期刊文献+
共找到137,582篇文章
< 1 2 250 >
每页显示 20 50 100
基于RPA+DeepSeek的企业信息核查审计机器人研究——以ND会计师事务所市监局项目为例 被引量:3
1
作者 程平 唐涔芮 +1 位作者 胥尧 林定逢 《会计之友》 北大核心 2025年第12期107-114,共8页
传统企业信息核查审计工作因流程冗长、效率低、准确性不足及人力消耗大等问题,制约了核查质量和效率。文章以ND会计师事务所市场监督管理局项目为例,提出结合RPA与Deep Seek大模型的技术创新方案,推动核查审计工作的数字化转型。通过... 传统企业信息核查审计工作因流程冗长、效率低、准确性不足及人力消耗大等问题,制约了核查质量和效率。文章以ND会计师事务所市场监督管理局项目为例,提出结合RPA与Deep Seek大模型的技术创新方案,推动核查审计工作的数字化转型。通过构建涵盖应用层、服务层、数据层和基础设施层的审计机器人框架模型,实现从文件识别到报告生成的全流程自动化。Deep Seek大模型凭借其自然语言处理能力和本地化部署优势,提升非结构化数据处理效率和信息抽取精准度;RPA技术通过自动化流程执行,减少人工干预和错误风险。研究表明,RPA与Deep Seek大模型的深度融合显著提高了核查效率与准确性,降低了人力成本,为审计智能化转型提供了技术支撑。实际应用中需重点关注技术集成与业务流程适配、模型性能优化、数据安全与合规性保障,以及人员技术培训与转型支持。 展开更多
关键词 RPA deep Seek 企业信息核查 数字化转型 审计机器人
在线阅读 下载PDF
Deep Seek技术驱动下的童书出版智能化生产范式转型 被引量:1
2
作者 陈苗苗 应莹 《出版广角》 北大核心 2025年第5期64-71,共8页
在数字化浪潮冲击下,传统童书出版业面临选题策划失准、创作滞后、编辑断层、营销低效等结构性困境,亟须通过智能化转型重构生产范式。以Deep Seek多模态大模型为技术框架,系统解析其如何通过动态用户画像、多模态内容生成、智能校对与... 在数字化浪潮冲击下,传统童书出版业面临选题策划失准、创作滞后、编辑断层、营销低效等结构性困境,亟须通过智能化转型重构生产范式。以Deep Seek多模态大模型为技术框架,系统解析其如何通过动态用户画像、多模态内容生成、智能校对与知识图谱、强化学习决策等技术模块,深度赋能童书出版选题策划、作者创作、编辑加工、营销发行全链路智能化升级。童书出版机构在转型过程中面临选题依赖数据遮蔽儿童需求、技术理性消解作者原创性、编辑职能被技术侵蚀、营销发行同质化等挑战,需构建童书出版智能化转型的方法论框架,助力童书出版产业在数字时代重塑核心竞争力。 展开更多
关键词 deep Seek 童书出版 智能化 生产范式
在线阅读 下载PDF
改进Deep Q Networks的交通信号均衡调度算法
3
作者 贺道坤 《机械设计与制造》 北大核心 2025年第4期135-140,共6页
为进一步缓解城市道路高峰时段十字路口的交通拥堵现象,实现路口各道路车流均衡通过,基于改进Deep Q Networks提出了一种的交通信号均衡调度算法。提取十字路口与交通信号调度最相关的特征,分别建立单向十字路口交通信号模型和线性双向... 为进一步缓解城市道路高峰时段十字路口的交通拥堵现象,实现路口各道路车流均衡通过,基于改进Deep Q Networks提出了一种的交通信号均衡调度算法。提取十字路口与交通信号调度最相关的特征,分别建立单向十字路口交通信号模型和线性双向十字路口交通信号模型,并基于此构建交通信号调度优化模型;针对Deep Q Networks算法在交通信号调度问题应用中所存在的收敛性、过估计等不足,对Deep Q Networks进行竞争网络改进、双网络改进以及梯度更新策略改进,提出相适应的均衡调度算法。通过与经典Deep Q Networks仿真比对,验证论文算法对交通信号调度问题的适用性和优越性。基于城市道路数据,分别针对两种场景进行仿真计算,仿真结果表明该算法能够有效缩减十字路口车辆排队长度,均衡各路口车流通行量,缓解高峰出行方向的道路拥堵现象,有利于十字路口交通信号调度效益的提升。 展开更多
关键词 交通信号调度 十字路口 deep Q Networks 深度强化学习 智能交通
在线阅读 下载PDF
DeepSeek赋能基础教育高质量发展(笔谈) 被引量:13
4
作者 罗生全 李霓 +6 位作者 宋萑 荣晴 李洪修 王萌萌 雷浩 马玉林 曾文婕 《天津师范大学学报(基础教育版)》 北大核心 2025年第3期1-14,共14页
数字化赋能基础教育,是实现教育高质量发展的必然趋势。DeepSeek作为我国自主研发的人工智能系统,其在教育领域的多模态处理能力和个性化学习支持功能,为基础教育高质量发展提供了新的技术支撑。具体可从以下几方面着力:一是教师能力提... 数字化赋能基础教育,是实现教育高质量发展的必然趋势。DeepSeek作为我国自主研发的人工智能系统,其在教育领域的多模态处理能力和个性化学习支持功能,为基础教育高质量发展提供了新的技术支撑。具体可从以下几方面着力:一是教师能力提升应着重将培养模式向“思维发展导向”转型、实践场域向“技术嵌入型”重构、制度环境创新向弹性化动态化转变等;二是基础教育课程改革要以数据智能推动个性化教学的规模化、人机协同重构师生互动的深度、人文关怀守护教育本质的温度;三是应对课程知识形态变化需重塑知识选择标准、重构知识组织方式、规范知识表达过程、提升教师数字素养;四是DeepSeek驱动的教师教材使用需基于“思维过程可视化——文化认知与伦理嵌入——生成性交互积累”的三维智能要素,教师要创造性地理解教材、特色化地运用教材、协同化地反思教材使用等;五是DeepSeek赋能深度学习评价需关注评价指标生成的众智叠加、评价方法的教学融入和评价数据处理中的算力支持,以此促进学生的深度学习不断增值。 展开更多
关键词 deepSeek 数字化赋能 教育强国 基础教育课程改革 教师能力 课程知识形态 教师教材使用 深度学习评价
在线阅读 下载PDF
DeepSeek对教育范式的变革与影响 被引量:3
5
作者 李青 杨晋 +2 位作者 易海成 尤著宏 原嫄 《高等建筑教育》 2025年第4期1-12,共12页
生成式人工智能(GAI)技术正在重新定义教育领域的教学与学习方式。自OpenAI发布ChatGPT以来,GAI技术快速发展,应用场景逐渐从文本生成扩展到更复杂的推理与创作。中国深度求索公司推出的DeepSeek模型进一步推动了这一技术在教育中的应用... 生成式人工智能(GAI)技术正在重新定义教育领域的教学与学习方式。自OpenAI发布ChatGPT以来,GAI技术快速发展,应用场景逐渐从文本生成扩展到更复杂的推理与创作。中国深度求索公司推出的DeepSeek模型进一步推动了这一技术在教育中的应用。DeepSeek通过优化推理流程、提高计算效率、提供个性化学习路径,突破了传统教育模式的局限,促进了教育理念的转型。从知识传授向能力培养、从标准化教育向个性化教育转变,DeepSeek不仅推动了教学内容和方法的创新,还促进了教育公平和个性化教学的实现。然而,随着技术的快速发展,教育领域面临诸多风险,包括知识准确性、隐性偏见、数据隐私和学生自主学习能力等问题。探讨了DeepSeek在教育变革中的潜力与挑战,分析其在推动教育理念和教学模式重塑过程中的优势与风险,并提出相应的应对策略。最后,强调教育机构、教师和技术供应商的合作,确保AI技术在推动教育数字化转型的同时,保持人文关怀与教育目标的完整性,以培养具备创新能力、批判性思维和社会责任感的未来公民。 展开更多
