期刊文献+
共找到43篇文章
< 1 2 3 >
每页显示 20 50 100
An effective deep-learning prediction of Arctic sea-ice concentration based on the U-Net model
1
作者 Yifan Xie Ke Fan +2 位作者 Hongqing Yang Yi Fan Shengping He 《Atmospheric and Oceanic Science Letters》 2026年第1期34-40,共7页
Current shipping,tourism,and resource development requirements call for more accurate predictions of the Arctic sea-ice concentration(SIC).However,due to the complex physical processes involved,predicting the spatiote... Current shipping,tourism,and resource development requirements call for more accurate predictions of the Arctic sea-ice concentration(SIC).However,due to the complex physical processes involved,predicting the spatiotemporal distribution of Arctic SIC is more challenging than predicting its total extent.In this study,spatiotemporal prediction models for monthly Arctic SIC at 1-to 3-month leads are developed based on U-Net-an effective convolutional deep-learning approach.Based on explicit Arctic sea-ice-atmosphere interactions,11 variables associated with Arctic sea-ice variations are selected as predictors,including observed Arctic SIC,atmospheric,oceanic,and heat flux variables at 1-to 3-month leads.The prediction skills for the monthly Arctic SIC of the test set(from January 2018 to December 2022)are evaluated by examining the mean absolute error(MAE)and binary accuracy(BA).Results showed that the U-Net model had lower MAE and higher BA for Arctic SIC compared to two dynamic climate prediction systems(CFSv2 and NorCPM).By analyzing the relative importance of each predictor,the prediction accuracy relies more on the SIC at the 1-month lead,but on the surface net solar radiation flux at 2-to 3-month leads.However,dynamic models show limited prediction skills for surface net solar radiation flux and other physical processes,especially in autumn.Therefore,the U-Net model can be used to capture the connections among these key physical processes associated with Arctic sea ice and thus offers a significant advantage in predicting Arctic SIC. 展开更多
关键词 Arctic sea-ice concentration deep-learning prediction U-Net model CFSv2 NorCPM
在线阅读 下载PDF
A deep-learning method for evaluating shaft resistance of the cast-in-site pile on reclaimed ground using field data 被引量:1
2
作者 Sheng-liang LU Ning ZHANG +2 位作者 Shui-long SHEN Annan ZHOU Hu-zhong LI 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2020年第6期496-508,共13页
This study proposes a deep learning-based approach for shaft resistance evaluation of cast-in-site piles on reclaimed ground,independent of theoretical hypotheses and engineering experience.A series of field tests was... This study proposes a deep learning-based approach for shaft resistance evaluation of cast-in-site piles on reclaimed ground,independent of theoretical hypotheses and engineering experience.A series of field tests was first performed to investigate the characteristics of the shaft resistance of cast-in-site piles on reclaimed ground.Then,an intelligent approach based on the long short term memory deep-learning technique was proposed to calculate the shaft resistance of the cast-in-site pile.The proposed method allows accurate estimation of the shaft resistance of cast-in-site piles,not only under the ultimate load but also under the working load.Comparisons with empirical methods confirmed the effectiveness of the proposed method for the shaft resistance estimation of cast-in-site piles on reclaimed ground in offshore areas. 展开更多
关键词 deep-learning method Cast-in-site pile Shaft resistance Field test Reclaimed ground
原文传递
Recognition of Film Type Using HSV Features on Deep-Learning Neural Networks
3
作者 Ching-Ta Lu Jia-An Lin +3 位作者 Chia-Yi Chang Chia-Hua Liu Ling-Ling Wang Kun-Fu Tseng 《Journal of Electronic Science and Technology》 CAS CSCD 2020年第1期31-41,共11页
The number of films is numerous and the film contents are complex over the Internet and multimedia sources. It is time consuming for a viewer to select a favorite film. This paper presents an automatic recognition sys... The number of films is numerous and the film contents are complex over the Internet and multimedia sources. It is time consuming for a viewer to select a favorite film. This paper presents an automatic recognition system of film types. Initially, a film is firstly sampled as frame sequences. The color space, including hue, saturation,and brightness value(HSV), is analyzed for each sampled frame by computing the deviation and mean of HSV for each film. These features are utilized as inputs to a deep-learning neural network(DNN) for the recognition of film types. One hundred films are utilized to train and validate the model parameters of DNN. In the testing phase, a film is recognized as one of the five categories, including action, comedy, horror thriller, romance, and science fiction, by the trained DNN. The experimental results reveal that the film types can be effectively recognized by the proposed approach, enabling the viewer to select an interesting film accurately and quickly. 展开更多
