期刊文献+
共找到51篇文章
< 1 2 3 >
每页显示 20 50 100
MDS-DeepLabV3+——一种轻量级的复杂山地耕地提取方法
1
作者 殷海倩 甘淑 +2 位作者 袁希平 朱智富 张家铮 《兰州大学学报(自然科学版)》 北大核心 2025年第3期341-349,356,共10页
针对复杂山地空间异质性显著、耕地信息破碎化严重、提取困难等问题,对DeepLabV3+模型进行改进,基于恐龙谷高分二号卫星影像,构建一种用于复杂山地耕地信息自动提取的MDS-DeepLabV3+模型.使用MobileNetV2作为特征提取器,引入其在ImageNe... 针对复杂山地空间异质性显著、耕地信息破碎化严重、提取困难等问题,对DeepLabV3+模型进行改进,基于恐龙谷高分二号卫星影像,构建一种用于复杂山地耕地信息自动提取的MDS-DeepLabV3+模型.使用MobileNetV2作为特征提取器,引入其在ImageNet数据集上的预训练权重,降低复杂度,加速模型拟合;提出密集连接的空间空洞金字塔池化模块与scSE注意力模块结合的DscASPP模块,获取多尺度图像特征,整合空间通道信息.采用CARAFE算子替代原始上采样方法,在较大的感受野范围内聚合上下文信息,实现更准确和高效的特征重建.结果表明,MDS-DeepLabV3+模型平均交并比DeepLabV3+提升6.5%,平均像素准确率增加4.08%,F_(1)上升4.04%,模型参数量仅有3.97 MB.在禄丰数据集上对各种耕地类型的提取效果均优于其他分割网络,有效降低耕地漏提率和误提率,提取效率及准确性较高. 展开更多
关键词 语义分割 高分二号卫星影像 MobileNetV2模型 scSE注意力模块 deeplabv3+模型
原文传递
一种改进DeepLabV3+的SAR图像建筑分割方法 被引量:1
2
作者 张文武 龙伟军 +1 位作者 陈虹廷 陈逸飞 《无线电工程》 2025年第3期475-483,共9页
合成孔径雷达(Synthetic Aperture Radar,SAR)图像相对于光学图像具有一定的穿透能力和全天候连续监测能力等优势,适合更多场景的应用。建筑分割图像对于城市规划、环境监测以及灾害评估等领域具有重要作用。针对SAR图像中建筑分割算法... 合成孔径雷达(Synthetic Aperture Radar,SAR)图像相对于光学图像具有一定的穿透能力和全天候连续监测能力等优势,适合更多场景的应用。建筑分割图像对于城市规划、环境监测以及灾害评估等领域具有重要作用。针对SAR图像中建筑分割算法特征提取能力不足、分割精度较低的问题,提出一种改进DeepLabV3+的语义分割模型——CFNet。CFNet将传统DeepLabV3+的主干网络Xception修改为MobileNetV2主干网络,以减少模型总参数量并提升运算速度;提出了一种新的结合通道注意力机制和空间注意力机制的交叉注意力机制,以提取浅层和深层特征;改进了网络中提取的浅层和深层特征的融合方式,分别将浅层和深层特征作为辅助引入进行二者的融合,最大程度地利用了网络中的浅层与深层特征,提升了算法的特征提取能力。在SARBuD 1.0数据集上的实验结果表明,CFNet的平均交并比(mean Intersection over Union,mIoU)为80.69%,精确率(Precision)为87.99%,召回率(Recall)为92.05%,F1因子为89.86%,相较于其他多种分割网络,CFNet在SAR图像建筑分割精度上有一定提升。 展开更多
关键词 deeplabv3+模型 合成孔径雷达图像 深度学习 语义分割 特征融合
在线阅读 下载PDF
基于改进DeepLabV3+网络的荔枝种植面积提取方法
3
作者 刘振国 孙永旺 +2 位作者 张喜珍 刘宜浩 鲍荣中 《农业工程学报》 北大核心 2025年第12期191-197,共7页