关键词 人工智能 教育理念 教学模式 深度融合
在线阅读 下载PDF
技术革命周期与我国算力竞争战略选择——基于DeepSeek复杂经济系统的思考 被引量:5
6
作者 黄晓野 代栓平 李克 《工业技术经济》 北大核心 2025年第4期25-31,共7页
算力是信息化、数字化、智能化时代的新质生产力,是大国博弈利器。算力竞争战略选择关乎一国能否抓住新技术新产业革命机遇,实现综合国力跃迁式增长。以技术-经济范式模型为理论依据,结合全球人工智能发展实践,本文提出我国目前处于算... 算力是信息化、数字化、智能化时代的新质生产力,是大国博弈利器。算力竞争战略选择关乎一国能否抓住新技术新产业革命机遇,实现综合国力跃迁式增长。以技术-经济范式模型为理论依据,结合全球人工智能发展实践,本文提出我国目前处于算力技术革命从导入期过渡到展开期的关键节点,算力发展战略重点应从算力基础设施转移至算力经济领域。高质量算力经济通过整体配置社会资源引领我国进入算力技术革命展开期,充分释放算力市场潜力。以DeepSeek为代表的自主可控产业链、创新性创业主体、经济生态赋能、经济逻辑引导技术创新、因地制宜发展中国式算力经济的复杂算力经济系统,为算力经济高质量发展提供了示范效应。伴随算力市场的扩张,需要提前完善算力市场机制并拓展市场功能。本文认为,应关注“杰文斯悖论(Jevons Paradox)”前瞻性布局与高质量算力经济匹配的算力设施建设;积极完善研发引领长期盈利的竞争机制,以集成创新驱动算力经济,推动完善价值共创机制,壮大算力商品市场和匹配市场。 展开更多
关键词 算力 技术革命周期 算力经济 竞争战略 deepSeek 复杂经济系统 杰文斯悖论 新质生产力
在线阅读 下载PDF
Early identification of stroke through deep learning with multi-modal human speech and movement data 被引量:4
7
作者 Zijun Ou Haitao Wang +9 位作者 Bin Zhang Haobang Liang Bei Hu Longlong Ren Yanjuan Liu Yuhu Zhang Chengbo Dai Hejun Wu Weifeng Li Xin Li 《Neural Regeneration Research》 SCIE CAS 2025年第1期234-241,共8页
Early identification and treatment of stroke can greatly improve patient outcomes and quality of life.Although clinical tests such as the Cincinnati Pre-hospital Stroke Scale(CPSS)and the Face Arm Speech Test(FAST)are... Early identification and treatment of stroke can greatly improve patient outcomes and quality of life.Although clinical tests such as the Cincinnati Pre-hospital Stroke Scale(CPSS)and the Face Arm Speech Test(FAST)are commonly used for stroke screening,accurate administration is dependent on specialized training.In this study,we proposed a novel multimodal deep learning approach,based on the FAST,for assessing suspected stroke patients exhibiting symptoms such as limb weakness,facial paresis,and speech disorders in acute settings.We collected a dataset comprising videos and audio recordings of emergency room patients performing designated limb movements,facial expressions,and speech tests based on the FAST.We compared the constructed deep learning model,which was designed to process multi-modal datasets,with six prior models that achieved good action classification performance,including the I3D,SlowFast,X3D,TPN,TimeSformer,and MViT.We found that the findings of our deep learning model had a higher clinical value compared with the other approaches.Moreover,the multi-modal model outperformed its single-module variants,highlighting the benefit of utilizing multiple types of patient data,such as action videos and speech audio.These results indicate that a multi-modal deep learning model combined with the FAST could greatly improve the accuracy and sensitivity of early stroke identification of stroke,thus providing a practical and powerful tool for assessing stroke patients in an emergency clinical setting. 展开更多
关键词 artificial intelligence deep learning DIAGNOSIS early detection FAST SCREENING STROKE
在线阅读 下载PDF
基于ReDeepWaveNet的水下图像增强网络设计
8
作者 张丹 苏里阳 +2 位作者 段舒婷 孙贵新 张雨杭 《无线电工程》 2025年第6期1238-1243,共6页