关键词 deep-learning FILM TYPE RECOGNITION hue saturation and brightness value(HSV)analysis neural networks video classification
在线阅读 下载PDF
Finite-temperature properties of NbO_(2)from a deep-learning interatomic potential
4
作者 Xinhang Li Yongqiang Wang +4 位作者 Tianyu Jiao Zhaoxin Liu Chuanle Yang Ri He Liang Si 《Materials Genome Engineering Advances》 2025年第2期13-23,共11页
Using first-principles-based machine-learning potential,molecular dynamics(MD)simulations are performed to investigate the micro-mechanism in phase transition of NbO_(2).Treating the DFT results of the low-and interme... Using first-principles-based machine-learning potential,molecular dynamics(MD)simulations are performed to investigate the micro-mechanism in phase transition of NbO_(2).Treating the DFT results of the low-and intermediate-temperature phases of NbO_(2)as training data in the deep-learning model,we successfully constructed an interatomic potential capable of accurately reproducing the phase transitions from low-temperature(pressure)to high-temperature(pressure)regimes.Notably,our simulations predict a high-pressure monoclinic phase(>14 GPa)without treating its information in the training set,consistent with previous experimental findings,demonstrating the reliability of the constructed interatomic potential.We identified the Nb-dimers as the key structural motif governing the phase transitions.At low temperatures,the displacements of the Nb-dimers drive the transition between the I41=a(α-NbO_(2))and I41(β-NbO_(2))phases,while at high temperatures,Nb ions are prone to being equally distributed and the disappearance of Nb-dimers leads to the stabilization of a high-symmetry P4_(2)=mnm phase.These findings elucidate the structural and dynamical mechanisms underlying the structural properties of NbO_(2)and highlight the utility of combining DFT and deep potential MD methods for studying complex phase transitions in transition metal oxides. 展开更多
关键词 deep-learning model density functional theory interatomic potential molecular dynamics phase transitions
在线阅读 下载PDF
Universal materials model of deep-learning density functional theory Hamiltonian 被引量:1
5
作者 Yuxiang Wang Yang Li +14 位作者 Zechen Tang He Li Zilong Yuan Honggeng Tao Nianlong Zou Ting Bao Xinghao Liang Zezhou Chen Shanghua Xu Ce Bian Zhiming Xu Chong Wang Chen Si Wenhui Duan Yong Xu 《Science Bulletin》 SCIE EI CAS CSCD 2024年第16期2514-2521,共8页
Realizing large materials models has emerged as a critical endeavor for materials research in the new era of artificial intelligence,but how to achieve this fantastic and challenging objective remains elusive.Here,we ... Realizing large materials models has emerged as a critical endeavor for materials research in the new era of artificial intelligence,but how to achieve this fantastic and challenging objective remains elusive.Here,we propose a feasible pathway to address this paramount pursuit by developing universal materials models of deep-learning density functional theory Hamiltonian(Deep H),enabling computational modeling of the complicated structure-property relationship of materials in general.By constructing a large materials database and substantially improving the Deep H method,we obtain a universal materials model of Deep H capable of handling diverse elemental compositions and material structures,achieving remarkable accuracy in predicting material properties.We further showcase a promising application of fine-tuning universal materials models for enhancing specific materials models.This work not only demonstrates the concept of Deep H's universal materials model but also lays the groundwork for developing large materials models,opening up significant opportunities for advancing artificial intelligencedriven materials discovery. 展开更多
关键词 Large materials model Universal materials model deep-learning density functional theory Artificial intelligence-driven materials discovery
原文传递
A unified deep-learning network to accurately segment insulin granules of different animal models imaged under different electron microscopy methodologies 被引量:1
6
作者 Xiaoya Zhang Xiaohong Peng +14 位作者 Chengsheng Han Wenzhen Zhu Lisi Wei Yulin Zhang Yi Wang Xiuqin Zhang Hao Tang Jianshe Zhang Xiaojun Xu Fengping Feng Yanhong Xue Erlin Yao Guangming Tan Tao Xu Liangyi Chen 《Protein & Cell》 SCIE CAS CSCD 2019年第4期306-311,共6页
