduce a novel method that extracts rPPG signals from multiple regions of interest through remote photoplethysmography and processes them using Fast Fourier Transform(FFT).The resultant time-frequency domain signal samples are organized into matrices to create Matrix Visualization Heatmaps(MVHM),which are then utilized to train an image classification network.Additionally,we explored various combinations of time-frequency domain representations of rPPG signals and the impact of attention mechanisms.Our experimental results show that our algorithm achieves a remarkable detection accuracy of 99.22%in identifying fake videos,significantly outperforming mainstream algorithms and demonstrating the effectiveness of Fourier Transform and attention mechanisms in detecting fake faces.展开更多
Deepfake has emerged as an obstinate challenge in a world dominated by light.Here,the authors introduce a new deepfake detection method based on Xception architecture.The model is tested exhaustively with millions of ...Deepfake has emerged as an obstinate challenge in a world dominated by light.Here,the authors introduce a new deepfake detection method based on Xception architecture.The model is tested exhaustively with millions of frames and diverse video clips;accuracy levels as high as 99.65%are reported.These are the main reasons for such high efficacy:superior feature extraction capabilities and stable training mechanisms,such as early stopping,characterizing the Xception model.The methodology applied is also more advanced when it comes to data preprocessing steps,making use of state-of-the-art techniques applied to ensure constant performance.With an ever-rising threat from fake media,this piece of research puts great emphasis on stringent memory testing to keep at bay the spread of manipulated content.It also justifies better explanation methods to justify the reasoning done by the model for those decisions that build more trust and reliability.The ensemble models being more accurate have been studied and examined for establishing a possibility of combining various detection frameworks that could together produce superior results.Further,the study underlines the need for real-time detection tools that can be effective on different social media sites and digital environments.Ethics,protecting privacy,and public awareness in the fight against the proliferation of deepfakes are important considerations.By significantly contributing to the advancements made in the technology that has actually advanced detection,it strengthens the safety and integrity of the cyber world with a robust defense against ever-evolving deepfake threats in technology.Overall,the findings generally go a long way to prove themselves as the crucial step forward to ensuring information authenticity and the trustworthiness of society in this digital world.展开更多
文摘Pre-reading What is a Deepfake,and how is it created?What are Deepfakes?A Deepfake is a video,image or audio clip that has been created using artificial intelligence.The idea is to make it as realistic as possible.
文摘Deep learning is an effective and useful technique that has been widely applied in a variety of fields, including computer vision, machine vision, and natural language processing. Deepfakes uses deep learning technology to manipulate images and videos of a person that humans cannot differentiate them from the real one. In recent years, many studies have been conducted to understand how deepfakes work and many approaches based on deep learning have been introduced to detect deepfakes videos or images. In this paper, we conduct a comprehensive review of deepfakes creation and detection technologies using deep learning approaches. In addition, we give a thorough analysis of various technologies and their application in deepfakes detection. Our study will be beneficial for researchers in this field as it will cover the recent state-of-art methods that discover deepfakes videos or images in social contents. In addition, it will help comparison with the existing works because of the detailed description of the latest methods and dataset used in this domain.
文摘"Deep Tom Cruise changed everything,,J Lx Metaphysic CEO Tom Graham says over a video call from Porto,Portugal.There had been plenty of other deepfakes before the Al-generated videos of the Mission:Impossible star were released on TikTok in 2021.But the Cruise videos were different:The quality was higher,the subject more dazzling and the reaction on the internet far more impressive.In no time at all,the videos had garnered many,many millions of views.Graham,who had previously co-founded the data analysis software company Heavy.Al,saw a business opportunity,and one month later,[he and]the videos,creator,Chris Ume,founded Metaphysic.
基金supported in part by Natural Science Foundation of Hubei Province of China under Grant 2023AFB016the 2022 Opening Fund for Hubei Key Laboratory of Intelligent Vision Based Monitoring for Hydroelectric Engineering under Grant 2022SDSJ02the Construction Fund for Hubei Key Laboratory of Intelligent Vision Based Monitoring for Hydroelectric Engineering under Grant 2019ZYYD007.