水下图像由于对比度低,色彩失真严重,衰减程度随波长的变化而变化,导致颜色不对称传输等问题。尽管深度学习技术在水下图像恢复(Underwater Image Restoration,UIR)方面已经取得了较好效果,但颜色不对称性问题依然存在。已知基于颜色通... 水下图像由于对比度低,色彩失真严重,衰减程度随波长的变化而变化,导致颜色不对称传输等问题。尽管深度学习技术在水下图像恢复(Underwater Image Restoration,UIR)方面已经取得了较好效果,但颜色不对称性问题依然存在。已知基于颜色通道的卷积范围赋予正确的接受野大小(上下文),可以有效提升UIR任务的性能,同时抑制不相关的多上下文特征,增强模型的表示能力。提出基于跳过机制来自适应地改进学习到的多上下文特征的框架ReDeepWaveNet,采用全局注意力机制(Global Attention Mechanism,GAM)来替代卷积块注意力模块(Convolutional Block Attention Module,CBAM),抑制来自前一层的无关的颜色局部跳跃信息;设计双分支通路(Dual Branch Pathway,DBP)模块,通过多尺度特征提取更丰富的图像细节特征;设计了新的复合损失函数,更准确地控制恢复图像的质量。在多个数据集上的实验表明,该方案在主客观图像质量上优于现有的方法。 展开更多
关键词 水下图像恢复 deep WaveNet 全局注意力机制 多尺度特征提取 复合损失
在线阅读 下载PDF
DEEP NEURAL NETWORKS COMBINING MULTI-TASK LEARNING FOR SOLVING DELAY INTEGRO-DIFFERENTIAL EQUATIONS 被引量:1
9
作者 WANG Chen-yao SHI Feng 《数学杂志》 2025年第1期13-38,共26页
Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay di... Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay differential equations(DDEs)and delay integrodifferential equations(DIDEs)with constant delays,primarily due to their low regularity at delayinduced breaking points.In this paper,a DNN method that combines multi-task learning(MTL)which is proposed to solve both the forward and inverse problems of DIDEs.The core idea of this approach is to divide the original equation into multiple tasks based on the delay,using auxiliary outputs to represent the integral terms,followed by the use of MTL to seamlessly incorporate the properties at the breaking points into the loss function.Furthermore,given the increased training dificulty associated with multiple tasks and outputs,we employ a sequential training scheme to reduce training complexity and provide reference solutions for subsequent tasks.This approach significantly enhances the approximation accuracy of solving DIDEs with DNNs,as demonstrated by comparisons with traditional DNN methods.We validate the effectiveness of this method through several numerical experiments,test various parameter sharing structures in MTL and compare the testing results of these structures.Finally,this method is implemented to solve the inverse problem of nonlinear DIDE and the results show that the unknown parameters of DIDE can be discovered with sparse or noisy data. 展开更多
关键词 Delay integro-differential equation Multi-task learning parameter sharing structure deep neural network sequential training scheme
在线阅读 下载PDF
DeepSeek模型分析及其在AI辅助蛋白质工程中的应用 被引量:1
10
作者 李明辰 钟博子韬 +6 位作者 余元玺 姜帆 张良 谭扬 虞慧群 范贵生 洪亮 《合成生物学》 北大核心 2025年第3期636-650,共15页
2025年年初,杭州深度求索人工智能基础技术研究有限公司发布并开源了其自主研发的DeepSeek-R1对话大模型。该模型具备极低的推理成本和出色的思维链推理能力,在多种任务上能够媲美甚至超越闭源的GPT-4o和o1模型,引发了国际社会的高度关... 2025年年初,杭州深度求索人工智能基础技术研究有限公司发布并开源了其自主研发的DeepSeek-R1对话大模型。该模型具备极低的推理成本和出色的思维链推理能力,在多种任务上能够媲美甚至超越闭源的GPT-4o和o1模型,引发了国际社会的高度关注。此外,DeepSeek模型在中文对话上的优异表现以及免费商用的策略,在国内引发了部署和使用的热潮,推动了人工智能技术的普惠与发展。本文围绕DeepSeek模型的架构设计、训练方法与推理机制进行系统性分析,探讨其核心技术在AI蛋白质研究中的迁移潜力与应用前景。DeepSeek模型融合了多项自主创新的前沿技术,包括多头潜在注意力机制、混合专家网络及其负载均衡、低精度训练等,显著降低了Transformer模型的训练和推理成本。尽管DeepSeek模型原生设计用于人类语言的理解与生成,但其优化技术对同样基于Transformer模型的蛋白质预训练语言模型具有重要的参考价值。借助DeepSeek所采用的关键技术,蛋白质语言模型在训练成本、推理成本等方面有望得到显著降低。 展开更多
关键词 大语言模型 AI蛋白质 深度自注意力变换网络 蛋白质语言模型 深度学习
在线阅读 下载PDF