Dear Editor,Insulin is important for body metabolism regulation and glucose homeostasis,and its dysregulation often leads to metabolic syndrome(MS)and diabetes.Insulin is normally stored in large dense-core vesicles(L... Dear Editor,Insulin is important for body metabolism regulation and glucose homeostasis,and its dysregulation often leads to metabolic syndrome(MS)and diabetes.Insulin is normally stored in large dense-core vesicles(LDCVs)in pancreatic beta cells,and significant reductions in the number,size,gray level and density of insulin granules confer diabetes both in mice(Xue et al.,2012)and humans(Masini et al.,2012). 展开更多
关键词 deep-learning network ANIMAL
原文传递
Deep-learning architecture for PM_(2.5) concentration prediction: A review 被引量:1
7
作者 Shiyun Zhou Wei Wang +2 位作者 Long Zhu Qi Qiao Yulin Kang 《Environmental Science and Ecotechnology》 SCIE 2024年第5期17-33,共17页
Accurately predicting the concentration of fine particulate matter(PM_(2.5))is crucial for evaluating air pollution levels and public exposure.Recent advancements have seen a significant rise in using deep learning(DL... Accurately predicting the concentration of fine particulate matter(PM_(2.5))is crucial for evaluating air pollution levels and public exposure.Recent advancements have seen a significant rise in using deep learning(DL)models for forecasting PM_(2.5) concentrations.Nonetheless,there is a lack of unified and standardized frameworks for assessing the performance of DL-based PM_(2.5) prediction models.Here we extensively reviewed those DL-based hybrid models for forecasting PM_(2.5) levels according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses(PRISMA)guidelines.We examined the similarities and differences among various DL models in predicting PM_(2.5) by comparing their complexity and effectiveness.We categorized PM_(2.5) DL methodologies into seven types based on performance and application conditions,including four types of DL-based models and three types of hybrid learning models.Our research indicates that established deep learning architectures are commonly used and respected for their efficiency.However,many of these models often fall short in terms of innovation and interpretability.Conversely,models hybrid with traditional approaches,like deterministic and statistical models,exhibit high interpretability but compromise on accuracy and speed.Besides,hybrid DL models,representing the pinnacle of innovation among the studied models,encounter issues with interpretability.We introduce a novel three-dimensional evaluation framework,i.e.,Dataset-MethodExperiment Standard(DMES)to unify and standardize the evaluation for PM_(2.5) predictions using DL models.This review provides a framework for future evaluations of DL-based models,which could inspire researchers to standardize DL model usage in PM_(2.5) prediction and improve the quality of related studies. 展开更多
关键词 PM_(2.5) concentration prediction deep-learning based model Bibliometrics analysis Evaluation framework
原文传递
High-accuracy dynamic gesture recognition:A universal and self-adaptive deep-learning-assisted system leveraging high-performance ionogels-based strain sensors 被引量:1
8
作者 Yuqiong Sun Jinrong Huang +3 位作者 Yan Cheng Jing Zhang Yi Shi Lijia Pan 《SmartMat》 2024年第6期77-91,共15页
Gesture recognition utilizing flexible strain sensors is a highly valuable technology widely applied in human-machine interfaces.However,achieving rapid detection of subtle motions and timely processing of dynamic sig... Gesture recognition utilizing flexible strain sensors is a highly valuable technology widely applied in human-machine interfaces.However,achieving rapid detection of subtle motions and timely processing of dynamic signals remain a challenge for sensors.Here,highly resilient and durable ionogels are developed by introducing micro-scale incompatible phases in macroscopic homogeneous polymeric network.The compatible network disperses in conductive ionic liquid to form highly resilient and stretchable skeleton,while incompatible phase forms hydrogen bonds to dissipate energy thus strengthening the ionogels.The ionogels-derived strain sensors show highly sensitivity,fast response time(<10 ms),low detection limit(~50μm),and remarkable durability(>5000 cycles),allowing for precise monitoring of human motions.More importantly,a self-adaptive recognition program empowered by deep-learning algorithms is designed to compensate for sensors,creating a comprehensive system capable of dynamic gesture recognition.This system can comprehensively analyze both the temporal and spatial features of sensor data,enabling deeper understanding of the dynamic process underlying gestures.The system accurately classifies 10 hand gestures across five participants with impressive accuracy of 93.66%.Moreover,it maintains robust recognition performance without the need for further training even when different sensors or subjects are involved.This technological breakthrough paves the way for intuitive and seamless interaction between humans and machines,presenting significant opportunities in diverse applications,such as human-robot interaction,virtual reality control,and assistive devices for the disabled individuals. 展开更多