现有的荔枝种植面积遥感提取方法存在提取精度不高、分割效果欠佳、训练时间长以及模型复杂度高等问题。为此该研究提出了改进的DeepLabV3+模型,将主干网络Xception替换为MobileNetV2,保证精度的同时节约时间;构建DenseASPP模块增强多... 现有的荔枝种植面积遥感提取方法存在提取精度不高、分割效果欠佳、训练时间长以及模型复杂度高等问题。为此该研究提出了改进的DeepLabV3+模型,将主干网络Xception替换为MobileNetV2,保证精度的同时节约时间;构建DenseASPP模块增强多尺度特征提取;引入通道注意力机制和条带池化,抑制干扰,提高精度。并与SegFormer、PSPNet和UNet图像分割模型进行对比。结果表明,改进模型的平均交并比(mean intersection over union,MIoU)、平均像素精度(mean pixel accuracy,mPA)和准确率(accuracy,Ac)分别为83.55%、91.58%、91.15%,相比于原始的DeepLabV3+模型分别提高了8.15、5.27、4.97个百分点,而与其他模型对比,该模型通过结构优化将参数量压缩至5.8 M,计算复杂度降为22.4 GFLOPs,较原始的DeepLabV3+降低94%,较PSPNet减少95%。研究结果为准确了解和掌握种植区的空间分布及变迁趋势提供参考。 展开更多
关键词 深度学习 荔枝 语义分割 种植面积提取 deeplabv3+模型 MobileNetV2
在线阅读 下载PDF
基于DeepLabv3+网络的煤体孔隙识别及分析
4
作者 刘纪坤 张博浩 +2 位作者 王翠霞 赵兰华 徐栋梁 《西安科技大学学报》 北大核心 2025年第3期481-490,共10页
煤基质孔隙结构影响着瓦斯赋存、运移形式,对瓦斯涌出量预测、煤层气安全开采至关重要。为实现煤体孔隙的准确表征,以小保当(XBD)和桑树坪(SSP)2个矿区煤样为例,通过聚焦离子束扫描电镜(FIB-SEM)试验获取煤体孔隙分布图像,建立数据集。... 煤基质孔隙结构影响着瓦斯赋存、运移形式,对瓦斯涌出量预测、煤层气安全开采至关重要。为实现煤体孔隙的准确表征,以小保当(XBD)和桑树坪(SSP)2个矿区煤样为例,通过聚焦离子束扫描电镜(FIB-SEM)试验获取煤体孔隙分布图像,建立数据集。基于机器学习方法构建了煤体孔隙图像识别分割的DeepLabv3+模型,并与经典网络模型PSPnet和UNet进行对比,实现煤体孔隙结构的快速识别及分析。结果表明:DeepLabv3+网络分割效果良好,平均交并比达到92.71%,较PSPnet和UNet网络分别提升了12.67%、2.32%,对于微纳米孔隙的识别能力较强;XBD煤样孔径大于50 nm的大孔分布较多,占总孔的55.02%,以角砾孔、粒间孔和溶蚀孔为主,孔隙连通性较好,而SSP孔径2~50 nm的过渡孔及大孔数量较多,所占孔隙比例为76.04%,形态相对简单,平均圆度达到0.531μm,但孔隙间连通性差,不利于瓦斯气体运移,与瓦斯涌出量的测定结果一致。研究结果证明了DeepLabv3+模型在煤体孔隙图像分割方面具有良好的适用性,为煤体孔隙结构表征及分析提供了参考依据。 展开更多
关键词 孔隙结构 瓦斯涌出量 聚焦离子束扫描电镜 机器学习 deeplabv3+模型
在线阅读 下载PDF
基于改进DeepLabv3+的车辆和车道线检测方法
5
作者 陈方舟 朱宸 +2 位作者 赵晓雨 马陈坚松 提艳 《汽车实用技术》 2025年第6期41-45,共5页
针对现有研究较少采用同一网络实现车辆和车道线的同时检测,且实时性较差的问题,文章对传统的DeepLabv3+网络进行轻量化改进,用MobileNet v2网络替换原有的Xception主干网络,进一步将MobileNet v2网络的五次下采样改成四次,并调整学习... 针对现有研究较少采用同一网络实现车辆和车道线的同时检测,且实时性较差的问题,文章对传统的DeepLabv3+网络进行轻量化改进,用MobileNet v2网络替换原有的Xception主干网络,进一步将MobileNet v2网络的五次下采样改成四次,并调整学习率等参数;构建同时包含车辆和车道线的图像数据集,将Xception、MobileNet v2和文章提出的改进方法在数据集上进行训练和测试。实验结果表明,该改进方法的平均像素准确率(mPA)和平均交并比(mIoU)分别为86.78%和77.66%,与原Xception主干网络相比基本相同;模型体积为22.44 m^(3),减小了89.3%,帧率(FPS)提高了72.43%,该方法在保证检测精度的同时大幅提升了检测速度。因此,该研究为智能网联汽车自动驾驶过程中的车辆和车道线检测提供了建议,为汽车行驶安全提供了有力支持。 展开更多