State of the art and current trends on the metal corrosion and protection strategies in deep sea 被引量:2
11
作者 Yangmin Wu Wenjie Zhao Liping Wang 《Journal of Materials Science & Technology》 2025年第12期192-213,共22页
Deep sea,with rich oil,gas,and mineral resources,plays an increasingly crucial role in scientific and industrial realms.However,the highly corrosive feature of deep sea hinders further exploration and development,whic... Deep sea,with rich oil,gas,and mineral resources,plays an increasingly crucial role in scientific and industrial realms.However,the highly corrosive feature of deep sea hinders further exploration and development,which requires metal materials with robust corrosion resistance.This review covers an in-depth and all-around overview of the up-to-date advances in corrosion and protection of metals in deep-sea environment.Firstly,the unique characteristics of deep-sea environment are summarized in detail.Subsequently,the corrosion performances of metals in both in situ and simulated deep-sea environments are illustrated systematically.Furthermore,corrosion prevent strategies of metals,including sacrificial anode protection,organic coatings,as well as coatings achieved by physical vapor deposition(PVD coatings),are highlighted.Finally,we outline current challenges and development trends of corrosion and protection of metals in deep-sea environment in the future.The purpose of this review is not only to summarize the recent progress on metal corrosion and protection in deep sea,but also to aid us in understanding them more comprehensively and deeply in a short time,so as to boost their fast development. 展开更多
关键词 deep sea Corrosion protection Sacrificial anode protection Organic coatings PVD coatings
原文传递
Research status of high efficiency deep penetration welding of medium-thick plate titanium alloy:A review 被引量:4
12
作者 Zhihai Dong Ye Tian +4 位作者 Long Zhang Tong Jiang Dafeng Wang Yunlong Chang Donggao Chen 《Defence Technology(防务技术)》 2025年第3期178-202,共25页
Titanium alloy has the advantages of high strength,strong corrosion resistance,excellent high and low temperature mechanical properties,etc.,and is widely used in aerospace,shipbuilding,weapons and equipment,and other... Titanium alloy has the advantages of high strength,strong corrosion resistance,excellent high and low temperature mechanical properties,etc.,and is widely used in aerospace,shipbuilding,weapons and equipment,and other fields.In recent years,with the continuous increase in demand for medium-thick plate titanium alloys,corresponding welding technologies have also continued to develop.Therefore,this article reviews the research progress of deep penetration welding technology for medium-thick plate titanium alloys,mainly covering traditional arc welding,high-energy beam welding,and other welding technologies.Among many methods,narrow gap welding,hybrid welding,and external energy field assistance welding all contribute to improving the welding efficiency and quality of medium-thick plate titanium alloys.Finally,the development trend of deep penetration welding technology for mediumthick plate titanium alloys is prospected. 展开更多
