期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
基于DeepLabCut算法的猪只体尺快速测量方法研究 被引量:14
1
作者 赵宇亮 曾繁国 +3 位作者 贾楠 朱君 王海峰 李斌 《农业机械学报》 EI CAS CSCD 北大核心 2023年第2期249-255,292,共8页
为解决基于计算机视觉猪只体尺测量过程中存在的对猪只姿态依赖度高、测定效率低等问题,提出了一种基于DeepLabCut算法的非接触式猪只体尺快速测量方法。本研究以长白猪为研究对象,使用RealSense L515深感相机作为图像数据采集单元获取... 为解决基于计算机视觉猪只体尺测量过程中存在的对猪只姿态依赖度高、测定效率低等问题,提出了一种基于DeepLabCut算法的非接触式猪只体尺快速测量方法。本研究以长白猪为研究对象,使用RealSense L515深感相机作为图像数据采集单元获取猪只背部RGB-D数据,通过分析对比ResNet、MobileNet-V2、EfficientNet系列的10个主干网络训练效果,选取EfficientNet-b6模型作为DeepLabCut算法最优主干网络进行猪只体尺特征点检测;为实现猪只体尺数据的精准计算,本文采用SVM模型识别猪只站立姿态,筛选猪只自然站立状态;在此基础上,采用深度数据临近区域替换算法对离群特征点进行优化,并计算猪只体长、体宽、体高、臀宽和臀高5项体尺指标。经对140组猪只图像进行测试发现,本研究提出的算法可实现猪只自然站立姿态下体尺的实时、精准测量,体尺最大均方根误差为1.79 cm,计算耗时为每帧0.27 s。 展开更多
关键词 猪只 deeplabcut 非接触式 特征点 体尺测量
在线阅读 下载PDF
改进的DeepLabCut鱼类游动轨迹提取 被引量:1
2
作者 雷帮军 裴斐 +1 位作者 吴正平 张海镔 《渔业现代化》 CSCD 北大核心 2024年第2期61-69,共9页
针对现有的鱼类游动轨迹提取方法在提取效率和准确率方面不能同时兼顾的问题,提出了一种改进的DeepLabCut方法用于鱼类背部关键点识别和定位。首先,选择了轻量级卷积神经网络模型EfficientNet-B0作为DeepLabCut的主干网络模型,用于提取... 针对现有的鱼类游动轨迹提取方法在提取效率和准确率方面不能同时兼顾的问题,提出了一种改进的DeepLabCut方法用于鱼类背部关键点识别和定位。首先,选择了轻量级卷积神经网络模型EfficientNet-B0作为DeepLabCut的主干网络模型,用于提取鱼类背部关键点的特征,为了增强EfficientNet-B0的表征能力,在网络模型中引入了改进的CBAM(Convolutional Block Attention Module)注意力机制模块,将CBAM中的空间注意力模块和通道注意力模块从原来的串行连接方式改为并行连接,以解决两种注意力模块之间因串行连接而导致的互相干扰问题。其次,基于MSE(Mean Squared Error)损失函数提出了一种分段式损失函数H_MSE用于模型的训练,分段式损失函数H_MSE相对于传统的损失函数具有较强的鲁棒性,其在处理数据中的异常值时能表现出较低的敏感性。最后,采用了半监督学习方法对关键点进行自动标记来减少人工标记数据时产生的误差。结果显示:相比于DeepLabCut原始算法,识别误差RMSE(Root Mean Squared Error)平均降低了4.5像素;与目标检测算法Faster RCNN、SK-YOLOv5、ESB-YOLO、YOLOv8-Head-ECAM相比,识别误差RMSE平均降低了11.5像素,检测效果优于其他目标检测网络和原始网络,平均每张图像的检测时间为0.062 s,能够快速准确提取鱼道内鱼类的游动轨迹,为优化鱼道的水力设计指标提供了重要依据。 展开更多
关键词 鱼类识别 轨迹识别 关键点识别 deeplabcut 半监督学习 损失函数 注意力机制
在线阅读 下载PDF
一种基于DeepLabCut算法的便捷式步态分析系统的建立及其在中枢神经系统疾病模型中的应用
3
作者 娄嫣云 贺玉琴 +4 位作者 刘幸华 郝嘉欢 余颖 汪明欢 吴莹莹 《神经损伤与功能重建》 2024年第12期700-705,共6页
目的:开发一种基于深度学习技术的便捷式步态跟踪系统用于检测实验鼠步态细节,并初步检测其在野生型小鼠和多种中枢神经系统疾病小鼠模型中的应用。方法:搭建简便的步态走廊,将小鼠放入走廊内自由行走4 min,从腹侧记录小鼠步行视频。从... 目的:开发一种基于深度学习技术的便捷式步态跟踪系统用于检测实验鼠步态细节,并初步检测其在野生型小鼠和多种中枢神经系统疾病小鼠模型中的应用。方法:搭建简便的步态走廊,将小鼠放入走廊内自由行走4 min,从腹侧记录小鼠步行视频。从小鼠自由运动的视频中抽取120帧,使用DeepLabCut分析动物的运动,标记36个身体部位用于神经网络训练。应用该系统及网络对1、3、6和18月龄的野生型小鼠、APP/PS1小鼠(6月龄,阿尔茨海默病模型)、社会孤立(social isolation,SI)小鼠(3月龄,焦虑抑郁模型)、双侧颈动脉狭窄(bilateral carotid artery stenosis,BCAS)小鼠(3月龄,慢性脑缺血模型)和手术造模后1、3、7天的脓毒血症相关性脑病(sepsis-associated encephalopathy,SAE)小鼠(2月龄)的步态进行分析。结果:利用DeepLabCut可以在所有动物视频追踪中,展现出很高的准确性。3月龄野生型小鼠相比其他月龄小鼠运动速度最快,步幅提高。APP/PS1小鼠运动速度显著高于同龄对照,并伴有步幅增加和站立时间减少。SI小鼠步幅缩短,左前爪脚趾展开度和脚趾展开角度减小,提示存在脚爪姿势改变。BCAS小鼠在步幅上没有显著改变,但后肢脚趾展开度显著增大,脚趾展开角减小。SAE小鼠在术后1、3天运动速度下降,伴有步幅缩短和站立时间延长;术后7天运动速度低于对照小鼠但无显著差异,后肢脚趾展开度和脚趾展开角度小于对照组。结论:本研究搭建了基于深度学习的、便捷、低成本的步态分析设备,只需少量工作即可标记感兴趣的身体部位,比以往的步态分析方法更节省成本。应用这一设备描述了野生型小鼠各年龄组的步态特征,并证明阿尔茨海默病、焦虑抑郁状态、慢性脑缺血和脓毒血症相关性脑病模型小鼠表现出步态缺陷。 展开更多