关键词 车辆检测 车道线检测 deeplabv3+ 模型轻量化
在线阅读 下载PDF
基于先验知识的DeeplabV3+大棚房自动检测方法研究
6
作者 姜敏 《城市勘测》 2025年第2期12-17,共6页
随着城市化进程的不断推进,违规建设的大棚房对耕地资源的保护和合理利用构成了严峻挑战。为有效识别和监管大棚房,本研究提出了一种基于先验知识的DeepLabv3+自动检测大棚房方法,该方法基于国土变更调查获取耕地、设施农用地等类别属... 随着城市化进程的不断推进,违规建设的大棚房对耕地资源的保护和合理利用构成了严峻挑战。为有效识别和监管大棚房,本研究提出了一种基于先验知识的DeepLabv3+自动检测大棚房方法,该方法基于国土变更调查获取耕地、设施农用地等类别属性等先验知识基础上,采用深度学习DeepLabv3+模型进行自动特征提取,融合空洞卷积和编码器-解码器结构优化图像特征表示,结合迁移学习整合光谱信息和几何形状等先验知识,实现对大棚房的高效自动监测,同时将自动监测结果与交通通达度、夜间等灯光指数和POI数据进行空间叠加分析,获得大棚房置信度分析结果。研究结果表明:所提方法能够显著减少对人工大规模标注数据的依赖,提高模型在小样本学习条件下的泛化能力,在多个评价指标上均表现出色,特别是在平均交并比(mIoU)上达到了0.9以上,验证了该方法在大棚房自动检测中的高效性和准确性,本研究的方法可为大棚房问题治理提供更加高效、精准的监测技术手段管理提供有效参考。 展开更多
关键词 大棚房检测 深度学习 deeplabv3+模型 编码器-解码器
在线阅读 下载PDF
改进DeepLabV3+在遥感影像建筑物提取中的应用
7
作者 邬思燕 欧泽强 《北京测绘》 2025年第11期1580-1586,共7页
针对复杂城市场景下城市建筑物高精度提取需求,本文在传统深度学习语义分割V3+(DeepLabV3+)模型基础上,采用深度残差网络-50(ResNet-50)作为主干特征提取网络,利用多尺度特征增强(Do-ASPP)模块增强多尺度建筑物特征表达,结合特征金字塔... 针对复杂城市场景下城市建筑物高精度提取需求,本文在传统深度学习语义分割V3+(DeepLabV3+)模型基础上,采用深度残差网络-50(ResNet-50)作为主干特征提取网络,利用多尺度特征增强(Do-ASPP)模块增强多尺度建筑物特征表达,结合特征金字塔融合(FPN)结构提升空间分辨率与边界细节捕捉能力,并融合有效通道注意力机制(ECA)优化光谱特征响应,构建更适配复杂城市场景的改进DeepLabV3+建筑物提取模型。以广东省某地区多源遥感影像为实验数据,同步构建端到端训练的语义分割网络(SegNet)、计算机视觉语义分割模型(U-Net)、DeepLabV3+及改进DeepLabV3+模型进行对比实验,结果表明,改进模型在精确率、召回率、F1及交并比等关键精度指标上均优于其他模型,且在大尺度、小尺度以及混合尺度建筑物提取任务中均表现出较高的适用性,漏检与误检现象显著减少,建筑物边界轮廓更加完整,细节表达更为精准,验证了改进DeepLabV3+模型在复杂城市场景建筑物提取中的优越性能,为城市规划、灾害评估及地理信息更新等领域的高精度遥感解译提供了可靠的技术支持。 展开更多
关键词 遥感影像 改进深度学习语义分割V3+模型 建筑物提取 精度评价 消融实验
在线阅读 下载PDF
基于MS-DeepLabV3+的街景语义分割及城市多维特征识别 被引量:8
8
作者 柳林 马泽鹏 +2 位作者 孙毅 李万武 项子诚 《武汉大学学报(信息科学版)》 EI CAS CSCD 北大核心 2024年第3期343-354,共12页