关键词 Titanium alloy deep penetration welding Narrow gap welding Hybrid welding External energy field assistance welding
在线阅读 下载PDF
Correction:Deep Learning-Enhanced Brain Tumor Prediction via Entropy-Coded BPSO in CIELAB Color Space
13
作者 Mudassir Khalil Muhammad Imran Sharif +3 位作者 Ahmed Naeem Muhammad Umar Chaudhry Hafiz Tayyab Rauf Adham E.Ragab 《Computers, Materials & Continua》 SCIE EI 2025年第1期1461-1461,共1页
In the article“Deep Learning-Enhanced Brain Tumor Prediction via Entropy-Coded BPSO in CIELAB Color Space”by Mudassir Khalil,Muhammad Imran Sharif,Ahmed Naeem,Muhammad Umar Chaudhry,Hafiz Tayyab Rauf,Adham E.Ragab C... In the article“Deep Learning-Enhanced Brain Tumor Prediction via Entropy-Coded BPSO in CIELAB Color Space”by Mudassir Khalil,Muhammad Imran Sharif,Ahmed Naeem,Muhammad Umar Chaudhry,Hafiz Tayyab Rauf,Adham E.Ragab Computers,Materials&Continua,2023,Vol.77,No.2,pp.2031–2047.DOI:10.32604/cmc.2023.043687,URL:https://www.techscience.com/cmc/v77n2/54831,there was an error regarding the affiliation for the author Hafiz Tayyab Rauf.Instead of“Centre for Smart Systems,AI and Cybersecurity,Staffordshire University,Stoke-on-Trent,ST42DE,UK”,the affiliation should be“Independent Researcher,Bradford,BD80HS,UK”. 展开更多
关键词 deep Code CIELAB
在线阅读 下载PDF
Research on Bearing Fault Diagnosis Method Based on Deep Learning 被引量:1
14
作者 Ting Zheng 《Journal of Electronic Research and Application》 2025年第1期1-6,共6页
Bearing is an indispensable key component in mechanical equipment,and its working state is directly related to the stability and safety of the whole equipment.In recent years,with the rapid development of artificial i... Bearing is an indispensable key component in mechanical equipment,and its working state is directly related to the stability and safety of the whole equipment.In recent years,with the rapid development of artificial intelligence technology,especially the breakthrough of deep learning technology,it provides a new idea for bearing fault diagnosis.Deep learning can automatically learn features from a large amount of data,has a strong nonlinear modeling ability,and can effectively solve the problems existing in traditional methods.Aiming at the key problems in bearing fault diagnosis,this paper studies the fault diagnosis method based on deep learning,which not only provides a new solution for bearing fault diagnosis but also provides a reference for the application of deep learning in other mechanical fault diagnosis fields. 展开更多
关键词 deep learning Bearing failure Diagnostic methods
在线阅读 下载PDF
基于改进DeepLabV3+网络的光伏组件热斑故障识别及状态量化评估方法研究 被引量:3
15
作者 陈雷 刘波 +1 位作者 孙凯 赵健 《太阳能学报》 北大核心 2025年第3期445-453,共9页
针对光伏组件热斑的精确定位和量化评估,提出一种基于改进DeepLabV3+网络与热斑像素比重模型相融合的光伏组件状态量化评估方法,旨在实现不同热斑状态的量化评估。首先,基于获取的红外热斑图像集,提出在DeepLabV3+主干网络中引入迁移学... 针对光伏组件热斑的精确定位和量化评估,提出一种基于改进DeepLabV3+网络与热斑像素比重模型相融合的光伏组件状态量化评估方法,旨在实现不同热斑状态的量化评估。首先,基于获取的红外热斑图像集,提出在DeepLabV3+主干网络中引入迁移学习网络(EfficientNetB7)来提高热斑形状特征提取能力,进而实现热斑的像素级语义分割;其次,利用Canny算法对分割的热斑图像进行像素级轮廓界定,并利用格林积分计算其像素比重;最后,通过构建状态评估模型实现对光伏组件热斑状态的量化评估。现场试验表明,与常见的语义分割方法(DeepLabV3、FCN、U-net、Linknet、SegNet)相比,该文所提方法在像素准确率和平均交并比方面分别达到98.33%和91.43%,具有较好的热斑分割效果。此外,所提状态评估方法可实现对光伏组件热斑大小的准确量化评估。 展开更多
