期刊文献+
共找到53篇文章
< 1 2 3 >
每页显示 20 50 100
基于关键帧的频域多特征融合的Deepfake视频检测
1
作者 王金伟 张玫瑰 +2 位作者 张家伟 罗向阳 马宾 《应用科学学报》 北大核心 2025年第3期451-462,共12页
现有的Deepfake视频检测方法为节约计算资源,避免数据冗余,大多随机选取视频的多帧或部分段作为检测对象,因而会降低检测对象的表征能力以及限制检测的性能。此外,现有算法在单一数据集上的检测效果良好,但在跨数据集检测时性能下降严重... 现有的Deepfake视频检测方法为节约计算资源,避免数据冗余,大多随机选取视频的多帧或部分段作为检测对象,因而会降低检测对象的表征能力以及限制检测的性能。此外,现有算法在单一数据集上的检测效果良好,但在跨数据集检测时性能下降严重,泛化能力有待进一步提升。为此,提出了一种基于关键帧的频域多特征融合的Deepfake视频检测算法。利用频域的均方误差提取关键帧作为检测对象,并将频域学习主帧的伪影特征和关键帧间的时间不一致性进行融合后输入到全连接层中,从而获得最终的检测结果。实验结果表明,所提算法在跨数据集检测任务中的性能优于现有算法,具有较强的泛化性。 展开更多
关键词 deepfake视频检测 关键帧 频域 多特征融合
在线阅读 下载PDF
A Contemporary and Comprehensive Bibliometric Exposition on Deepfake Research and Trends
2
作者 Akanbi Bolakale Abdul Qudus Oluwatosin Ahmed Amodu +4 位作者 Umar Ali Bukar Raja Azlina Raja Mahmood Anies Faziehan Zakaria Saki-Ogah Queen Zurina Mohd Hanapi 《Computers, Materials & Continua》 2025年第7期153-236,共84页
This paper provides a comprehensive bibliometric exposition on deepfake research,exploring the intersection of artificial intelligence and deepfakes as well as international collaborations,prominent researchers,organi... This paper provides a comprehensive bibliometric exposition on deepfake research,exploring the intersection of artificial intelligence and deepfakes as well as international collaborations,prominent researchers,organizations,institutions,publications,and key themes.We performed a search on theWeb of Science(WoS)database,focusing on Artificial Intelligence and Deepfakes,and filtered the results across 21 research areas,yielding 1412 articles.Using VOSviewer visualization tool,we analyzed thisWoS data through keyword co-occurrence graphs,emphasizing on four prominent research themes.Compared with existing bibliometric papers on deepfakes,this paper proceeds to identify and discuss some of the highly cited papers within these themes:deepfake detection,feature extraction,face recognition,and forensics.The discussion highlights key challenges and advancements in deepfake research.Furthermore,this paper also discusses pressing issues surrounding deepfakes such as security,regulation,and datasets.We also provide an analysis of another exhaustive search on Scopus database focusing solely on Deepfakes(while not excluding AI)revealing deep learning as the predominant keyword,underscoring AI’s central role in deepfake research.This comprehensive analysis,encompassing over 500 keywords from 8790 articles,uncovered a wide range of methods,implications,applications,concerns,requirements,challenges,models,tools,datasets,and modalities related to deepfakes.Finally,a discussion on recommendations for policymakers,researchers,and other stakeholders is also provided. 展开更多
关键词 deepfake BIBLIOMETRIC deepfake detection deep learning RECOMMENDATIONS
在线阅读 下载PDF
基于局部纹理差异特征增强的Deepfake检测方法 被引量:1
3
作者 韦争争 《重庆工商大学学报(自然科学版)》 2025年第2期78-85,共8页
目的针对当前Deepfake检测侧重全局伪造特征,而局部纹理差异特征利用不足导致模型泛化性能差的问题,提出一种基于局部纹理差异特征增强的Deepfake检测模型,通过挖掘伪造图像内在的空间伪造模式,提高检测的准确性和泛化性。方法模型首先... 目的针对当前Deepfake检测侧重全局伪造特征,而局部纹理差异特征利用不足导致模型泛化性能差的问题,提出一种基于局部纹理差异特征增强的Deepfake检测模型,通过挖掘伪造图像内在的空间伪造模式,提高检测的准确性和泛化性。方法模型首先通过中心差分卷积操作捕捉像素强度和像素梯度两种信息,从而获得更精确的局部纹理差异信息,提高对伪造图像的敏感性。其次,构建双层注意力模块,旨在利用空间注意力学习位置敏感的权重信息,并通过通道注意力自适应调整通道重要性,定位重要纹理差异特征的位置,增强纹理差异特征的表示。结果在高质量和低质量的FaceForensics++数据集上的实验,平均准确率分别达到了97.36%和92.37%,而Celeb-DF数据集上的跨数据集实验获得了比当前先进的检测模型更好的泛化性,大量的消融实验表明了方法的有效性。结论实验表明:引入中心差分和双层注意力模块后模型能够更好地捕捉图像的纹理差异信息,适应不同场景和压缩率的伪造检测,有效提高了Deepfake检测的准确性和泛化性。 展开更多