关键词 步态分析 deeplabcut 阿尔茨海默病 抑郁 慢性脑缺血 脓毒血症相关性脑病
暂未订购
基于数据集优化标记DeepLabCut女性人脸轮廓提取方法
4
作者 杨帆 刘桂雄 黄坚 《激光杂志》 北大核心 2019年第10期40-44,共5页
人脸轮廓提取应用广泛,研究一种用于完成人脸轮廓提取的数据集标记方案,提出基于关键点识别深度卷积网络DeepLabCut的人脸轮廓提取方法。首先对女性平均人脸轮廓进行曲率分析,将人脸轮廓划分成3个部分,设计出分配方案并实验,获得较优分... 人脸轮廓提取应用广泛,研究一种用于完成人脸轮廓提取的数据集标记方案,提出基于关键点识别深度卷积网络DeepLabCut的人脸轮廓提取方法。首先对女性平均人脸轮廓进行曲率分析,将人脸轮廓划分成3个部分,设计出分配方案并实验,获得较优分配布点方法;进一步分析人脸轮廓提取评价指标平均IOU与标定点数关系,得到30个标记点数即可满足要求;应用优化的标记方案标记指定小样本数据集,对DeepLabCut进行迁移学习,获得得到轮廓提取方法所采用的模型;实验结果表明本文方法比Niko软件包识别效果提高5. 5%。 展开更多
关键词 人脸轮廓提取 关键点识别 深度学习 卷积神经网络 deeplabcut
原文传递
基于DeepLabCut算法的小鼠步态分析系统建立及对衰老所致运动功能的评价
5
作者 李至宏 盛益华 +5 位作者 李由 彭治香 曾星铫 谷新丽 田嘉怡 李思迪 《中国药理学通报》 CAS CSCD 北大核心 2024年第9期1792-1799,共8页
目的建立一种基于DeepLabCut(DLC)算法用于评价老年小鼠运动功能的步态分析系统。方法基于深度学习技术中的DLC算法,采用跑台装置和全封闭设计,构建系统软硬件;应用本系统评价不同运动模式下衰老所致小鼠的步态差异;通过相关性分析探究... 目的建立一种基于DeepLabCut(DLC)算法用于评价老年小鼠运动功能的步态分析系统。方法基于深度学习技术中的DLC算法,采用跑台装置和全封闭设计,构建系统软硬件;应用本系统评价不同运动模式下衰老所致小鼠的步态差异;通过相关性分析探究体质量与体长对步态指标的影响。结果本系统实现特定步速下小鼠三维立体步态(侧面和腹平面)的同步分析,自动量化47项步态指标。应用本系统发现,步行时(15 cm·s^(-1)),相比2月龄、8月龄和15月龄小鼠体转角标准偏差下降,前肢摆动时长、膝关节(Knee)角度标准偏差、左后爪和右后爪向外角度平均值增加;15月龄小鼠还出现步频降低,步幅、双支撑总时长、Knee伸展和收缩距离增加。小跑时(20 cm·s^(-1)),15月龄小鼠无法稳定行走,相比2月龄,8月龄小鼠左后爪向外角度平均值和双支撑总时长增加。相关性分析发现,步频、步幅、前肢摆动时长、后爪向外角度平均值、双支撑总时长、Knee角度标准偏差、Knee伸展和收缩距离等指标均未受到体质量和体长变化的影响。结论基于DLC算法的小鼠步态分析系统实现了对老年小鼠步态更加敏感、准确、全面的评价,区分出老年小鼠为维持步态稳定性所表现的步态特征,并筛选出更能反映老年小鼠步态变化的行为指标。为今后更有效评估抗衰老、抗运动协调功能下降药物的药效与副作用提供方法学基础。 展开更多
关键词 步态分析系统 人工智能 deeplabcut 衰老 运动功能 步态特征
暂未订购
基于DeepLabCut的悬尾分析系统建立及初步应用
6
作者 李至宏 盛益华 +5 位作者 谷新丽 周岑妃 王慧芝 贾竹君 张建职 李思迪 《吉首大学学报(自然科学版)》 2024年第6期84-91,共8页
建立了一种基于DeepLabCut(DLC)算法评价小鼠抑郁行为的悬尾分析系统,利用深度学习技术中的DLC算法和多通道、半封闭悬尾硬件构建系统软硬件,并应用该系统分析了利血平抑郁模型、间歇性饮酒损伤模型和牙周丝线结扎模型小鼠的悬尾行为变... 建立了一种基于DeepLabCut(DLC)算法评价小鼠抑郁行为的悬尾分析系统,利用深度学习技术中的DLC算法和多通道、半封闭悬尾硬件构建系统软硬件,并应用该系统分析了利血平抑郁模型、间歇性饮酒损伤模型和牙周丝线结扎模型小鼠的悬尾行为变化.结果表明,系统实现了对小鼠悬尾中头部运动和四肢运动的同步分析,自动量化出动静类、姿势类、强度类50项悬尾指标;利血平抑郁模型中,与对照组相比,第2天时低、中、高剂量利血平组的运动距离、爬墙次数、摆头次数均明显减少,第3,4天时中、高剂量利血平组的摆头次数均明显减少;间歇性饮酒损伤模型中,与对照组相比,低、中剂量乙醇组的不动时间均明显减少,四肢挣扎次数、运动距离和运动时长均明显增加,高剂量乙醇组的前肢、后肢和绝对挣扎次数均明显减少;牙周丝线结扎模型中,与假手术组相比,结扎组的运动距离、运动时长、四肢挣扎次数、绝对挣扎次数、前肢角度总值、后肢角度总值和四肢角度总值均明显减少.显然,基于DLC算法的小鼠悬尾分析系统能够准确区分不同机制抑郁模型的行为特点. 展开更多
关键词 悬尾分析系统 人工智能 deeplabcut 抑郁样行为
暂未订购
基于DeepLabCut的观赏鱼姿态估计
7
作者 裴斐 余楷 《电脑编程技巧与维护》 2024年第2期135-139,共5页