关键词 光伏组件 热斑 图像分割 状态评估 深度学习 红外图像
原文传递
基于改进DeepLabV3+算法的遥感影像滑坡识别 被引量:1
16
作者 李旺平 尉文博 +6 位作者 刘晓杰 柴成富 张雪莹 周兆叶 张秀霞 郝君明 魏玉明 《地球信息科学学报》 北大核心 2025年第6期1448-1461,共14页
【目的】深度学习方法在地物识别中可以通过自动提取复杂地形特征从而显著提升效率,其中DeepLabV3+算法能够有效捕获多像素特征,被广泛地应用于遥感影像的分割和识别。但其在滑坡识别中细节处理能力受限,容易导致目标边界的模糊和识别错... 【目的】深度学习方法在地物识别中可以通过自动提取复杂地形特征从而显著提升效率,其中DeepLabV3+算法能够有效捕获多像素特征,被广泛地应用于遥感影像的分割和识别。但其在滑坡识别中细节处理能力受限,容易导致目标边界的模糊和识别错误,此外,该模型依靠卷积运算捕获的是局部信息,难以有效地建立长距离依赖关系。【方法】本文提出了一种基于DeepLabV3+的改进模型,首先,引入坐标注意力(Coordinate Attention,CA)机制,增强特征表达能力。其次,使用密集空间空洞金字塔池化(Dense Atrous Spatial Pyramid Pooling,DenseASPP)模块替换原有的空间空洞金字塔池化(Atrous Spatial Pyramid Pooling,ASPP)模块,提升多尺度特征提取效果并有效地解决了空洞卷积低效或失效的问题;同时,通过并联加入条形池化(Strip Pooling,SP)分支模块,提升主干网络对长距离依赖关系的建模能力。最后,引入级联特征融合(Cascade Feature Fusion,CFF)模块,用于整合不同层次的特征信息,进一步优化分割性能。【结果】使用毕节滑坡数据集进行实验,结果表明,改进后模型相较原模型的MIoU提高了2.2%,F1分数提高了1.2%;与其他主流深度学习模型进行对比,该模型在提取精度方面均表现出一定优势。在分割效果上,该模型在识别滑坡区域的整体准确性上有显著提高,分割结果与原始滑坡形态保持很高的一致性,减少了错分和漏分现象,在滑坡边界的分割上更加精确。【结论】通过验证数据集测试及实际应用验证,本文提出的方法在不同场景、不同复杂程度下的滑坡影像均表现出较强的识别能力,尤其在植被覆盖区、河流邻近区域等复杂背景环境中表现更加稳定,展现出较强的泛化能力和普适性。 展开更多
关键词 滑坡识别 遥感影像 深度学习 语义分割 deepLabV3+ 注意力机制 DenseASPP 特征融合
原文传递
基于思维链技术的语言模型Deep Seek-R1、GPT-4o与Claude-3.5 Sonnet在儿外科领域的表现评估
17
作者 普健 刘雪来 谷庆隆 《齐齐哈尔医学院学报》 2025年第19期1844-1852,共9页
目的本研究旨在评估采用思维链(Co T)技术的人工智能(AI)语言模型(Deep Seek-R1)与传统大语言模型(GPT-4o、Claude-3.5 Sonnet)在儿外科临床知识库应答任务中的性能差异,进而探索AI技术在医疗健康领域优化临床决策支持的可行性及潜在影... 目的本研究旨在评估采用思维链(Co T)技术的人工智能(AI)语言模型(Deep Seek-R1)与传统大语言模型(GPT-4o、Claude-3.5 Sonnet)在儿外科临床知识库应答任务中的性能差异,进而探索AI技术在医疗健康领域优化临床决策支持的可行性及潜在影响风险。方法研究团队构建标准化儿外科知识题库(n=147),涵盖先天性巨结肠、肛门闭锁及先天性胆总管囊肿三大疾病谱系,并从基础理论、临床诊断、治疗策略、并发症管理和预防措施五个维度设计问题。题库包含专业型问题(医生视角,n=79)与科普型问题(患者视角,n=68)。采用双盲法组织专业评估团队进行系统评分。此外,从既往临床病例中挑选罕见或诊断困难的病例问题,进一步评估三个模型的临床诊断能力,同时评估不同提问条件下AI临床诊断的差异。应用Kruskal-Wallis H检验进行多组独立样本间差异分析,若差异显著则进一步通过全部成对比较。采用卡方检验比较分类数据之间的表现差异。使用Cohen's kappa检验评估者之间的评分差异度。结果本研究对三个语言模型在儿外科场景的表现进行系统评估:(1)总体性能比较:Deep Seek-R1总体回答质量显著优于对照模型(H=23.42,P<0.001),Deep Seek-R1准确率(87.07%)高于GPT-4o(63.27%)和Claude-3.5 Sonnet(67.35%);(2)专业问题表现:三类模型在专业类问题中答案质量的差异尤为显著(H=26.50,P<0.001);(3)科普问题表现:三类模型在患者教育类问题中均表现良好(准确率>80%),组间差异无统计学意义(H=2.335,P=0.311),且未观察到明显错误答案;(4)病例分析能力:三种模型对于含完整辅助诊断信息的回答质量显著优于无辅助检查的病例问题[χ^(2)(2)=1.983,P=0.371]。结论在儿外科的知识测评中,采用思维链技术的人工智能模型(Deep Seek-R1)在处理复杂问题时的表现优于GPT-4o和Claude-3.5 Sonnet,但三个模型的部分答案仍存在局限和潜在错误。此外,在使用AI处理临床问题时提供更全面的输入信息能显著提升回答准确率。 展开更多
关键词 人工智能 大语言模型 儿外科 思维链 deep Seek-R1 GPT-4o Claude-3.5 Sonnet
在线阅读 下载PDF
Biparametric magnetic resonance imaging-based radiomic and deep learning models for predicting Ki-67 risk stratification in hepatocellular carcinoma 被引量:1
18
作者 Xue-Yong Zuo Hai-Feng Liu 《World Journal of Hepatology》 2025年第8期244-256,共13页