关键词 deepfake检测 纹理差异 中心差分卷积 空间注意力 通道注意力
在线阅读 下载PDF
Enhancing Deepfake Detection:Proactive Forensics Techniques Using Digital Watermarking
4
作者 Zhimao Lai Saad Arif +2 位作者 Cong Feng Guangjun Liao Chuntao Wang 《Computers, Materials & Continua》 SCIE EI 2025年第1期73-102,共30页
With the rapid advancement of visual generative models such as Generative Adversarial Networks(GANs)and stable Diffusion,the creation of highly realistic Deepfake through automated forgery has significantly progressed... With the rapid advancement of visual generative models such as Generative Adversarial Networks(GANs)and stable Diffusion,the creation of highly realistic Deepfake through automated forgery has significantly progressed.This paper examines the advancements inDeepfake detection and defense technologies,emphasizing the shift from passive detection methods to proactive digital watermarking techniques.Passive detection methods,which involve extracting features from images or videos to identify forgeries,encounter challenges such as poor performance against unknown manipulation techniques and susceptibility to counter-forensic tactics.In contrast,proactive digital watermarking techniques embed specificmarkers into images or videos,facilitating real-time detection and traceability,thereby providing a preemptive defense againstDeepfake content.We offer a comprehensive analysis of digitalwatermarking-based forensic techniques,discussing their advantages over passivemethods and highlighting four key benefits:real-time detection,embedded defense,resistance to tampering,and provision of legal evidence.Additionally,the paper identifies gaps in the literature concerning proactive forensic techniques and suggests future research directions,including cross-domain watermarking and adaptive watermarking strategies.By systematically classifying and comparing existing techniques,this review aims to contribute valuable insights for the development of more effective proactive defense strategies in Deepfake forensics. 展开更多
关键词 deepfake proactive forensics digital watermarking TRACEABILITY detection techniques
在线阅读 下载PDF
Real-Time Deepfake Detection via Gaze and Blink Patterns:A Transformer Framework
5
作者 Muhammad Javed Zhaohui Zhang +3 位作者 Fida Hussain Dahri Asif Ali Laghari Martin Krajčík Ahmad Almadhor 《Computers, Materials & Continua》 2025年第10期1457-1493,共37页
Recent advances in artificial intelligence and the availability of large-scale benchmarks have made deepfake video generation and manipulation easier.Therefore,developing reliable and robust deepfake video detection m... Recent advances in artificial intelligence and the availability of large-scale benchmarks have made deepfake video generation and manipulation easier.Therefore,developing reliable and robust deepfake video detection mechanisms is paramount.This research introduces a novel real-time deepfake video detection framework by analyzing gaze and blink patterns,addressing the spatial-temporal challenges unique to gaze and blink anomalies using the TimeSformer and hybrid Transformer-CNN models.The TimeSformer architecture leverages spatial-temporal attention mechanisms to capture fine-grained blinking intervals and gaze direction anomalies.Compared to state-of-the-art traditional convolutional models like