关键词 deep-learning algorithms dynamic gesture recognition human-machine interaction ionogels self-adaptive recognition program strain sensors
原文传递
Deep Learning-Based Recognition of Locomotion Mode,Phase,and Phase Progression Using Inertial Measurement Units
9
作者 Yekwang Kim Jaewook Kim +4 位作者 Juhui Moon Seonghyun Kang Youngbo Shim Mun-Taek Choi Seung-Jong Kim 《Journal of Bionic Engineering》 2025年第4期1804-1818,共15页
Recently,wearable gait-assist robots have been evolving towards using soft materials designed for the elderly rather than individuals with disabilities,which emphasize modularization,simplification,and weight reductio... Recently,wearable gait-assist robots have been evolving towards using soft materials designed for the elderly rather than individuals with disabilities,which emphasize modularization,simplification,and weight reduction.Thus,synchronizing the robotic assistive force with that of the user’s leg movements is crucial for usability,which requires accurate recognition of the user’s gait intent.In this study,we propose a deep learning model capable of identifying not only gait mode and gait phase but also phase progression.Utilizing data from five inertial measurement units placed on the body,the proposed two-stage architecture incorporates a bidirectional long short-term memory-based model for robust classification of locomotion modes and phases.Subsequently,phase progression is estimated through 1D convolutional neural network-based regressors,each dedicated to a specific phase.The model was evaluated on a diverse dataset encompassing level walking,stair ascent and descent,and sit-to-stand activities from 10 healthy participants.The results demonstrate its ability to accurately classify locomotion phases and estimate phase progression.Accurate phase progression estimation is essential due to the age-related variability in gait phase durations,particularly evident in older adults,the primary demographic for gait-assist robots.These findings underscore the potential to enhance the assistance,comfort,and safety provided by gait-assist robots. 展开更多
关键词 Locomotion intention prediction Human-robot Interaction Gait-assist Robot BIOMECHANICS deep-learning
在线阅读 下载PDF
Physics-informed graph neural network for predicting fluid flow in porous media
10
作者 Hai-Yang Chen Liang Xue +6 位作者 Li Liu Gao-Feng Zou Jiang-Xia Han Yu-Bin Dong Meng-Ze Cong Yue-Tian Liu Seyed Mojtaba Hosseini-Nasab 《Petroleum Science》 2025年第10期4240-4253,共14页
With the rapid development of deep learning neural networks,new solutions have emerged for addressing fluid flow problems in porous media.Combining data-driven approaches with physical constraints has become a hot res... With the rapid development of deep learning neural networks,new solutions have emerged for addressing fluid flow problems in porous media.Combining data-driven approaches with physical constraints has become a hot research direction,with physics-informed neural networks(PINNs) being the most popular hybrid model.PINNs have gained widespread attention in subsurface fluid flow simulations due to their low computational resource requirements,fast training speeds,strong generalization capabilities,and broad applicability.Despite success in homogeneous settings,standard PINNs face challenges in accurately calculating flux between irregular Eulerian cells with disparate properties and capturing global field influences on local cells.This limits their suitability for heterogeneous reservoirs and the irregular Eulerian grids frequently used in reservoir.To address these challenges,this study proposes a physics-informed graph neural network(PIGNN) model.The PIGNN model treats the entire field as a whole,integrating information from neighboring grids and physical laws into the solution for the target grid,thereby improving the accuracy of solving partial differential equations in heterogeneous and Eulerian irregular grids.The optimized model was applied to pressure field prediction in a spatially heterogeneous reservoir,achieving an average L_(2) error and R_(2) score of 6.710×10^(-4)and 0.998,respectively,which confirms the effectiveness of model.Compared to the conventional PINN model,the average L_(2) error was reduced by 76.93%,the average R_(2) score increased by 3.56%.Moreover,evaluating robustness,training the PIGNN model using only 54% and 76% of the original data yielded average relative L_(2) error reductions of 58.63% and 56.22%,respectively,compared to the PINN model.These results confirm the superior performance of this approach compared to PINN. 展开更多