BACKGROUND Hepatocellular carcinoma(HCC)is a prevalent and life-threatening cancer with increasing incidence worldwide.High Ki-67 risk stratification is closely associated with higher recurrence rates and worse outcom... BACKGROUND Hepatocellular carcinoma(HCC)is a prevalent and life-threatening cancer with increasing incidence worldwide.High Ki-67 risk stratification is closely associated with higher recurrence rates and worse outcomes following curative therapies in patients with HCC.However,the performance of radiomic and deep transfer learning(DTL)models derived from biparametric magnetic resonance imaging(bpMRI)in predicting Ki-67 risk stratification and recurrence-free survival(RFS)in patients with HCC remains limited.AIM To develop a nomogram model integrating bpMRI-based radiomic and DTL signatures for predicting Ki-67 risk stratification and RFS in patients with HCC.METHODS This study included 198 patients with histopathologically confirmed HCC who underwent preoperative bpMRI.Ki-67 risk stratification was categorized as high(>20%)or low(≤20%)according to immunohistochemical staining.Radiomic and DTL signatures were extracted from the T2-weighted and arterial-phase images and combined through a random forest algorithm to establish radiomic and DTL models,respectively.Multivariate regression analysis identified clinical risk factors for high Ki-67 risk stratification,and a predictive nomogram model was developed.RESULTS A nonsmooth margin and the absence of an enhanced capsule were independent factors for high Ki-67 risk stratification.The area under the curve(AUC)of the clinical model was 0.77,while those of the radiomic and DTL models were 0.81 and 0.87,respectively,for the prediction of high Ki-67 risk stratification,and the nomogram model achieved a better AUC of 0.92.The median RFS times for patients with high and low Ki-67 risk stratification were 33.00 months and 66.73 months,respectively(P<0.001).Additionally,patients who were predicted to have high Ki-67 risk stratification by the nomogram model had a lower median RFS than those who were predicted to have low Ki-67 risk stratification(33.53 vs 66.74 months,P=0.007).CONCLUSION Our developed nomogram model demonstrated good performance in predicting Ki-67 risk stratification and predicting survival outcomes in patients with HCC. 展开更多
关键词 Hepatocellular carcinoma KI-67 Radiomics deep transfer learning Recurrence-free survival
暂未订购
Hydrogen bond-induced conduction loss for enhanced electromagnetic attenuation in deep eutectic gel absorbers 被引量:1
19
作者 Yuntong Wang Shengchong Hui +6 位作者 Zhaoxiaohan Shi Zijing Li Geng Chen Tao Zhang Xinyue Xie Limin Zhang Hongjing Wu 《International Journal of Minerals,Metallurgy and Materials》 2025年第3期738-746,共9页
Gels and conductive polymer composites,including hydrogen bonds(HBs),have emerged as promising materials for electro-magnetic wave(EMW)absorption across various applications.However,the relationship between conduction... Gels and conductive polymer composites,including hydrogen bonds(HBs),have emerged as promising materials for electro-magnetic wave(EMW)absorption across various applications.However,the relationship between conduction loss in EMW-absorbing materials and charge transfer in HB remains to be fully understood.In this study,we developed a series of deep eutectic gels to fine-tune the quantity of HB by adjusting the molar ratio of choline chloride(ChCl)and ethylene glycol(EG).Owing to the unique properties of deep eutectic gels,the effects of magnetic loss and polarization loss on EMW attenuation can be disregarded.Our