MesoNet and EfficientNet,which primarily focus on global facial features,our approach emphasizes localized eye-region analysis,significantly enhancing detection accuracy.We evaluate our framework on four standard datasets:FaceForensics,CelebDF-V2,DFDC,and FakeAVCeleb.The proposed framework results reveal higher accuracy,with the TimeSformer model achieving accuracies of 97.5%,96.3%,95.8%,and 97.1%,and with the hybrid Transformer-CNN model demonstrating accuracies of 92.8%,91.5%,90.9%,and 93.2%,on FaceForensics,CelebDF-V2,DFDC,and FakeAVCeleb datasets,respectively,showing robustness in distinguishing manipulated from authentic videos.Our research provides a robust state-of-the-art framework for real-time deepfake video detection.This novel study significantly contributes to video forensics,presenting scalable and accurate real-world application solutions. 展开更多
关键词 deepfake detection deep learning video forensics gaze and blink patterns TRANSFORMERS TimeSformer MesoNet4
在线阅读 下载PDF
Deepfake Detection Using Adversarial Neural Network
6
作者 Priyadharsini Selvaraj Senthil Kumar Jagatheesaperumal +3 位作者 Karthiga Marimuthu Oviya Saravanan Bader Fahad Alkhamees Mohammad Mehedi Hassan 《Computer Modeling in Engineering & Sciences》 2025年第5期1575-1594,共20页
With expeditious advancements in AI-driven facial manipulation techniques,particularly deepfake technology,there is growing concern over its potential misuse.Deepfakes pose a significant threat to society,partic-ularl... With expeditious advancements in AI-driven facial manipulation techniques,particularly deepfake technology,there is growing concern over its potential misuse.Deepfakes pose a significant threat to society,partic-ularly by infringing on individuals’privacy.Amid significant endeavors to fabricate systems for identifying deepfake fabrications,existing methodologies often face hurdles in adjusting to innovative forgery techniques and demonstrate increased vulnerability to image and video clarity variations,thereby hindering their broad applicability to images and videos produced by unfamiliar technologies.In this manuscript,we endorse resilient training tactics to amplify generalization capabilities.In adversarial training,models are trained using deliberately crafted samples to deceive classification systems,thereby significantly enhancing their generalization ability.In response to this challenge,we propose an innovative hybrid adversarial training framework integrating Virtual Adversarial Training(VAT)with Two-Generated Blurred Adversarial Training.This combined framework bolsters the model’s resilience in detecting deepfakes made using unfamiliar deep learning technologies.Through such adversarial training,models are prompted to acquire more versatile attributes.Through experimental studies,we demonstrate that our model achieves higher accuracy than existing models. 展开更多
关键词 deepfake GENERALIZATION forgery detection pixel-wise Gaussian blurring virtual adversarial training
在线阅读 下载PDF
SMNDNet for Multiple Types of Deepfake Image Detection
7
作者 Qin Wang Xiaofeng Wang +3 位作者 Jianghua Li Ruidong Han Zinian Liu Mingtao Guo 《Computers, Materials & Continua》 2025年第6期4607-4621,共15页