姿态估计是计算机视觉领域的研究热点之一,针对观赏鱼的姿态检测旨在从给定的图像或视频中识别观赏鱼的背部关键部位。由于观赏鱼在水下运动多变,所以容易产生运动模糊和遮挡等问题。首先,提出了一种基于DeepLabCut的观赏鱼背部姿态识... 姿态估计是计算机视觉领域的研究热点之一,针对观赏鱼的姿态检测旨在从给定的图像或视频中识别观赏鱼的背部关键部位。由于观赏鱼在水下运动多变,所以容易产生运动模糊和遮挡等问题。首先,提出了一种基于DeepLabCut的观赏鱼背部姿态识别方法,对比选择了轻量级深度卷积神经网络EfficientNet-B0,用于提取观赏鱼背部关键点的特征。同时,结合迁移学习领域的微调技术,通过微调网络模型,使其更适应观赏鱼背部姿态的检测任务。其次,采用Adam优化器并设置了自适应学习率调整策略,以加快网络模型的训练速度。最后,设计了最优的关键点分布方式和关键点大小,最大化提取有效特征,以提高观赏鱼背部姿态识别的准确性和鲁棒性。实验结果表明,DeepLabCut观赏鱼姿态识别方法获得了较高的识别精度,RMSE(RootMeanSquaredError)平均误差不到4像素。 展开更多
关键词 鱼类 姿态估计 deeplabcut方法
在线阅读 下载PDF
基于深度学习的旷场精细行为分析系统建立以及在两种小鼠模型评价中的应用
8
作者 张建职 盛益华 +4 位作者 谷新丽 李由 贾竹君 王建飞 李思迪 《中国药理学通报》 北大核心 2026年第1期190-195,共6页
目的构建一种基于深度学习DeepLabCut(DLC)和DeepEthogram(DEG)算法的旷场精细行为分析系统,提升急性束缚应激(acute restraint stress,ARS)和间歇性酒精暴露(adolescent intermittent ethanol exposure,AIE)小鼠模型情绪类行为检测的... 目的构建一种基于深度学习DeepLabCut(DLC)和DeepEthogram(DEG)算法的旷场精细行为分析系统,提升急性束缚应激(acute restraint stress,ARS)和间歇性酒精暴露(adolescent intermittent ethanol exposure,AIE)小鼠模型情绪类行为检测的敏感性。方法单摄像头旷场实验(open field test,OFT)环境结合DLC和DEG算法建立系统,分析ARS和AIE小鼠的横向与纵向精细行为,并评估纵向行为对横向指标的影响。结果与对照组相比,ARS组中心区域传统水平运动速度明显减少,本系统精细指标中心区域水平运动速度、支撑站立时长、次数和潜伏期明显减少,传统运动时长明显大于水平运动时长,支撑站立时长与传统运动、静止时长有明显相关性;AIE组传统运动静止指标明显增加,本系统精细指标除水平运动时长外的水平运动静止指标均明显增加,支撑站立时长、次数、分布指数、分布密度、无支撑站立分布指数明显增加,传统运动静止指标明显大于水平运动静止指标。结论该研究建立的深度学习行为分析系统突破了传统OFT的局限性,实现对站立行为的自动量化,分析说明两种纵向站立行为对横向指标的影响并提出解决方案,为神经精神疾病研究和药物评价提供更敏感、全面的分析方法和思路。 展开更多
关键词 旷场实验 人工智能 deeplabcut DeepEthogram 急性束缚应激 间歇性酒精暴露
暂未订购
Complementary Methods to Acquire the Kinematics of Swimming Snakes:A Basis to Design Bio-inspired Robots
9
作者 Elie Gautreau Xavier Bonnet +4 位作者 Tom Fox Guillaume Fosseries Valéry Valle Anthony Herrel Med Amine Laribi 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第2期668-682,共15页
The vast diversity of morphologies,body size,and lifestyles of snakes represents an important source of information that can be used to derive bio-inspired robots through a biology-push and pull process.An understandi... The vast diversity of morphologies,body size,and lifestyles of snakes represents an important source of information that can be used to derive bio-inspired robots through a biology-push and pull process.An understanding of the detailed kinematics of swimming snakes is a fundamental prerequisite to conceive and design bio-inspired aquatic snake robots.However,only limited information is available on the kinematics of swimming snake.Fast and accurate methods are needed to fill this knowledge gap.In the present paper,three existing methods were compared to test their capacity to characterize the kinematics of swimming snakes.(1)Marker tracking(Deftac),(2)Markerless pose estimation(DeepLabCut),and(3)Motion capture were considered.