关键词 Graph neural network(GNN) deep-learning Physical-informed neural network(PINN) Physics-informed graph neural network(PIGNN) Flow in porous media Perpendicular bisectional grid(PEBI) Unstructured mesh
原文传递
An Extension of Conditional Nonlinear Optimal Perturbation in the Time Dimension and Its Applications in Targeted Observations
11
作者 Ziqing ZU Mu MU +1 位作者 Jiangjiang XIA Qiang WANG 《Advances in Atmospheric Sciences》 2025年第9期1783-1797,共15页
The Conditional Nonlinear Optimal Perturbation(CNOP)method works essentially for conventional numerical models;however,it is not fully applicable to the commonly used deep-learning forecasting models(DLMs),which typic... The Conditional Nonlinear Optimal Perturbation(CNOP)method works essentially for conventional numerical models;however,it is not fully applicable to the commonly used deep-learning forecasting models(DLMs),which typically input multiple time slices without deterministic dependencies.In this study,the CNOP for DLMs(CNOP-DL)is proposed as an extension of the CNOP in the time dimension.This method is useful for targeted observations as it indicates not only where but also when to deploy additional observations.The CNOP-DL is calculated for a forecast case of sea surface temperature in the South China Sea with a DLM.The CNOP-DL identifies a sensitive area northwest of Palawan Island at the last input time.Sensitivity experiments demonstrate that the sensitive area identified by the CNOP-DL is effective not only for the CNOP-DL itself,but also for random perturbations.Therefore,this approach holds potential for guiding practical field campaigns.Notably,forecast errors are more sensitive to time than to location in the sensitive area.It highlights the crucial role of identifying the time of the sensitive area in targeted observations,corroborating the usefulness of extending the CNOP in the time dimension. 展开更多
关键词 deep-learning forecasting model conditional nonlinear optimal perturbation targeted observation sensitive area
在线阅读 下载PDF
Application of artificial intelligence in gastroenterology 被引量:32
12
作者 Young Joo Yang Chang Seok Bang 《World Journal of Gastroenterology》 SCIE CAS 2019年第14期1666-1683,共18页
Artificial intelligence(AI) using deep-learning(DL) has emerged as a breakthrough computer technology. By the era of big data, the accumulation of an enormous number of digital images and medical records drove the nee... Artificial intelligence(AI) using deep-learning(DL) has emerged as a breakthrough computer technology. By the era of big data, the accumulation of an enormous number of digital images and medical records drove the need for the utilization of AI to efficiently deal with these data, which have become fundamental resources for a machine to learn by itself. Among several DL models, the convolutional neural network showed outstanding performance in image analysis. In the field of gastroenterology, physicians handle large amounts of clinical data and various kinds of image devices such as endoscopy and ultrasound. AI has been applied in gastroenterology in terms of diagnosis,prognosis, and image analysis. However, potential inherent selection bias cannot be excluded in the form of retrospective study. Because overfitting and spectrum bias(class imbalance) have the possibility of overestimating the accuracy,external validation using unused datasets for model development, collected in a way that minimizes the spectrum bias, is mandatory. For robust verification,prospective studies with adequate inclusion/exclusion criteria, which represent the target populations, are needed. DL has its own lack of interpretability.Because interpretability is important in that it can provide safety measures, help to detect bias, and create social acceptance, further investigations should be performed. 展开更多
关键词 Artificial INTELLIGENCE Convolutional neural network deep-learning COMPUTER-ASSISTED GASTROENTEROLOGY ENDOSCOPY
暂未订购
Predicting oral disintegrating tablet formulations by neural network techniques 被引量:9
13
作者 Run Han Yilong Yang +1 位作者 Xiaoshan Li Defang Ouyang 《Asian Journal of Pharmaceutical Sciences》 SCIE 2018年第4期336-342,共7页