文摘Images and videos play an increasingly vital role in daily life and are widely utilized as key evidentiary sources in judicial investigations and forensic analysis.Simultaneously,advancements in image and video processing technologies have facilitated the widespread availability of powerful editing tools,such as Deepfakes,enabling anyone to easily create manipulated or fake visual content,which poses an enormous threat to social security and public trust.To verify the authenticity and integrity of images and videos,numerous approaches have been proposed,which are primarily based on content analysis and their effectiveness is susceptible to interference from various image or video post-processing operations.Recent research has highlighted the potential of file containers analysis as a promising forensic approach that offers efficient and interpretable results.However,there is still a lack of review articles on this kind of approach.In order to fill this gap,we present a comprehensive review of file containers-based image and video forensics in this paper.Specifically,we categorize the existing methods into two distinct stages,qualitative analysis and quantitative analysis.In addition,an overall framework is proposed to organize the exiting approaches.Then,the advantages and disadvantages of the schemes used across different forensic tasks are provided.Finally,we outline the trends in this research area,aiming to provide valuable insights and technical guidance for future research.
基金supported by the National Fund Cultivation Project from China People’s Police University(Grant Number:JJPY202402)National Natural Science Foundation of China(Grant Number:62172165).
文摘With the rapid advancement of visual generative models such as Generative Adversarial Networks(GANs)and stable Diffusion,the creation of highly realistic Deepfake through automated forgery has significantly progressed.This paper examines the advancements inDeepfake detection and defense technologies,emphasizing the shift from passive detection methods to proactive digital watermarking techniques.Passive detection methods,which involve extracting features from images or videos to identify forgeries,encounter challenges such as poor performance against unknown manipulation techniques and susceptibility to counter-forensic tactics.In contrast,proactive digital watermarking techniques embed specificmarkers into images or videos,facilitating real-time detection and traceability,thereby providing a preemptive defense againstDeepfake content.We offer a comprehensive analysis of digitalwatermarking-based forensic techniques,discussing their advantages over passivemethods and highlighting four key benefits:real-time detection,embedded defense,resistance to tampering,and provision of legal evidence.Additionally,the paper identifies gaps in the literature concerning proactive forensic techniques and suggests future research directions,including cross-domain watermarking and adaptive watermarking strategies.By systematically classifying and comparing existing techniques,this review aims to contribute valuable insights for the development of more effective proactive defense strategies in Deepfake forensics.
文摘This paper provides a comprehensive bibliometric exposition on deepfake research,exploring the intersection of artificial intelligence and deepfakes as well as international collaborations,prominent researchers,organizations,institutions,publications,and key themes.We performed a search on theWeb of Science(WoS)database,focusing on Artificial Intelligence and Deepfakes,and filtered the results across 21 research areas,yielding 1412 articles.Using VOSviewer visualization tool,we analyzed thisWoS data through keyword co-occurrence graphs,emphasizing on four prominent research themes.Compared with existing bibliometric papers on deepfakes,this paper proceeds to identify and discuss some of the highly cited papers within these themes:deepfake detection,feature extraction,face recognition,and forensics.The discussion highlights key challenges and advancements in deepfake research.Furthermore,this paper also discusses pressing issues surrounding deepfakes such as security,regulation,and datasets.We also provide an analysis of another exhaustive search on Scopus database focusing solely on Deepfakes(while not excluding AI)revealing deep learning as the predominant keyword,underscoring AI’s central role in deepfake research.This comprehensive analysis,encompassing over 500 keywords from 8790 articles,uncovered a wide range of methods,implications,applications,concerns,requirements,challenges,models,tools,datasets,and modalities related to deepfakes.Finally,a discussion on recommendations for policymakers,researchers,and other stakeholders is also provided.