传统城市特征识别采用空间和统计方法提取分析指标,特征评价指标主观性较大。街景影像包含城市视觉信息,可以进行城市特征识别。以中国青岛市为例,构建面向街景的多尺度语义分割模型MS-DeepLabV3+。在编码区增加全特征提取通道聚合多尺... 传统城市特征识别采用空间和统计方法提取分析指标,特征评价指标主观性较大。街景影像包含城市视觉信息,可以进行城市特征识别。以中国青岛市为例,构建面向街景的多尺度语义分割模型MS-DeepLabV3+。在编码区增加全特征提取通道聚合多尺度特征;在解码区增加多尺度特征提取通道,有效捕捉低层次特征;引入注意力机制模块和通道注意力,聚焦关键特征,提高街景语义分割的准确性,模型平均交并比、精确率和召回率分别提高了3.47%、2.37%和3.96%。在地块尺度上,从6个维度建立了城市多维特征向量,即环境维度、设施便利维度、经济富裕度、交通维度、城市安全维度和城市综合度,结合兴趣点数据和居住用地数据,以表征青岛市各城区的城市特征。使用Grad-CAM方法对语义分割模型进行可解释分析,采用特征归因SHAP方法挖掘了城市多维特征的内在驱动因素。结果发现,不同城区具有不同的特征向量,不同城区的特征向量具有在特定维度上的优势。研究结果有助于优化城市空间中多维度特征,为城市的规划建设提供参考。 展开更多
关键词 街景影像 MS-deeplabv3+模型 语义分割 多维特征向量 归因分析
原文传递
基于改进DeepLabv3+的光伏电站道路识别方法 被引量:4
9
作者 李翠明 王华 +1 位作者 徐龙儿 王龙 《上海交通大学学报》 EI CAS CSCD 北大核心 2024年第5期776-782,I0010,共8页
针对移动清洁机器人在光伏电站作业时需要精确快速识别道路的问题,提出一种改进的DeepLabv3+目标识别模型对光伏电站道路进行识别.首先,将原DeepLabv3+模型的主干网络替换为优化的MobileNetv2网络以降低模型复杂度;其次,采用异感受野融... 针对移动清洁机器人在光伏电站作业时需要精确快速识别道路的问题,提出一种改进的DeepLabv3+目标识别模型对光伏电站道路进行识别.首先,将原DeepLabv3+模型的主干网络替换为优化的MobileNetv2网络以降低模型复杂度;其次,采用异感受野融合和空洞深度可分离卷积结合的策略改进空洞空间金字塔池化(ASPP)结构,提高ASPP的信息利用率和模型训练效率;最后,引入注意力机制,提升模型识别精度.结果表明,改进后模型的平均像素准确率为98.06%,平均交并比为95.92%,相比于DeepLabv3+基础模型分别提高了1.79个百分点、2.44个百分点,且高于SegNet、UNet模型.同时,改进后的模型参数量小,实时性好,能够更好地实现光伏电站移动清洁机器人的道路识别. 展开更多
关键词 光伏电站 道路识别 deeplabv3+模型 注意力机制 MobileNetv2
在线阅读 下载PDF
基于改进DeeplabV3+的遥感图像道路分割模型 被引量:3
10
作者 张银胜 单梦姣 +3 位作者 钟思远 陈戈 童俊毅 单慧琳 《国外电子测量技术》 2024年第1期189-198,共10页
针对遥感图像道路分割边界模糊和遮挡难以区分的问题,提出了基于改进DeeplabV3+的遥感图像道路分割模型。该模型在主干网络中引入MobileNetV3和高效通道注意力机制(ECA),减少了参数量并关注连续的道路特征信息。在解码过程中采用多级上... 针对遥感图像道路分割边界模糊和遮挡难以区分的问题,提出了基于改进DeeplabV3+的遥感图像道路分割模型。该模型在主干网络中引入MobileNetV3和高效通道注意力机制(ECA),减少了参数量并关注连续的道路特征信息。在解码过程中采用多级上采样,增强了编码器和解码器之间的紧密连接,全面保留了细节信息。同时,在ASPP模块中采用深度可分离膨胀卷积DS-ASPP,显著减少了参数量。实验结果表明,该模型在Massachusetts Roads数据集上的交并比达到了83.71%,准确率达到了93.71%,分割精度最优,模型参数量为55.57×10^(6),能够有效地避免边界模糊和遮挡导致的错漏检问题,在遥感道路分割中提高了精度和速度。 展开更多
关键词 遥感图像 道路分割 deeplabv3+模型 MobileNetV3模型 多级上采样
原文传递
基于DeepLabV3+模型的钝性颅脑损伤CT图像智能识别与分割
11
作者 秦豪杰 刘媛媛 +7 位作者 付恩浩 刘雅雯 田志岭 董贺文 刘太昂 邹冬华 程亦斌 刘宁国 《法医学杂志》 CSCD 北大核心 2024年第5期419-429,共11页