Oral disintegrating tablets(ODTs) are a novel dosage form that can be dissolved on thetongue within 3 min or less especially for geriatric and pediatric patients. Current ODT for-mulation studies usually rely on the p... Oral disintegrating tablets(ODTs) are a novel dosage form that can be dissolved on thetongue within 3 min or less especially for geriatric and pediatric patients. Current ODT for-mulation studies usually rely on the personal experience of pharmaceutical experts andtrial-and-error in the laboratory, which is inefficient and time-consuming. The aim of cur-rent research was to establish the prediction model of ODT formulations with direct com-pression process by artificial neural network(ANN) and deep neural network(DNN) tech-niques. 145 formulation data were extracted from Web of Science. All datasets were dividedinto three parts: training set(105 data), validation set(20) and testing set(20). ANN andDNN were compared for the prediction of the disintegrating time. The accuracy of the ANNmodel have reached 85.60%, 80.00% and 75.00% on the training set, validation set and testingset respectively, whereas that of the DNN model were 85.60%, 85.00% and 80.00%, respec-tively. Compared with the ANN, DNN showed the better prediction for ODT formulations.It is the first time that deep neural network with the improved dataset selection algorithmis applied to formulation prediction on small data. The proposed predictive approach couldevaluate the critical parameters about quality control of formulation, and guide researchand process development. The implementation of this prediction model could effectivelyreduce drug product development timeline and material usage, and proactively facilitatethe development of a robust drug product. 展开更多
关键词 ORAL disintegrating TABLETS FORMULATION prediction Artificial NEURAL NETWORK DEEP NEURAL NETWORK deep-learning
暂未订购
Automated classification of dual channel dental imaging of auto-fluorescence and white lightby convolutional neural networks 被引量:4
14
作者 Cheng Wang Haotian Qin +4 位作者 Guangyun Lai Gang Zheng Huazhong Xiang Jun Wang Dawei Zhang 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2020年第4期20-27,共8页
Prevention is the most effective way to reduce dental caries.In order to provide a simple way to achieve oral healthcare direction in daily life,dual Channel,portable dental Imaging system that combine white light wit... Prevention is the most effective way to reduce dental caries.In order to provide a simple way to achieve oral healthcare direction in daily life,dual Channel,portable dental Imaging system that combine white light with autofluorescence techniques was established,and then,a group of volunteers were recruited,7200 tooth pictures of different dental caries stage and dental plaque were taken and collected.In this work,a customized Convolutional Neural Networks(CNNs)have been designed to classify dental image with early stage caries and dental plaque.Eighty percentage(n=6000)of the pictures taken were used to supervised training of the CNNs based on the experienced dentists'advice and the rest 20%(n=1200)were used to a test dataset to test the trained CNNs.The accuracy,sensitivity and specificity were calculated to evaluate perfor-mance of the CNNs.The accuracy for the early stage caries and dental plaque were 95.3%and 95.9%,respectively.These results shown that the designed image system combined the cus-tomized CNNs that could automatically and efficiently find early caries and dental plaque on occlusal,lingual and buccal surfaces.Therefore,this will provide a novel approach to dental caries prevention for everyone in daily life. 展开更多
关键词 Biomedical imaging CARIES tooth healthcare auto-flourescence automatic classifi-cation deep-learning
原文传递
Interpreting random fields through the U-Net architecture for failure mechanism and deformation predictions of geosystems 被引量:3
15
作者 Ze Zhou Wang Jinzhang Zhang Hongwei Huang 《Geoscience Frontiers》 SCIE CAS CSCD 2024年第1期209-224,共16页
The representation of spatial variation of soil properties in the form of random fields permits advanced probabilistic assessment of slope stability.In many studies,the safety margin of the system is typically charact... The representation of spatial variation of soil properties in the form of random fields permits advanced probabilistic assessment of slope stability.In many studies,the safety margin of the system is typically characterized by the term“probability of failure(Pfailure)”.As the intensity and spatial distribution of soil properties vary in different random field realizations,the failure mechanism and deformation field of a slope can vary as well.Not only can the location of the failure surfaces vary,but the mode of failure also changes.Such information is equally valuable to engineering practitioners.In this paper,two slope examples that are modified from a real case study are presented.The first example pertains to the stability analysis of a multi-layer-slope while the second example deals with the serviceability analysis of a multi-layer c-φslope.In addition,due to the large number of simulations needed to reveal the full picture of the failure mechanism,Convolutional Neural Networks(CNNs)that adopt a U-Net architecture is proposed to offer a soft computing strategy to facilitate the investigation.The spatial distribution of the failure surfaces,the statistics of the sliding volume,and the statistics of the deformation field are presented.The results also show that the proposed deep-learning model is effective in predicting the failure mechanism and deformation field of slopes in spatially variable soils;therefore encouraging probabilistic study of slopes in practical scenarios. 展开更多
