期刊文献+
共找到3,514篇文章
< 1 2 176 >
每页显示 20 50 100
A Survey on Deep Learning-based Fine-grained Object Classification and Semantic Segmentation 被引量:46
1
作者 Bo Zhao Jiashi Feng +1 位作者 Xiao Wu Shuicheng Yan 《International Journal of Automation and computing》 EI CSCD 2017年第2期119-135,共17页
The deep learning technology has shown impressive performance in various vision tasks such as image classification, object detection and semantic segmentation. In particular, recent advances of deep learning technique... The deep learning technology has shown impressive performance in various vision tasks such as image classification, object detection and semantic segmentation. In particular, recent advances of deep learning techniques bring encouraging performance to fine-grained image classification which aims to distinguish subordinate-level categories, such as bird species or dog breeds. This task is extremely challenging due to high intra-class and low inter-class variance. In this paper, we review four types of deep learning based fine-grained image classification approaches, including the general convolutional neural networks (CNNs), part detection based, ensemble of networks based and visual attention based fine-grained image classification approaches. Besides, the deep learning based semantic segmentation approaches are also covered in this paper. The region proposal based and fully convolutional networks based approaches for semantic segmentation are introduced respectively. 展开更多
关键词 deep learning fine-grained image classification semantic segmentation convolutional neural network (CNN) recurrentneural network (RNN)
原文传递
Semantic segmentation of pyramidal neuron skeletons using geometric deep learning 被引量:1
2
作者 Lanlan Li Jing Qi +1 位作者 Yi Geng Jingpeng Wu 《Journal of Innovative Optical Health Sciences》 SCIE EI CSCD 2023年第6期69-76,共8页
Neurons can be abstractly represented as skeletons due to the filament nature of neurites.With the rapid development of imaging and image analysis techniques,an increasing amount of neuron skeleton data is being produ... Neurons can be abstractly represented as skeletons due to the filament nature of neurites.With the rapid development of imaging and image analysis techniques,an increasing amount of neuron skeleton data is being produced.In some scienti fic studies,it is necessary to dissect the axons and dendrites,which is typically done manually and is both tedious and time-consuming.To automate this process,we have developed a method that relies solely on neuronal skeletons using Geometric Deep Learning(GDL).We demonstrate the effectiveness of this method using pyramidal neurons in mammalian brains,and the results are promising for its application in neuroscience studies. 展开更多
关键词 Pyramidal neuron geometric deep learning neuron skeleton semantic segmentation point cloud.
原文传递
Deep Learning-Based 3D Instance and Semantic Segmentation: A Review 被引量:1
3
作者 Siddiqui Muhammad Yasir Hyunsik Ahn 《Journal on Artificial Intelligence》 2022年第2期99-114,共16页
The process of segmenting point cloud data into several homogeneous areas with points in the same region having the same attributes is known as 3D segmentation.Segmentation is challenging with point cloud data due to... The process of segmenting point cloud data into several homogeneous areas with points in the same region having the same attributes is known as 3D segmentation.Segmentation is challenging with point cloud data due to substantial redundancy,fluctuating sample density and lack of apparent organization.The research area has a wide range of robotics applications,including intelligent vehicles,autonomous mapping and navigation.A number of researchers have introduced various methodologies and algorithms.Deep learning has been successfully used to a spectrum of 2D vision domains as a prevailing A.I.methods.However,due to the specific problems of processing point clouds with deep neural networks,deep learning on point clouds is still in its initial stages.This study examines many strategies that have been presented to 3D instance and semantic segmentation and gives a complete assessment of current developments in deep learning-based 3D segmentation.In these approaches’benefits,draw backs,and design mechanisms are studied and addressed.This study evaluates the impact of various segmentation algorithms on competitiveness on various publicly accessible datasets,as well as the most often used pipelines,their advantages and limits,insightful findings and intriguing future research directions. 展开更多