results indicate that the quantity of HB initially increases and then decreases with the introduction of EG,with HB-induced conductive loss following similar pat-terns.At a ChCl and EG molar ratio of 2.4,the gel labeled G22-CE2.4 exhibited the best EMW absorption performance,characterized by an effective absorption bandwidth of 8.50 GHz and a thickness of 2.54 mm.This superior performance is attributed to the synergistic ef-fects of excellent conductive loss and impedance matching generated by the optimal number of HB.This work elucidates the role of HB in dielectric loss for the first time and provides valuable insights into the optimal design of supramolecular polymer absorbers. 展开更多
关键词 ABSORBERS hydrogen bonds deep eutectic gels dielectric properties conduction loss
在线阅读 下载PDF
Laboratory-scale insight into ultrasonic and acoustic emission indicators for damage characterization and hazard assessment of deep shale 被引量:1
20
作者 Jingjing Dai Jianfeng Liu +5 位作者 Changwu Liu Jianxiong Yang Fujun Xue Yifan Tang Dehang Liu Junjie Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第5期2964-2986,共23页
The loaded rock experiences multiple stages of deformation.It starts with the formation of microcracks at low stresses(crack initiation,CI)and then transitions into unstable crack propagation(crack damage,CD)near the ... The loaded rock experiences multiple stages of deformation.It starts with the formation of microcracks at low stresses(crack initiation,CI)and then transitions into unstable crack propagation(crack damage,CD)near the ultimate strength.In this study,both the acoustic emission method(AEM)and the ultrasonic testing method(UTM)were used to examine the characteristics of AE parameters(b-value,peak frequency,frequency-band energy ratio,and fractal dimension)and ultrasonic(ULT)properties(velocity,amplitude,energy attenuation,and scattering attenuation)of bedded shale at CI,CD,and ultimate strength.The comparison involved analyzing the strain-based method(SBM),AEM,and UTM to determine the thresholds for damage stress.A fuzzy comprehensive evaluation model(FCEM)was created to describe the damage thresholds and hazard assessment.The results indicate that the optimal AE and ULT parameters for identifying CI and CD stress are ringing count,ultrasonic amplitude,energy attenuation,and scattering attenuation of the S-wave.Besides,damage thresholds were detected earlier by AE monitoring,ranging from 3 MPa to 10 MPa.CI and CD identified by UTM occurred later than SBM and AEM,and were in the range of 12 MPa.The b-value,peak frequency,energy ratio in the low-frequency band(0e62.5 kHz),correlation dimension,and sandbox dimension showed low values at the peak stress,while the energy ratio in a moderate-frequency band(187.5e281.25 kHz)and amplitude showed high values.The successful application of FCEM to laboratory testing of shales has demonstrated its ability to quantitatively identify AE/ULT precursors of seismic hazards associated with rock failure. 展开更多
关键词 Crack initiation Crack damage deep shale Acoustic emission Ultrasonic testing
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部