关键词 deep-learning Spatial variability Slope stability Failure mechanism Sliding volume
在线阅读 下载PDF
An Innovative Bias-Correction Approach to CMA-GD Hourly Quantitative Precipitation Forecasts 被引量:4
16
作者 LIU Jin-qing DAI Guang-feng OU Xiao-feng 《Journal of Tropical Meteorology》 SCIE 2021年第4期428-436,共9页
This paper proposes a simple and powerful optimal integration(OPI)method for improving hourly quantitative precipitation forecasts(QPFs,0-24 h)of a single-model by integrating the benefits of different biascorrected m... This paper proposes a simple and powerful optimal integration(OPI)method for improving hourly quantitative precipitation forecasts(QPFs,0-24 h)of a single-model by integrating the benefits of different biascorrected methods using the high-resolution CMA-GD model from the Guangzhou Institute of Tropical and Marine Meteorology of China Meteorological Administration(CMA).Three techniques are used to generate multi-method calibrated members for OPI:deep neural network(DNN),frequency-matching(FM),and optimal threat score(OTS).The results are as follows:(1)The QPF using DNN follows the basic physical patterns of CMA-GD.Despite providing superior improvements for clear-rainy and weak precipitation,DNN cannot improve the predictions for severe precipitation,while OTS can significantly strengthen these predictions.As a result,DNN and OTS are the optimal members to be incorporated into OPI.(2)Our new approach achieves state-of-the-art performances on a single model for all magnitudes of precipitation.Compared with the CMA-GD,OPI improves the TS by 2.5%,5.4%,7.8%,8.3%,and 6.1%for QPFs from clear-rainy to rainstorms in the verification dataset.Moreover,OPI shows good stability in the test dataset.(3)It is also noted that the rainstorm pattern of OPI relies heavily on the original model and that OPI cannot correct for deviations in the location of severe precipitation.Therefore,improvements in predicting severe precipitation using this method should be further realized by improving the numerical model's forecasting capability. 展开更多
关键词 DNN deep-learning bias-correction POST-PROCESSING OTS optimal integration NWP
在线阅读 下载PDF
Deep learning method for cell count from transmitted-light microscope 被引量:2
17
作者 Mengyang Lu Wei Shi +3 位作者 Zhengfen Jiang Boyi Li Dean Ta Xin Liu 《Journal of Innovative Optical Health Sciences》 SCIE EI CSCD 2023年第5期115-127,共13页
Automatic cell counting provides an effective tool for medical research and diagnosis.Currently,cell counting can be completed by transmitted-light microscope,however,it requires expert knowledge and the counting accu... Automatic cell counting provides an effective tool for medical research and diagnosis.Currently,cell counting can be completed by transmitted-light microscope,however,it requires expert knowledge and the counting accuracy which is unsatisfied for overlapped cells.Further,the image-translation-based detection method has been proposed and the potential has been shown to accomplish cell counting from transmitted-light microscope,automatically and effectively.In this work,a new deep-learning(DL)-based two-stage detection method(cGAN-YOLO)is designed to further enhance the performance of cell counting,which is achieved by combining a DL-based fluorescent image translation model and a DL-based cell detection model.The various results show that cGAN-YOLO can effectively detect and count some different types of cells from the acquired transmitted-light microscope images.Compared with the previously reported YOLO-based one-stage detection method,high recognition accuracy(RA)is achieved by the cGAN-YOLO method,with an improvement of 29.80%.Furthermore,we can also observe that cGAN-YOLO obtains an improvement of 12.11%in RA compared with the previously reported image-translation-based detection method.In a word,cGAN-YOLO makes it possible to implement cell counting directly from the experimental acquired transmitted-light microscopy images with high flexibility and performance,which extends the applicability in clinical research. 展开更多
关键词 Automatic cell counting transmitted-light microscope deep-learning fluorescent image translation.