The majority of current deepfake detection methods are constrained to identifying one or two specific types of counterfeit images,which limits their ability to keep pace with the rapid advancements in deepfake technol... The majority of current deepfake detection methods are constrained to identifying one or two specific types of counterfeit images,which limits their ability to keep pace with the rapid advancements in deepfake technology.Therefore,in this study,we propose a novel algorithm,StereoMixture Density Network(SMNDNet),which can detect multiple types of deepfake face manipulations using a single network framework.SMNDNet is an end-to-end CNNbased network specially designed for detecting various manipulation types of deepfake face images.First,we design a Subtle Distinguishable Feature Enhancement Module to emphasize the differentiation between authentic and forged features.Second,we introduce aMulti-Scale Forged Region AdaptiveModule that dynamically adapts to extract forged features from images of varying synthesis scales.Third,we integrate a Nonlinear Expression Capability Enhancement Module to augment the model’s capacity for capturing intricate nonlinear patterns across various types of deepfakes.Collectively,these modules empower our model to efficiently extract forgery features fromdiverse manipulation types,ensuring a more satisfactory performance in multiple-types deepfake detection.Experiments show that the proposed method outperforms alternative approaches in detection accuracy and AUC across all four types of deepfake images.It also demonstrates strong generalization on cross-dataset and cross-type detection,along with robust performance against post-processing manipulations. 展开更多
关键词 Convolutional neural network deepfake detection generative adversarial network feature enhancement
在线阅读 下载PDF
How to spot Deepfakes
8
作者 吴爱香 《疯狂英语(初中天地)》 2025年第4期40-41,共2页
Pre-reading What is a Deepfake,and how is it created?What are Deepfakes?A Deepfake is a video,image or audio clip that has been created using artificial intelligence.The idea is to make it as realistic as possible.
关键词 VIDEO artificial intelligencethe audio clip deepfakes make realistic possible audioclip ARTIFICIALINTELLIGENCE image
在线阅读 下载PDF
Deepfake Detection Method Based on Spatio-Temporal Information Fusion
9
作者 Xinyi Wang Wanru Song +1 位作者 Chuanyan Hao Feng Liu 《Computers, Materials & Continua》 2025年第5期3351-3368,共18页
As Deepfake technology continues to evolve,the distinction between real and fake content becomes increasingly blurred.Most existing Deepfake video detectionmethods rely on single-frame facial image features,which limi... As Deepfake technology continues to evolve,the distinction between real and fake content becomes increasingly blurred.Most existing Deepfake video detectionmethods rely on single-frame facial image features,which limits their ability to capture temporal differences between frames.Current methods also exhibit limited generalization capabilities,struggling to detect content generated by unknown forgery algorithms.Moreover,the diversity and complexity of forgery techniques introduced by Artificial Intelligence Generated Content(AIGC)present significant challenges for traditional detection frameworks,whichmust balance high detection accuracy with robust performance.To address these challenges,we propose a novel Deepfake detection framework that combines a two-stream convolutional network with a Vision Transformer(ViT)module to enhance spatio-temporal