文摘Recent advances in artificial intelligence and the availability of large-scale benchmarks have made deepfake video generation and manipulation easier.Therefore,developing reliable and robust deepfake video detection mechanisms is paramount.This research introduces a novel real-time deepfake video detection framework by analyzing gaze and blink patterns,addressing the spatial-temporal challenges unique to gaze and blink anomalies using the TimeSformer and hybrid Transformer-CNN models.The TimeSformer architecture leverages spatial-temporal attention mechanisms to capture fine-grained blinking intervals and gaze direction anomalies.Compared to state-of-the-art traditional convolutional models like MesoNet and EfficientNet,which primarily focus on global facial features,our approach emphasizes localized eye-region analysis,significantly enhancing detection accuracy.We evaluate our framework on four standard datasets:FaceForensics,CelebDF-V2,DFDC,and FakeAVCeleb.The proposed framework results reveal higher accuracy,with the TimeSformer model achieving accuracies of 97.5%,96.3%,95.8%,and 97.1%,and with the hybrid Transformer-CNN model demonstrating accuracies of 92.8%,91.5%,90.9%,and 93.2%,on FaceForensics,CelebDF-V2,DFDC,and FakeAVCeleb datasets,respectively,showing robustness in distinguishing manipulated from authentic videos.Our research provides a robust state-of-the-art framework for real-time deepfake video detection.This novel study significantly contributes to video forensics,presenting scalable and accurate real-world application solutions.
基金supported by King Saud University,Riyadh,Saudi Arabia,through the Researchers Supporting Project under Grant RSP2025R493。
文摘With expeditious advancements in AI-driven facial manipulation techniques,particularly deepfake technology,there is growing concern over its potential misuse.Deepfakes pose a significant threat to society,partic-ularly by infringing on individuals’privacy.Amid significant endeavors to fabricate systems for identifying deepfake fabrications,existing methodologies often face hurdles in adjusting to innovative forgery techniques and demonstrate increased vulnerability to image and video clarity variations,thereby hindering their broad applicability to images and videos produced by unfamiliar technologies.In this manuscript,we endorse resilient training tactics to amplify generalization capabilities.In adversarial training,models are trained using deliberately crafted samples to deceive classification systems,thereby significantly enhancing their generalization ability.In response to this challenge,we propose an innovative hybrid adversarial training framework integrating Virtual Adversarial Training(VAT)with Two-Generated Blurred Adversarial Training.This combined framework bolsters the model’s resilience in detecting deepfakes made using unfamiliar deep learning technologies.Through such adversarial training,models are prompted to acquire more versatile attributes.Through experimental studies,we demonstrate that our model achieves higher accuracy than existing models.
基金funded by the National Natural Science Foundation of China(Grant No.62376212)the Shaanxi Science Foundation of China(Grant No.2022GY-087)supported by the Open Fund of Intelligent Control Laboratory.
文摘The majority of current deepfake detection methods are constrained to identifying one or two specific types of counterfeit images,which limits their ability to keep pace with the rapid advancements in deepfake technology.Therefore,in this study,we propose a novel algorithm,StereoMixture Density Network(SMNDNet),which can detect multiple types of deepfake face manipulations using a single network framework.SMNDNet is an end-to-end CNNbased network specially designed for detecting various manipulation types of deepfake face images.First,we design a Subtle Distinguishable Feature Enhancement Module to emphasize the differentiation between authentic and forged features.Second,we introduce aMulti-Scale Forged Region AdaptiveModule that dynamically adapts to extract forged features from images of varying synthesis scales.Third,we integrate a Nonlinear Expression Capability Enhancement Module to augment the model’s capacity for capturing intricate nonlinear patterns across various types of deepfakes.Collectively,these modules empower our model to efficiently extract forgery features fromdiverse manipulation types,ensuring a more satisfactory performance in multiple-types deepfake detection.Experiments show that the proposed method outperforms alternative approaches in detection accuracy and AUC across all four types of deepfake images.It also demonstrates strong generalization on cross-dataset and cross-type detection,along with robust performance against post-processing manipulations.
基金supported by National Natural Science Foundation of China(Nos.62477026,62177029,61807020)Humanities and Social Sciences Research Program of the Ministry of Education of China(No.23YJAZH047)the Startup Foundation for Introducing Talent of Nanjing University of Posts and Communications under Grant NY222034.