目的基于钝性颅脑损伤CT图像训练卷积神经网络DeepLabV3+模型,实现对常见颅脑损伤的智能化识别与分割(下文简称“分割”),探索深度学习技术在法医学钝性颅脑损伤自动化诊断中的应用价值。方法收集活体5486张钝性颅脑损伤CT图像作为训练... 目的基于钝性颅脑损伤CT图像训练卷积神经网络DeepLabV3+模型,实现对常见颅脑损伤的智能化识别与分割(下文简称“分割”),探索深度学习技术在法医学钝性颅脑损伤自动化诊断中的应用价值。方法收集活体5486张钝性颅脑损伤CT图像作为训练集、验证集和测试集进行模型训练与性能评估,另取活体255张钝性颅脑损伤与156张正常颅脑CT图像作为盲测集,评估模型分割5类颅脑损伤(头皮血肿、颅骨骨折、硬脑膜外血肿、硬脑膜下血肿和脑挫伤)的能力。再收集尸体340张钝性颅脑损伤和120张正常颅脑CT图像作为新的盲测集,探索用活体颅脑损伤CT图像训练的模型在尸体颅脑损伤分割中的应用价值。对除盲测集以外的所有钝性颅脑损伤CT图像中的5类颅脑损伤进行人工标记,再将各数据集输入模型,对模型进行训练后,根据训练集、验证集的损失函数与准确率评估并优化模型性能,根据测试集的Dice值评估模型泛化能力;根据盲测集的准确率、精确率和F1值评价模型对5类颅脑损伤的分割性能。结果经过对模型的训练和优化,最终的最优模型对头皮血肿、颅骨骨折、硬脑膜外血肿、硬脑膜下血肿和脑挫伤分割的平均Dice值分别是0.7664、0.8123、0.9387、0.7827和0.8581,均大于0.75,达到了预期要求。盲测集的外部验证结果显示,5类颅脑损伤分割的F1值在活体颅脑损伤CT图像中分别是93.02%、89.80%、87.80%、92.93%和86.57%,在尸体颅脑损伤CT图像中分别是83.92%、44.90%、76.47%、64.29%和48.89%,说明该模型在活体CT图像上能准确分割5类颅脑损伤,而在尸体CT图像上的分割能力相对较差,但仍然能够准确分割头皮血肿、硬脑膜外血肿和硬脑膜下血肿。结论基于CT图像训练的深度学习模型可用于颅脑损伤的分割,但直接将活体颅脑损伤模型用于尸体颅脑损伤的分割有局限性。本研究为钝性颅脑损伤虚拟解剖数据的智能分割提供了新途径。 展开更多
关键词 法医学 人工智能 deeplabv3+模型 钝性颅脑损伤 深度学习 计算机体层成像 图像分割
在线阅读 下载PDF
基于图像处理和Deeplabv3+模型的小麦赤霉病识别 被引量:12
12
作者 戴雨舒 仲晓春 +3 位作者 孙成明 杨俊 刘涛 刘升平 《中国农机化学报》 北大核心 2021年第9期209-215,共7页
赤霉病是影响小麦产量和品质的主要病害之一。为快速、有效地监测小麦赤霉病的发生情况,利用数码相机对人工接种赤霉病菌的小麦田进行RGB图像获取,在图像预处理基础上,对Deeplabv3+网络模型进行调参和训练。以轻量化网络MobileNet V2为... 赤霉病是影响小麦产量和品质的主要病害之一。为快速、有效地监测小麦赤霉病的发生情况,利用数码相机对人工接种赤霉病菌的小麦田进行RGB图像获取,在图像预处理基础上,对Deeplabv3+网络模型进行调参和训练。以轻量化网络MobileNet V2为网络编码模块,利用空洞卷积技术建立基于深度学习网络的小麦赤霉病发病麦穗的识别与检测模型,并用实测数据对模型进行验证和评价。结果表明,该模型的平均精度为0.9692,损失函数Loss为0.1030,平均交并比MIoU为0.793,模型识别与检测效果较好。上述结果为小麦赤霉病的检测与识别提供新的手段。 展开更多
关键词 小麦 赤霉病 deeplabv3+模型 深度学习 图像识别
在线阅读 下载PDF
基于优化DeepLabv3+的混凝土梁裂缝分割及特征量化 被引量:8
13
作者 张修杰 袁嘉豪 +1 位作者 岳学军 张伟锋 《科学技术与工程》 北大核心 2023年第9期3794-3803,共10页