(4)We also designed and tested an automatic video processing method.All methods provided different albeit complementary data sets;they also involved different technical issues in terms of experimental conditions,snake manipulation,or processing resources.Marker tracking provided accurate data that can be used to calibrate other methods.Motion capture posed technical difficulties but can provide limited 3D data.Markerless pose estimation required deep learning(thus time)but was efficient to extract the data under various experimental conditions.Finally,automatic video processing was particularly efficient to extract a wide range of data useful for both biology and robotics but required a specific experimental setting. 展开更多
关键词 Locomotion Image processing Motion capture Kinematic analysis Snake robot Biomimicry deeplabcut
在线阅读 下载PDF
Skeleton extraction and pose estimation of piglets using ZS-DLC-PAF 被引量:1
10
作者 Chengqi Liu Haijian Ye +5 位作者 Shuhan Lu Zhan Tang Zhao Bai Lei Diao Longhe Wang Lin Li 《International Journal of Agricultural and Biological Engineering》 SCIE 2023年第3期180-193,F0004,共15页
The accurate identification of various postures in the daily life of piglets that are directly reflected by their skeleton morphology is necessary to study the behavioral characteristics of pigs.Accordingly,this study... The accurate identification of various postures in the daily life of piglets that are directly reflected by their skeleton morphology is necessary to study the behavioral characteristics of pigs.Accordingly,this study proposed a novel approach for the skeleton extraction and pose estimation of piglets.First,an improved Zhang-Suen(ZS)thinning algorithm based on morphology was used to establish the chain code mechanism of the burr and the redundant information deletion templates to achieve a single-pixel width extraction of pig skeletons.Then,body nodes were extracted on the basis of the improved DeepLabCut(DLC)algorithm,and a part affinity field(PAF)was added to realize the connection of body nodes,and consequently,construct a database of pig behavior and postures.Finally,a support vector machine was used for pose matching to recognize the main behavior of piglets.In this study,14000 images of piglets with different types of behavior were used in posture recognition experiments.Results showed that the improved algorithm based on ZS-DLC-PAF achieved the best thinning rate compared with those of distance transformation,medial axis transformation,morphology