原文传递
Multi-Person Device-Free Gesture Recognition Using mmWave Signals 被引量:1
18
作者 Jie Wang Zhouhua Ran +3 位作者 Qinghua Gao Xiaorui Ma Miao Pan Kaiping Xue 《China Communications》 SCIE CSCD 2021年第2期186-199,共14页
Device-free gesture recognition is an emerging wireless sensing technique which could recognize gestures by analyzing its influence on surrounding wireless signals,it may empower wireless networks with the augmented s... Device-free gesture recognition is an emerging wireless sensing technique which could recognize gestures by analyzing its influence on surrounding wireless signals,it may empower wireless networks with the augmented sensing ability.Researchers have made great achievements for singleperson device-free gesture recognition.However,when multiple persons conduct gestures simultaneously,the received signals will be mixed together,and thus traditional methods would not work well anymore.Moreover,the anonymity of persons and the change in the surrounding environment would cause feature shift and mismatch,and thus the recognition accuracy would degrade remarkably.To address these problems,we explore and exploit the diversity of spatial information and propose a multidimensional analysis method to separate the gesture feature of each person using a focusing sensing strategy.Meanwhile,we also present a deep-learning based robust device free gesture recognition framework,which leverages an adversarial approach to extract robust gesture feature that is insensitive to the change of persons and environment.Furthermore,we also develop a 77GHz mmWave prototype system and evaluate the proposed methods extensively.Experimental results reveal that the proposed system can achieve average accuracies of 93%and 84%when 10 gestures are conducted in Received:Jun.18,2020 Revised:Aug.06,2020 Editor:Ning Ge different environments by two and four persons simultaneously,respectively. 展开更多
关键词 device-free gesture recognition wireless sensing multi-person deep-learning
在线阅读 下载PDF
Hybrid pedestrian positioning system using wearable inertial sensors and ultrasonic ranging 被引量:1
19
作者 Lin Qi Yu Liu +2 位作者 Chuanshun Gao Tao Feng Yue Yu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期327-338,共12页
Pedestrian positioning system(PPS)using wearable inertial sensors has wide applications towards various emerging fields such as smart healthcare,emergency rescue,soldier positioning,etc.The performance of traditional ... Pedestrian positioning system(PPS)using wearable inertial sensors has wide applications towards various emerging fields such as smart healthcare,emergency rescue,soldier positioning,etc.The performance of traditional PPS is limited by the cumulative error of inertial sensors,complex motion modes of pedestrians,and the low robustness of the multi-sensor collaboration structure.This paper presents a hybrid pedestrian positioning system using the combination of wearable inertial sensors and ultrasonic ranging(H-PPS).A robust two nodes integration structure is developed to adaptively combine the motion data acquired from the single waist-mounted and foot-mounted node,and enhanced by a novel ellipsoid constraint model.In addition,a deep-learning-based walking speed estimator is proposed by considering all the motion features provided by different nodes,which effectively reduces the cumulative error originating from inertial sensors.Finally,a comprehensive data and model dual-driven model is presented to effectively combine the motion data provided by different sensor nodes and walking speed estimator,and multi-level constraints are extracted to further improve the performance of the overall system.Experimental results indicate that the proposed H-PPS significantly improves the performance of the single PPS and outperforms existing algorithms in accuracy index under complex indoor scenarios. 展开更多
关键词 Pedestrian positioning system Wearable inertial sensors Ultrasonic ranging deep-learning Data and model dual-driven
在线阅读 下载PDF
Deep Learning-based Wireless Signal Classification in the IoT Environment 被引量:1
20
作者 Hyeji Roh Sheungmin Oh +2 位作者 Hajun Song Jinseo Han Sangsoon Lim 《Computers, Materials & Continua》 SCIE EI 2022年第6期5717-5732,共16页
With the development of the Internet of Things(IoT),diverse wireless devices are increasing rapidly.Those devices have different wireless interfaces that generate incompatible wireless signals.Each signal has its own ... With the development of the Internet of Things(IoT),diverse wireless devices are increasing rapidly.Those devices have different wireless interfaces that generate incompatible wireless signals.Each signal has its own physical characteristics with signal modulation and demodulation scheme.When there exist different wireless devices,they can suffer from severe Cross-Technology Interferences(CTI).To reduce the communication overhead due to the CTI in the real IoT environment,a central coordinator can be able to detect and identify wireless signals existing in the same communication areas.This paper investigates how to classify various radio signals using Convolutional Neural Networks(CNN),Long Short-TermMemory(LSTM)and attention mechanism.CNN can reduce the amount of computation by reducing weights by using convolution,and LSTM belonging to RNNmodels can alleviate the long-term dependence problem.Furthermore,attention mechanism can reduce the short-term memory problem of RNNs by reexamining the data output from the decoder and the entire data entered into the encoder at every point in time.To accurately classify radio signals according to their weights,we design a model based on CNN,LSTM,and attention mechanism.As a result,we propose a model CLARINet that can classify original data by minimizing the loss and detects changes in sequences.In a case of the real IoT environment with Wi-Fi,Bluetooth and ZigBee devices,we can normally obtain wireless signals from 10 to 20 dB.The accuracy of CLARINet’s radio signal classification with CNN-LSTM and attention mechanism can be seen that signal-to-noise ratio(SNR)exhibits high accuracy at 16 dB to about 92.03%. 展开更多
关键词 Attention mechanism wireless signal CNN-LSTM CLASSIFICATION deep-learning
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部