文摘As Deepfake technology continues to evolve,the distinction between real and fake content becomes increasingly blurred.Most existing Deepfake video detectionmethods rely on single-frame facial image features,which limits their ability to capture temporal differences between frames.Current methods also exhibit limited generalization capabilities,struggling to detect content generated by unknown forgery algorithms.Moreover,the diversity and complexity of forgery techniques introduced by Artificial Intelligence Generated Content(AIGC)present significant challenges for traditional detection frameworks,whichmust balance high detection accuracy with robust performance.To address these challenges,we propose a novel Deepfake detection framework that combines a two-stream convolutional network with a Vision Transformer(ViT)module to enhance spatio-temporal feature representation.The ViT model extracts spatial features from the forged video,while the 3D convolutional network captures temporal features.The 3D convolution enables cross-frame feature extraction,allowing the model to detect subtle facial changes between frames.The confidence scores from both the ViT and 3D convolution submodels are fused at the decision layer,enabling themodel to effectively handle unknown forgery techniques.Focusing on Deepfake videos and GAN-generated images,the proposed approach is evaluated on two widely used public face forgery datasets.Compared to existing state-of-theartmethods,it achieves higher detection accuracy and better generalization performance,offering a robust solution for deepfake detection in real-world scenarios.
文摘Deep learning is a practical and efficient technique that has been used extensively in many domains. Using deep learning technology, deepfakes create fake images of a person that people cannot distinguish from the real one. Recently, many researchers have focused on understanding how deepkakes work and detecting using deep learning approaches. This paper introduces an explainable deepfake framework for images creation and classification. The framework consists of three main parts: the first approach is called Instant ID which is used to create deepfacke images from the original one;the second approach called Xception classifies the real and deepfake images;the third approach called Local Interpretable Model (LIME) provides a method for interpreting the predictions of any machine learning model in a local and interpretable manner. Our study proposes deepfake approach that achieves 100% precision and 100% accuracy for deepfake creation and classification. Furthermore, the results highlight the superior performance of the proposed model in deep fake creation and classification.
基金supported by the National Nature Science Foundation of China(Grant Number:61962010).
文摘Deepfake-generated fake faces,commonly utilized in identity-related activities such as political propaganda,celebrity impersonations,evidence forgery,and familiar fraud,pose new societal threats.Although current deepfake generators strive for high realism in visual effects,they do not replicate biometric signals indicative of cardiac activity.Addressing this gap,many researchers have developed detection methods focusing on biometric characteristics.These methods utilize classification networks to analyze both temporal and spectral domain features of the remote photoplethysmography(rPPG)signal,resulting in high detection accuracy.However,in the spectral analysis,existing approaches often only consider the power spectral density and neglect the amplitude spectrum—both crucial for assessing cardiac activity.We introduce a novel method that extracts rPPG signals from multiple regions of interest through remote photoplethysmography and processes them using Fast Fourier Transform(FFT).The resultant time-frequency domain signal samples are organized into matrices to create Matrix Visualization Heatmaps(MVHM),which are then utilized to train an image classification network.Additionally,we explored various combinations of time-frequency domain representations of rPPG signals and the impact of attention mechanisms.Our experimental results show that our algorithm achieves a remarkable detection accuracy of 99.22%in identifying fake videos,significantly outperforming mainstream algorithms and demonstrating the effectiveness of Fourier Transform and attention mechanisms in detecting fake faces.
文摘Deepfake has emerged as an obstinate challenge in a world dominated by light.Here,the authors introduce a new deepfake detection method based on Xception architecture.The model is tested exhaustively with millions of frames and diverse video clips;accuracy levels as high as 99.65%are reported.These are the main reasons for such high efficacy:superior feature extraction capabilities and stable training mechanisms,such as early stopping,characterizing the Xception model.The methodology applied is also more advanced when it comes to data preprocessing steps,making use of state-of-the-art techniques applied to ensure constant performance.With an ever-rising threat from fake media,this piece of research puts great emphasis on stringent memory testing to keep at bay the spread of manipulated content.It also justifies better explanation methods to justify the reasoning done by the model for those decisions that build more trust and reliability.The ensemble models being more accurate have been studied and examined for establishing a possibility of combining various detection frameworks that could together produce superior results.Further,the study underlines the need for real-time detection tools that can be effective on different social media sites and digital environments.Ethics,protecting privacy,and public awareness in the fight against the proliferation of deepfakes are important considerations.By significantly contributing to the advancements made in the technology that has actually advanced detection,it strengthens the safety and integrity of the cyber world with a robust defense against ever-evolving deepfake threats in technology.Overall,the findings generally go a long way to prove themselves as the crucial step forward to ensuring information authenticity and the trustworthiness of society in this digital world.