目前基于深度神经网络的裂缝分割模型存在着训练参数多、裂缝边缘分割粗糙、分割精度不足、缺少深度特征语义信息等问题。为解决以上问题,对分割性能较好的DeepLabv3+模型进行研究,嵌入Non-local注意力机制,并改进了主干网络ResNet101... 目前基于深度神经网络的裂缝分割模型存在着训练参数多、裂缝边缘分割粗糙、分割精度不足、缺少深度特征语义信息等问题。为解决以上问题,对分割性能较好的DeepLabv3+模型进行研究,嵌入Non-local注意力机制,并改进了主干网络ResNet101得到优化模型DeepLabv3+(N-S),最后基于优化模型的输出并使用裂缝骨架提取的方法来量化裂缝特征参数。使用的数据集为自制的混凝土梁裂缝图像数据集,并对优化前后模型作对比实验,分析了模型在各项性能上优化的有效性,并使用实测数据来验证评估裂缝各项特征参数量化方法。实验结果表明,DeepLabv3+(N-S)网络在数据集上的平均像素准确率(mean pixel accuracy,mPA)、平均交并比(mean intersection over union,mIoU)分别达到了88.86%、82.04%,较于原模型分别提高2.21%、2.54%,裂缝分割效果优于原模型,且裂缝样本各项特征参数量化的平均误差为+8.7%,低于原模型,可满足工程上的检测精度需求。 展开更多
关键词 裂缝分割 deeplabv3+模型 NON-LOCAL 主干网络改进 裂缝特征参数量化
在线阅读 下载PDF
改进Deeplabv3+的高分辨率遥感影像道路提取模型 被引量:14
14
作者 赵凌虎 袁希平 +2 位作者 甘淑 胡琳 丘鸣语 《自然资源遥感》 CSCD 北大核心 2023年第1期107-114,共8页
针对传统的道路提取方法在高分辨率遥感影像中存在提取效果差和提取速度慢的问题,提出了改进Deeplabv3+的高分辨率遥感影像道路提取模型。采用MobileNetv2主干特征提取网络与Dice Loss函数相结合,较好地平衡了高分辨率遥感影像道路提取... 针对传统的道路提取方法在高分辨率遥感影像中存在提取效果差和提取速度慢的问题,提出了改进Deeplabv3+的高分辨率遥感影像道路提取模型。采用MobileNetv2主干特征提取网络与Dice Loss函数相结合,较好地平衡了高分辨率遥感影像道路提取精度与速度的矛盾,实现较高提取精度的同时减少了模型参数,满足了时效性的要求。基于开源道路提取数据集的实验结果表明:①该文提出的道路提取模型在高分辨率遥感影像上具有可行性,提取道路的整体精度达到98.71%,具有较高的提取精度;②在提取道路的速度方面该方法平均帧数达到120.05,模型参数量仅为5.81 M,总体上比原模型更加轻量化,表明该方法满足了时效性的要求。该方法在大幅减少参数量、满足时效性的同时保证了提取的精确度,为提高基于高分辨率影像的道路提取精度和速度提供了一种新的改进思路和方法。 展开更多
关键词 遥感影像 道路提取 深度学习 语义分割 deeplabv3+模型
在线阅读 下载PDF
改进DeepLabv3+模型的混凝土坝表观裂缝特征提取方法 被引量:7
15
作者 王琳琳 孟良 +2 位作者 卜博雅 钟胜 李俊杰 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第4期929-936,共8页
为了解决混凝土坝环境复杂造成现有算法裂缝检测难度大、效果差的问题,提出了一种改进DeepLabv3+模型的混凝土坝裂缝特征提取方法.该方法以轻量型网络替换原始骨干网络提取图像特征,降低模型复杂度;扩充空洞空间金字塔池化模块,提升编... 为了解决混凝土坝环境复杂造成现有算法裂缝检测难度大、效果差的问题,提出了一种改进DeepLabv3+模型的混凝土坝裂缝特征提取方法.该方法以轻量型网络替换原始骨干网络提取图像特征,降低模型复杂度;扩充空洞空间金字塔池化模块,提升编码器感受野;采用多尺度特征融合策略,提高边缘信息利用率;优化模型损失函数,克服像素不均衡的困难.采用自制混凝土坝表观裂缝图像数据集对提出方法的有效性和优越性进行了验证与评估,结果表明:构建的改进网络能准确地实现复杂背景下混凝土坝表观裂缝特征的提取,分割裂缝图像的交并比与像素精度分别为72.85%与85.36%,裂缝分割效果也明显优于其他方法,可为长期混凝土坝面裂缝监测提供有效的技术手段. 展开更多
关键词 混凝土坝 裂缝检测 图像分割 deeplabv3+模型
在线阅读 下载PDF
基于改进DeepLabV3+的轻量化茶叶嫩芽采摘点识别模型 被引量:6