feature representation.The ViT model extracts spatial features from the forged video,while the 3D convolutional network captures temporal features.The 3D convolution enables cross-frame feature extraction,allowing the model to detect subtle facial changes between frames.The confidence scores from both the ViT and 3D convolution submodels are fused at the decision layer,enabling themodel to effectively handle unknown forgery techniques.Focusing on Deepfake videos and GAN-generated images,the proposed approach is evaluated on two widely used public face forgery datasets.Compared to existing state-of-theartmethods,it achieves higher detection accuracy and better generalization performance,offering a robust solution for deepfake detection in real-world scenarios. 展开更多
关键词 deepfake detection vision transformer spatio-temporal information
在线阅读 下载PDF
论Deepfake技术风险现状与治理探究
10
作者 孙艺嘉 《科技视界》 2025年第20期8-11,共4页
随着生产力的发展与科学技术的进步,人工智能技术蓬勃发展,在极大地便利了人们生活的同时,也出现了Deepfake等一系列威胁风险较大的技术,此类问题是随着科技生产力变革与突破的必然结果,需要正确认识,并及时解决其造成的问题。本文以人... 随着生产力的发展与科学技术的进步,人工智能技术蓬勃发展,在极大地便利了人们生活的同时,也出现了Deepfake等一系列威胁风险较大的技术,此类问题是随着科技生产力变革与突破的必然结果,需要正确认识,并及时解决其造成的问题。本文以人工智能深度伪造技术(Deepfake)为讨论对象,对其技术内涵、发展导源、风险现状、应对方案、治理反思等进行了分析阐述,旨在规避与治理人工智能技术自身带来的威胁与风险的同时,让其更专注地服务于人民的生活,满足人民需求。 展开更多
关键词 深度伪造技术(deepfake) 深度伪造 深度合成技术 人工智能风险治理
在线阅读 下载PDF
A Deepfake Detection Algorithm Based on Fourier Transform of Biological Signal 被引量:1
11
作者 Yin Ni Wu Zeng +2 位作者 Peng Xia Guang Stanley Yang Ruochen Tan 《Computers, Materials & Continua》 SCIE EI 2024年第6期5295-5312,共18页
Deepfake-generated fake faces,commonly utilized in identity-related activities such as political propaganda,celebrity impersonations,evidence forgery,and familiar fraud,pose new societal threats.Although current deepf... Deepfake-generated fake faces,commonly utilized in identity-related activities such as political propaganda,celebrity impersonations,evidence forgery,and familiar fraud,pose new societal threats.Although current deepfake generators strive for high realism in visual effects,they do not replicate biometric signals indicative of cardiac activity.Addressing this gap,many researchers have developed detection methods focusing on biometric characteristics.These methods utilize classification networks to analyze both temporal and spectral domain features of the remote photoplethysmography(rPPG)signal,resulting in high detection accuracy.However,in the spectral analysis,existing approaches often only consider the power spectral density and neglect the amplitude spectrum—both crucial for assessing cardiac activity.We introduce a novel method that extracts rPPG signals from multiple regions of interest through remote photoplethysmography and processes them using Fast Fourier Transform(FFT).The resultant time-frequency domain signal samples are organized into matrices to create Matrix Visualization Heatmaps(MVHM),which are then utilized to train an image classification network.Additionally,we explored various combinations of time-frequency domain representations of rPPG signals and the impact of attention mechanisms.Our experimental results show that our algorithm achieves a remarkable detection accuracy of 99.22%in identifying fake videos,significantly outperforming mainstream algorithms and demonstrating the effectiveness of Fourier Transform and attention mechanisms in detecting fake faces. 展开更多