关键词 Artificial intelligence computer vision robot vision 3D instance segmentation 3D semantic segmentation 3D data deep learning point cloud MESH VOXEL RGB-D segmentation
在线阅读 下载PDF
A Survey on Image Semantic Segmentation Using Deep Learning Techniques
4
作者 Jieren Cheng Hua Li +2 位作者 Dengbo Li Shuai Hua Victor S.Sheng 《Computers, Materials & Continua》 SCIE EI 2023年第1期1941-1957,共17页
Image semantic segmentation is an important branch of computer vision of a wide variety of practical applications such as medical image analysis,autonomous driving,virtual or augmented reality,etc.In recent years,due ... Image semantic segmentation is an important branch of computer vision of a wide variety of practical applications such as medical image analysis,autonomous driving,virtual or augmented reality,etc.In recent years,due to the remarkable performance of transformer and multilayer perceptron(MLP)in computer vision,which is equivalent to convolutional neural network(CNN),there has been a substantial amount of image semantic segmentation works aimed at developing different types of deep learning architecture.This survey aims to provide a comprehensive overview of deep learning methods in the field of general image semantic segmentation.Firstly,the commonly used image segmentation datasets are listed.Next,extensive pioneering works are deeply studied from multiple perspectives(e.g.,network structures,feature fusion methods,attention mechanisms),and are divided into four categories according to different network architectures:CNN-based architectures,transformer-based architectures,MLP-based architectures,and others.Furthermore,this paper presents some common evaluation metrics and compares the respective advantages and limitations of popular techniques both in terms of architectural design and their experimental value on the most widely used datasets.Finally,possible future research directions and challenges are discussed for the reference of other researchers. 展开更多
关键词 deep learning semantic segmentation CNN MLP TRANSFORMER
在线阅读 下载PDF
Remote sensing image semantic segmentation algorithm based on improved DeepLabv3+
5
作者 SONG Xirui GE Hongwei LI Ting 《Journal of Measurement Science and Instrumentation》 2025年第2期205-215,共11页
The convolutional neural network(CNN)method based on DeepLabv3+has some problems in the semantic segmentation task of high-resolution remote sensing images,such as fixed receiving field size of feature extraction,lack... The convolutional neural network(CNN)method based on DeepLabv3+has some problems in the semantic segmentation task of high-resolution remote sensing images,such as fixed receiving field size of feature extraction,lack of semantic information,high decoder magnification,and insufficient detail retention ability.A hierarchical feature fusion network(HFFNet)was proposed.Firstly,a combination of transformer and CNN architectures was employed for feature extraction from images of varying resolutions.The extracted features were processed independently.Subsequently,the features from the transformer and CNN were fused under the guidance of features from different sources.This fusion process assisted in restoring information more comprehensively during the decoding stage.Furthermore,a spatial channel attention module was designed in the final stage of decoding to refine features and reduce the semantic gap between shallow CNN features and deep decoder features.The experimental results showed that HFFNet had superior performance on UAVid,LoveDA,Potsdam,and Vaihingen datasets,and its cross-linking index was better than DeepLabv3+and other competing methods,showing strong generalization ability. 展开更多
关键词 semantic segmentation high-resolution remote sensing image deep learning transformer model attention mechanism feature fusion ENCODER DECODER
在线阅读 下载PDF
UltraSegNet:A Hybrid Deep Learning Framework for Enhanced Breast Cancer Segmentation and Classification on Ultrasound Images
6
作者 Suhaila Abuowaida Hamza Abu Owida +3 位作者 Deema Mohammed Alsekait Nawaf Alshdaifat Diaa Salama Abd Elminaam Mohammad Alshinwan 《Computers, Materials & Continua》 2025年第5期3303-3333,共31页