16
作者 胡程喜 谭立新 +1 位作者 王文胤 宋敏 《智慧农业(中英文)》 CSCD 2024年第5期119-127,共9页
[目的/意义]名优茶的采摘是茶产业中至关重要的环节,识别和定位名优茶嫩芽采摘点是现代化采茶过程中的重要组成部分。传统神经网络方法存在着模型体量大、训练时间长,以及应对场景复杂等问题。本研究以湖南省溪清茶园为实际场景,提出一... [目的/意义]名优茶的采摘是茶产业中至关重要的环节,识别和定位名优茶嫩芽采摘点是现代化采茶过程中的重要组成部分。传统神经网络方法存在着模型体量大、训练时间长,以及应对场景复杂等问题。本研究以湖南省溪清茶园为实际场景,提出一种新型深度学习算法解决名优茶采摘点的精确分割难题。[方法]对传统的DeepLabV3+算法进行轻量化改进。首先,针对其模型体量大、训练时间长的问题,使用MobilenetV2网络提取图像的初始特征,并按照网络结构划分深浅层特征;其次,将高效通道注意力网络(Efficient Channel Attention Network,ECANet)与空洞空间卷积池化金字塔(Atrous Spatial Pyramid Pooling,ASPP)模块结合,得到ECA_ASPP模块,并将深层特征输入到ECA_ASPP模块中进行多尺度特征融合以减少无效信息,将经过处理后的深浅层特征相加,随后通过卷积和上采样的方式对特征信息进行还原,得到分割结果;最后,通过对识别结果进行处理以获得茶叶嫩芽采摘点。[结果和讨论]改进后的DeepLabV3+在茶叶嫩芽数据集上的平均交并比达到93.71%,平均像素准确率达到97.25%,模型参数量由原来以Xception为底层网络的54.714 M下降至5.818 M。[结论]本研究在茶叶嫩芽结构分割上相对于原版DeepLabV3+的检测速度更快、参数量更小,同时保证了较高的准确率,为智能采茶机器人的采摘提供了新的定位方法。 展开更多
关键词 轻量化模型 deeplabv3+ 注意力机制 茶叶嫩芽 ECANet 名优茶 空洞空间卷积池化金字塔
在线阅读 下载PDF
基于DeepLabV3+的远距离目标语义分割模型 被引量:3
17
作者 喻根 崔炜 +1 位作者 徐照翔 刘馨柔 《电光与控制》 CSCD 北大核心 2021年第1期66-70,共5页
针对复杂环境下远距离目标在语义分割时易出现的边界模糊、断裂及目标丢失等问题,基于DeepLabV3+网络提出了一种结合边界信息的语义分割模型。该模型采用改进的Darknet-53网络代替原DeepLabV3+特征提取网络以加快模型运行速度,并设计了... 针对复杂环境下远距离目标在语义分割时易出现的边界模糊、断裂及目标丢失等问题,基于DeepLabV3+网络提出了一种结合边界信息的语义分割模型。该模型采用改进的Darknet-53网络代替原DeepLabV3+特征提取网络以加快模型运行速度,并设计了一种特征融合模块作为低层特征用于解码阶段恢复细节信息,为了进一步优化目标边界,利用特征共享原则,设计一种通过主体网络特征共享层学习多尺度信息以预测目标边界的边界提取模块,以此对分割图像进行约束优化,提升模型在边界处的预测准确率。实验结果表明,提出的语义分割模型能够有效缓解远距离目标语义分割时的边界模糊等问题。 展开更多
关键词 远距离目标 语义分割 边界提取 deeplabv3+模型
在线阅读 下载PDF
基于改进Deeplabv3+的电力线分割方法研究 被引量:1
18
作者 唐心亮 赵冰雪 +1 位作者 韩明 宿景芳 《国外电子测量技术》 2024年第3期43-49,共7页