关键词 deepfake detector remote photoplethysmography fast fourier transform spatial attention mechanism
在线阅读 下载PDF
Advancing Deepfake Detection Using Xception Architecture:A Robust Approach for Safeguarding against Fabricated News on Social Media
12
作者 Dunya Ahmed Alkurdi Mesut Cevik Abdurrahim Akgundogdu 《Computers, Materials & Continua》 SCIE EI 2024年第12期4285-4305,共21页
Deepfake has emerged as an obstinate challenge in a world dominated by light.Here,the authors introduce a new deepfake detection method based on Xception architecture.The model is tested exhaustively with millions of ... Deepfake has emerged as an obstinate challenge in a world dominated by light.Here,the authors introduce a new deepfake detection method based on Xception architecture.The model is tested exhaustively with millions of frames and diverse video clips;accuracy levels as high as 99.65%are reported.These are the main reasons for such high efficacy:superior feature extraction capabilities and stable training mechanisms,such as early stopping,characterizing the Xception model.The methodology applied is also more advanced when it comes to data preprocessing steps,making use of state-of-the-art techniques applied to ensure constant performance.With an ever-rising threat from fake media,this piece of research puts great emphasis on stringent memory testing to keep at bay the spread of manipulated content.It also justifies better explanation methods to justify the reasoning done by the model for those decisions that build more trust and reliability.The ensemble models being more accurate have been studied and examined for establishing a possibility of combining various detection frameworks that could together produce superior results.Further,the study underlines the need for real-time detection tools that can be effective on different social media sites and digital environments.Ethics,protecting privacy,and public awareness in the fight against the proliferation of deepfakes are important considerations.By significantly contributing to the advancements made in the technology that has actually advanced detection,it strengthens the safety and integrity of the cyber world with a robust defense against ever-evolving deepfake threats in technology.Overall,the findings generally go a long way to prove themselves as the crucial step forward to ensuring information authenticity and the trustworthiness of society in this digital world. 展开更多
关键词 deepfake Detection Xception architecture data processing image processing intelligent information systems social media security
在线阅读 下载PDF
一种基于特征提取和转换器的Deepfake换脸视频检测方法
13
作者 亓一航 刘锐钢 +2 位作者 缪云海 高恩伟 董海川 《电信工程技术与标准化》 2024年第12期6-12,共7页
随着AI技术的发展,网络上出现了一大批利用Deepfake等换脸工具合成的视频或者图片,使得内容中出现的人脸并非真容。本文通过Deepfake技术,基于真实人脸照片伪造了虚假人脸照片,用以构建正反向训练数据集。此外,本文设计了一种包含卷积... 随着AI技术的发展,网络上出现了一大批利用Deepfake等换脸工具合成的视频或者图片,使得内容中出现的人脸并非真容。本文通过Deepfake技术,基于真实人脸照片伪造了虚假人脸照片,用以构建正反向训练数据集。此外,本文设计了一种包含卷积部分和反馈部分的模型,该模型能够有效地提取图片的特征信息。针对传统CNN、ViT模型缺少块和通道间交互的问题,本文通过Mix-Transformer模型,将块和通道进行转置卷积融合。最后通过设计数据集对比和模型对比实验,验证了在亚洲人脸真伪分类的场景下,本文构建的数据集和模型大幅提高了真伪分类的准确性。 展开更多
关键词 特征提取 鉴伪分类 deepfake
在线阅读 下载PDF
基于时空特征一致性的Deepfake视频检测模型 被引量:3
14
作者 赵磊 葛万峰 +3 位作者 毛钰竹 韩萌 李文欣 李学 《工程科学与技术》 EI CAS CSCD 北大核心 2020年第4期243-250,共8页