Segmenting a breast ultrasound image is still challenging due to the presence of speckle noise,dependency on the operator,and the variation of image quality.This paper presents the UltraSegNet architecture that addres... Segmenting a breast ultrasound image is still challenging due to the presence of speckle noise,dependency on the operator,and the variation of image quality.This paper presents the UltraSegNet architecture that addresses these challenges through three key technical innovations:This work adds three things:(1)a changed ResNet-50 backbone with sequential 3×3 convolutions to keep fine anatomical details that are needed for finding lesion boundaries;(2)a computationally efficient regional attention mechanism that works on high-resolution features without using a transformer’s extra memory;and(3)an adaptive feature fusion strategy that changes local and global featuresbasedonhowthe image isbeing used.Extensive evaluation on two distinct datasets demonstrates UltraSegNet’s superior performance:On the BUSI dataset,it obtains a precision of 0.915,a recall of 0.908,and an F1 score of 0.911.In the UDAIT dataset,it achieves robust performance across the board,with a precision of 0.901 and recall of 0.894.Importantly,these improvements are achieved at clinically feasible computation times,taking 235 ms per image on standard GPU hardware.Notably,UltraSegNet does amazingly well on difficult small lesions(less than 10 mm),achieving a detection accuracy of 0.891.This is a huge improvement over traditional methods that have a hard time with small-scale features,as standard models can only achieve 0.63–0.71 accuracy.This improvement in small lesion detection is particularly crucial for early-stage breast cancer identification.Results from this work demonstrate that UltraSegNet can be practically deployable in clinical workflows to improve breast cancer screening accuracy. 展开更多
关键词 Breast cancer ultrasound image segmentation CLASSIFICATION deep learning
在线阅读 下载PDF
Assessing deep learning models for multi-class upper endoscopic disease segmentation:A comprehensive comparative study
7
作者 In Neng Chan Pak Kin Wong +13 位作者 Tao Yan Yan-Yan Hu Chon In Chan Ye-Ying Qin Chi Hong Wong In Weng Chan Ieng Hou Lam Sio Hou Wong Zheng Li Shan Gao Hon Ho Yu Liang Yao Bao-Liang Zhao Ying Hu 《World Journal of Gastroenterology》 2025年第41期121-150,共30页
BACKGROUND Upper gastrointestinal(UGI)diseases present diagnostic challenges during endoscopy due to visual similarities,indistinct boundaries,and observer variability,which can lead to missed diagnoses and delayed tr... BACKGROUND Upper gastrointestinal(UGI)diseases present diagnostic challenges during endoscopy due to visual similarities,indistinct boundaries,and observer variability,which can lead to missed diagnoses and delayed treatment.Automated segmentation using deep learning(DL)models offers the potential to assist endoscopists,improve diagnostic accuracy,and reduce workload.However,multi-class UGI disease segmentation remains underexplored,with limited annotated datasets and insufficient focus on clinical validation.This study hypothesizes that comparative analysis of different DL architectures can identify models suitable for clinical application,providing actionable insights to reduce diagnostic errors and support clinical decision-making in endoscopic practice.AIM To evaluate 17 state-of-the-art DL models for multi-class UGI disease segmentation,emphasizing clinical translation and real-world applicability.METHODS This study evaluated 17 DL models spanning convolutional neural network(CNN)-,transformer-,and mambabased architectures using a self-collected dataset from two hospitals in Macao and Xiangyang(3313 images,9 classes)and the public EDD2020 dataset(386 images,5 classes).Models were assessed for segmentation performance and performance-efficiency trade-off.Statistical analyses were conducted to examine performance differences across architectures.Generalization capability was measured through a cross-dataset evaluation(training models on the self-collected dataset and testing on the EDD2020 dataset).RESULTS Swin-UMamba achieved the highest segmentation performance across both datasets[intersection over union(IoU):89.06%±0.20%self-collected,77.53%±0.32%EDD2020],followed by SegFormer(IoU:88.94%±0.38%selfcollected,77.20%±0.98%EDD2020)and ConvNeXt+UPerNet(IoU:88.48%±0.09%self-collected,76.90%±0.61%EDD2020).Statistical analyses showed no significant differences between paradigms,though hierarchical architectures with pre-trained encoders consistently outperformed simpler designs.SegFormer achieved the best balance of accuracy and computational efficiency with a performance-efficiency trade-off score of 92.02%,making it suitable for real-time clinical use.Cross-dataset evaluation revealed significant performance drops,with generalization retention rates of 64.78%to 71.52%.Transformer-based models,particularly pyramid vision transformer v2+efficient multi-scale convolutional decoding(IoU:63.35%±1.44%),generalized better than CNN-and mambabased models.CONCLUSION Hierarchical architectures like Swin-UMamba and SegFormer show promise for UGI disease segmentation,reducing missed diagnoses and improving workflows,but robust clinical validation is crucial for real-world deployment. 展开更多