针对已有的分割算法存在的复杂场景干扰大、分割不准确的问题,提出一种用于电力线分割任务的改进Deeplabv3+模型。将原始主干网络替换为轻量级Mobilenetv2网络,增加低水平特征,获得5路输入特征,充分提取特征信息;添加空洞空间金字塔池化... 针对已有的分割算法存在的复杂场景干扰大、分割不准确的问题,提出一种用于电力线分割任务的改进Deeplabv3+模型。将原始主干网络替换为轻量级Mobilenetv2网络,增加低水平特征,获得5路输入特征,充分提取特征信息;添加空洞空间金字塔池化(atrous spatial pyramid pooling,ASPP)的卷积分支数量,调整空洞率,提升图像的特征抓取能力,进一步在每个空洞卷积后加入1×1卷积操作,加快计算速度;提出一种基于坐标注意力机制的语义嵌入分支模块(coordinate attention semantic embedding branch,CASEB),融合第2、3路特征,增强目标特征的表示;引入卷积注意力机制模块(convolution block attention module,CBAM)抑制无用信息的传递,提高模型识别效率。实验结果表明,相对于原Deeplabv3+模型,改进模型在平均像素精度(mean pixel attention,MPA)和平均交并比(mean intersection over union,mIoU)上分别提升2.37%和3.42%,该方法可提供更加精确的电力线分割结果。 展开更多
关键词 电力线分割 深度学习 改进deeplabv3+模型 Mobilenetv2 注意力模块
原文传递
基于改进DeepLabv3+模型的农村道路提取方法研究 被引量:2
19
作者 何士俊 肖提荣 夏既胜 《云南大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第3期486-495,共10页
从国产高分辨率影像中快速准确提取农村道路在信息管理、农村农业现代化等领域具有重要的价值,但由于背景噪音复杂、道路蜿蜒细长、易受阴影遮挡等,传统遥感解译方法提取农村道路信息效率低、精度不高.文章针对农村道路的特征,对DeepLab... 从国产高分辨率影像中快速准确提取农村道路在信息管理、农村农业现代化等领域具有重要的价值,但由于背景噪音复杂、道路蜿蜒细长、易受阴影遮挡等,传统遥感解译方法提取农村道路信息效率低、精度不高.文章针对农村道路的特征,对DeepLabv3+模型进行改进,设计了一种兼具效率和精度的高分辨率影像农村道路信息提取改进模型.首先,使用Mobilenetv2作为模型的主干,减少模型的参数;其次,在ASPP模块中串联CBAM,加强模型的特征感受能力;最后,添加Dice Loss函数改进损失函数,克服样本的不均衡.实验结果表明,细节的改进使得各项指标明显提升,效率和精度达到了最高;与经典模型相比,改进模型在MPA、MIoU上取得了更高的分数,虽然对深层特征的深度学习需要花费更多的时间,但改进模型在精度效率上均优于其他模型. 展开更多
关键词 农村道路 GF-2遥感影像 deeplabv3+模型 深度学习
在线阅读 下载PDF
基于改进的DeepLabV3+网络模型的杂交水稻育种父母本语义分割研究 被引量:2
20
作者 温佳 梁喜凤 王永维 《浙江大学学报(农业与生命科学版)》 CAS CSCD 北大核心 2023年第6期893-902,共10页
为解决杂交水稻育种授粉过程中父母本区分的精确性和实时性问题,本研究提出一种基于全卷积神经网络的、改进的DeepLabV3+杂交水稻育种父母本区分的语义分割模型。采用轻量化的主干网络MobileNetV2结构替换原DeepLabV3+的主干网络Xceptio... 为解决杂交水稻育种授粉过程中父母本区分的精确性和实时性问题,本研究提出一种基于全卷积神经网络的、改进的DeepLabV3+杂交水稻育种父母本区分的语义分割模型。采用轻量化的主干网络MobileNetV2结构替换原DeepLabV3+的主干网络Xception结构,使之更适用于移动设备,并提出一种联系较为紧密的低层特征信息提取方法,将较低层次信息和较高层次信息初步融合作为原低层次信息的输入,使网络获得更加密集的信息,从而增强网络对于细节的提取能力。结果表明,改进的DeepLabV3+网络模型较原DeepLabV3+网络模型具有更高的杂交水稻制种父母本分割精度,并能够减少模型训练和图片预测时间。将改进后的DeepLabV3+网络模型与其他主流网络和先进网络模型对比发现,各项参数精度均有所提高。本研究为深度学习在农业视觉机器人领域中的发展提供了参考。 展开更多
关键词 语义分割 深度学习 deeplabv3+网络模型 杂交水稻 轻量化模型
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部