针对目前大部分研究仅关注Deepfake单幅图像的空间域特征而设计检测模型的问题,以Deepfake视频中人物面部表情变化存在细微的不一致、不连续等现象为出发点,提出一种基于时空特征一致性的检测模型。该模型使用卷积神经网络对待检测图像... 针对目前大部分研究仅关注Deepfake单幅图像的空间域特征而设计检测模型的问题,以Deepfake视频中人物面部表情变化存在细微的不一致、不连续等现象为出发点,提出一种基于时空特征一致性的检测模型。该模型使用卷积神经网络对待检测图像提取空域特征,利用光流法在待检测图像的连续帧间进行时域特征的捕获,同时利用卷积神经网络对时域特征进行深层次特征提取,在时域特征和空域特征经过多重的特征变换后,使用全连接神经网络对空域特征和时域特征的组合空间进行分类实现检测目标。将本文提出的模型在Faceforensics++开源Deepfake数据集上开展模型的训练,并对模型的检测效果进行实验验证。实验结果表明,本文模型的检测准确率可达98.1%,AUC值可达0.9981。通过与现有的Deepfake检测模型进行对比,本文模型在检测准确率和AUC取值方面均优于现有模型,验证了本文模型的有效性。 展开更多
关键词 虚假图像 deepfake检测 时域特征 空域特征
在线阅读 下载PDF
Deepfake加持下短视频类假新闻的演变与治理 被引量:3
15
作者 翟红蕾 邹心晨 《今传媒》 2020年第11期34-36,共3页
人工智能时代,假新闻在Deepfake等新兴技术的影响下不断嬗变,形态也从文本转向音频、视频,这不仅在一定程度上纵容了更多假新闻的产生,也对受众辨别信息的能力提出了更高的要求。但是,技术并没有邪恶之分,媒介技术的革新也不是假新闻出... 人工智能时代,假新闻在Deepfake等新兴技术的影响下不断嬗变,形态也从文本转向音频、视频,这不仅在一定程度上纵容了更多假新闻的产生,也对受众辨别信息的能力提出了更高的要求。但是,技术并没有邪恶之分,媒介技术的革新也不是假新闻出现的根源,当前人类认知能力、道德水平及媒介规范程度跟不上技术的变革,如何借助人工智能技术有利的一面营造良好的内容生态,进而帮助用户提高媒介素养,才是治理假新闻的有效途径,也是当前亟待解决的问题。 展开更多
关键词 deepfake 假新闻 深度伪造 人工智能时代
在线阅读 下载PDF
基于卷积LSTM的视频中Deepfake检测方法 被引量:2
16
作者 李永强 白天 《信息技术与网络安全》 2021年第4期28-32,共5页
以Deepfake为代表的伪造人脸技术,使用少量的人脸数据就能将视频中的人脸替换成为目标人脸,从而达到伪造视频的目的。此类技术的滥用将带来恶劣的社会影响,需要使用检测技术加以制裁。针对这一问题,已有若干检测算法被提出。现有方法具... 以Deepfake为代表的伪造人脸技术,使用少量的人脸数据就能将视频中的人脸替换成为目标人脸,从而达到伪造视频的目的。此类技术的滥用将带来恶劣的社会影响,需要使用检测技术加以制裁。针对这一问题,已有若干检测算法被提出。现有方法具有一定局限性,单帧检测算法忽略了Deepfake动态缺陷;当数据存在缺陷时,模型可能会陷入“学会特定脸”的陷阱中。提出了一种对视频数据中的Deepfake检测方法,使用结合CNN和LSTM的卷积LSTM,判断视频真伪。提出了一种基于人脸特征点的cutout方法,能抑制网络学会特定脸。实验表明,在不同场景下,准确度对比基准算法均有提升。 展开更多
关键词 deepfake检测 计算机视觉 深度学习
在线阅读 下载PDF
DeepFake技术背后的安全问题:机遇与挑战 被引量:7
17
作者 高威 萧子豪 朱益灵 《信息安全研究》 2020年第7期634-644,共11页
人工智能的发展给社会生活带来了巨大的改变.然而,随着这些应用的推广,人工智能的安全问题也日益显露出来.最近,以DeepFake为代表的深度伪造技术,严重威胁着社会安全和公众隐私.首先阐述了DeepFake技术的发展背景和技术原理.然后分析了... 人工智能的发展给社会生活带来了巨大的改变.然而,随着这些应用的推广,人工智能的安全问题也日益显露出来.最近,以DeepFake为代表的深度伪造技术,严重威胁着社会安全和公众隐私.首先阐述了DeepFake技术的发展背景和技术原理.然后分析了近年来DeepFake技术在商业、政治、色情和娱乐等方面造成的影响.为了应对这些影响,国内外机构都对与DeepFake相关的技术作出回应,其中,研究机构致力于从技术角度来检测利用DeepFake制作的深伪音视频,维护内容安全. 展开更多
关键词 deepfake 人工智能 生成式模型 隐私 假新闻
在线阅读 下载PDF
基于双层注意力的Deepfake换脸检测 被引量:6
18
作者 龚晓娟 黄添强 +3 位作者 翁彬 叶锋 徐超 游立军 《网络与信息安全学报》 2021年第2期151-160,共10页
针对现有Deepfake检测算法中普遍存在的准确率低、可解释性差等问题,提出融合双层注意力的神经网络模型,该模型利用通道注意力捕获假脸的异常特征,并结合空间注意力聚焦异常特征的位置,充分学习假脸异常部分的上下文语义信息,从而提升... 针对现有Deepfake检测算法中普遍存在的准确率低、可解释性差等问题,提出融合双层注意力的神经网络模型,该模型利用通道注意力捕获假脸的异常特征,并结合空间注意力聚焦异常特征的位置,充分学习假脸异常部分的上下文语义信息,从而提升换脸检测的有效性和准确性。并以热力图的形式有效地展示了真假脸的决策区域,使换脸检测模型具备一定程度的解释性。在FaceForensics++开源数据集上的实验表明,所提方法的检测精度优于MesoInception、Capsule-Forensics和XceptionNet检测方法。 展开更多
关键词 deepfake 换脸检测 假脸检测 注意力
在线阅读 下载PDF
Multi-Branch Deepfake Detection Algorithm Based on Fine-Grained Features 被引量:1
19
作者 Wenkai Qin Tianliang Lu +2 位作者 Lu Zhang Shufan Peng Da Wan 《Computers, Materials & Continua》 SCIE EI 2023年第10期467-490,共24页
With the rapid development of deepfake technology,the authenticity of various types of fake synthetic content is increasing rapidly,which brings potential security threats to people’s daily life and social stability.... With the rapid development of deepfake technology,the authenticity of various types of fake synthetic content is increasing rapidly,which brings potential security threats to people’s daily life and social stability.Currently,most algorithms define deepfake detection as a binary classification problem,i.e.,global features are first extracted using a backbone network and then fed into a binary classifier to discriminate true or false.However,the differences between real and fake samples are often subtle and local,and