refinement,and the traditional ZS algorithm.The node tracking accuracy reached 85.08%,and the pressure test could accurately detect up to 35 nodes of 5 pigs.The average accuracy of posture matching was 89.60%.This study not only realized the single-pixel extraction of piglets’skeletons but also the connection among the different behavior body nodes of individual sows and multiple piglets.Furthermore,this study established a database of pig posture behavior,which provides a reference for studying animal behavior identification and classification and anomaly detection. 展开更多
关键词 PIGLETS skeleton extraction pose estimation Zhang-Suen deeplabcut Part affinity field
原文传递
Novel tracking method for the drinking behavior trajectory of pigs
11
作者 Chengqi Liu Haijian Ye +2 位作者 Longhe Wang Shuhan Lu Lin Li 《International Journal of Agricultural and Biological Engineering》 SCIE 2023年第6期67-76,共10页
Identifying and tracking the drinking behavior of pigs is of great significance for welfare feeding and piggery management. Research on pigs’ drinking behavior not only needs to indicate whether the snout is in conta... Identifying and tracking the drinking behavior of pigs is of great significance for welfare feeding and piggery management. Research on pigs’ drinking behavior not only needs to indicate whether the snout is in contact with the water fountain, but it also needs to establish whether the pig is drinking water and for how long. To solve target loss and identification errors, a novel method for tracking the drinking behavior of pigs based on L-K Pyramid Optical Flow (L-K OPT), Kernelized Correlation Filters (KCF), and DeepLabCut (DLC) was proposed. First, the feature model of the drinking behavior of a sow was established by L-K OPT. In addition, the water flow vector was used to determine whether the animal drank water and to demonstrate the details of the movements. Then, on the basis of the improved KCF, the relocation model of the sow’s snout was established to resolve the problem of tracking loss in the snout. Finally, the tracking model of piglets’ drinking behavior was established by DLC to build the mapping association between the pig’s snout and the drinking fountain. By using 200 episodes of drinking water videos (30-60 s each) to verify the method proposed in this study, the results are explained that 1) according to the two important drinking water indexes, the Down (−135°, −45°) direction feature and the V2 (>10 pixels) speed feature, the drinking time could be accurate to the frame level, with an error within 30 frames;2) The overlapping precision (OP) was 95%, the center location error (CLE) was 3 pixels, and the speed was 300 fps, which were all superior to other traditional algorithms;3) The optimal learning rate was 0.005, and the loss value was 0.0 002. The method proposed in this study realized accurate and automatic monitoring of the drinking behavior of pigs, which could provide reference for other animal behavior monitoring. 展开更多
关键词 tracking method drinking behavior trajectory PIGS L-K optical flow KCF deeplabcut
原文传递
Reliability and accuracy of 2D lower limb joint angles during a standing-up motion for markerless motion analysis software using deep learning
12
作者 Masafumi Itokazu 《Medicine in Novel Technology and Devices》 2022年第4期340-344,共5页
OpenPose(OP)and DeepLabCut(DLC)are applications that use deep learning to estimate posture,but there are few reports on the reliability,validity,and accuracy of their 2D lower limb joint motion analysis.This study com... OpenPose(OP)and DeepLabCut(DLC)are applications that use deep learning to estimate posture,but there are few reports on the reliability,validity,and accuracy of their 2D lower limb joint motion analysis.This study compared OP and DLC estimates of lower extremity joint angles in standing movements with those of conventional software.A total of nine healthy men participated.The trial task was to stand up from a chair.The motion was recorded by a digital camera,and the joint angles of the hip and knee joints were calculated from the video using OP,DLC,and Kinovea.To confirm reliability and validity,ICC was calculated using the Kinovea value as the validity criterion and the correlation coefficient between OP and DLC.In addition,the agreement between those data was evaluated by the Bland-Altman plot.To evaluate the accuracy of the data,root means square error(RMSE)was calculated and compared for each joint.Although the correlation coefficients and ICC(2,1)were in almost perfect agreement,fixed and proportional errors were found for most joints.The RMSE was smaller for OP than for DLC.Compared to Kinovea,OP and DLC can estimate the joint angles of the hip and knee joints during the stand-up movement with an estimation error of fewer than 10,but since they are affected by the resolution of the analysis video and other factors,they need to be validated in a variety of environments and with a variety of movements. 展开更多
关键词 Markerless motion capture OpenPose deeplabcut Kinovea Standing-up motion
暂未订购
上一页 1 下一页 到第
使用帮助 返回顶部