such global feature-based detection algorithms are not optimal in efficiency and accuracy.To this end,to enhance the extraction of forgery details in deep forgery samples,we propose a multi-branch deepfake detection algorithm based on fine-grained features from the perspective of fine-grained classification.First,to address the critical problem in locating discriminative feature regions in fine-grained classification tasks,we investigate a method for locating multiple different discriminative regions and design a lightweight feature localization module to obtain crucial feature representations by augmenting the most significant parts of the feature map.Second,using information complementation,we introduce a correlation-guided fusion module to enhance the discriminative feature information of different branches.Finally,we use the global attention module in the multi-branch model to improve the cross-dimensional interaction of spatial domain and channel domain information and increase the weights of crucial feature regions and feature channels.We conduct sufficient ablation experiments and comparative experiments.The experimental results show that the algorithm outperforms the detection accuracy and effectiveness on the FaceForensics++and Celeb-DF-v2 datasets compared with the representative detection algorithms in recent years,which can achieve better detection results. 展开更多
关键词 deepfake detection fine-grained classification multi-branch global attention
在线阅读 下载PDF
DeepFake Videos Detection Based on Texture Features 被引量:1
20
作者 Bozhi Xu Jiarui Liu +2 位作者 Jifan Liang Wei Lu Yue Zhang 《Computers, Materials & Continua》 SCIE EI 2021年第7期1375-1388,共14页
In recent years,with the rapid development of deep learning technologies,some neural network models have been applied to generate fake media.DeepFakes,a deep learning based forgery technology,can tamper with the face ... In recent years,with the rapid development of deep learning technologies,some neural network models have been applied to generate fake media.DeepFakes,a deep learning based forgery technology,can tamper with the face easily and generate fake videos that are difficult to be distinguished by human eyes.The spread of face manipulation videos is very easy to bring fake information.Therefore,it is important to develop effective detection methods to verify the authenticity of the videos.Due to that it is still challenging for current forgery technologies to generate all facial details and the blending operations are used in the forgery process,the texture details of the fake face are insufficient.Therefore,in this paper,a new method is proposed to detect DeepFake videos.Firstly,the texture features are constructed,which are based on the gradient domain,standard deviation,gray level co-occurrence matrix and wavelet transform of the face region.Then,the features are processed by the feature selection method to form a discriminant feature vector,which is finally employed to SVM for classification at the frame level.The experimental results on the mainstream DeepFake datasets demonstrate that the proposed method can achieve ideal performance,proving the effectiveness of the proposed method for DeepFake videos detection. 展开更多
关键词 deepfake video tampering tampering detection texture feature
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部