关键词 deep learning Upper endoscopy Medical imaging Gastrointestinal diseases Disease segmentation
在线阅读 下载PDF
Deep Multi-Scale and Attention-Based Architectures for Semantic Segmentation in Biomedical Imaging
8
作者 Majid Harouni Vishakha Goyal +2 位作者 Gabrielle Feldman Sam Michael Ty C.Voss 《Computers, Materials & Continua》 2025年第10期331-366,共36页
Semantic segmentation plays a foundational role in biomedical image analysis, providing precise information about cellular, tissue, and organ structures in both biological and medical imaging modalities. Traditional a... Semantic segmentation plays a foundational role in biomedical image analysis, providing precise information about cellular, tissue, and organ structures in both biological and medical imaging modalities. Traditional approaches often fail in the face of challenges such as low contrast, morphological variability, and densely packed structures. Recent advancements in deep learning have transformed segmentation capabilities through the integration of fine-scale detail preservation, coarse-scale contextual modeling, and multi-scale feature fusion. This work provides a comprehensive analysis of state-of-the-art deep learning models, including U-Net variants, attention-based frameworks, and Transformer-integrated networks, highlighting innovations that improve accuracy, generalizability, and computational efficiency. Key architectural components such as convolution operations, shallow and deep blocks, skip connections, and hybrid encoders are examined for their roles in enhancing spatial representation and semantic consistency. We further discuss the importance of hierarchical and instance-aware segmentation and annotation in interpreting complex biological scenes and multiplexed medical images. By bridging methodological developments with diverse application domains, this paper outlines current trends and future directions for semantic segmentation, emphasizing its critical role in facilitating annotation, diagnosis, and discovery in biomedical research. 展开更多
关键词 Biomedical semantic segmentation multi-scale feature fusion fine-and coarse-scale features convolution operations shallow and deep blocks skip connections
在线阅读 下载PDF
Segmentation versus detection:Development and evaluation of deep learning models for prostate imaging reporting and data system lesions localisation on Bi-parametric prostate magnetic resonance imaging
9
作者 Zhe Min Fernando J.Bianco +6 位作者 Qianye Yang Wen Yan Ziyi Shen David Cohen Rachael Rodell Dean C.Barratt Yipeng Hu 《CAAI Transactions on Intelligence Technology》 2025年第3期689-702,共14页
Automated prostate cancer detection in magnetic resonance imaging(MRI)scans is of significant importance for cancer patient management.Most existing computer-aided diagnosis systems adopt segmentation methods while ob... Automated prostate cancer detection in magnetic resonance imaging(MRI)scans is of significant importance for cancer patient management.Most existing computer-aided diagnosis systems adopt segmentation methods while object detection approaches recently show promising results.The authors have(1)carefully compared performances of most-developed segmentation and object detection methods in localising prostate imaging reporting and data system(PIRADS)-labelled prostate lesions on MRI scans;(2)proposed an additional customised set of lesion-level localisation sensitivity and precision;(3)proposed efficient ways to ensemble the segmentation and object detection methods for improved performances.The ground-truth(GT)perspective lesion-level sensitivity and prediction-perspective lesion-level precision are reported,to quantify the ratios of true positive voxels being detected by algorithms over the number of voxels in the GT labelled regions and predicted regions.The two networks are trained independently on 549 clinical patients data with PIRADS-V2 as GT labels,and tested on 161 internal and 100 external MRI scans.At the lesion level,nnDetection outperforms nnUNet for detecting both PIRADS≥3 and PIRADS≥4 lesions in majority cases.For example,at the average false positive prediction per patient being 3,nnDetection achieves a greater Intersection-of-Union(IoU)-based sensitivity than nnUNet for detecting PIRADS≥3 lesions,being 80.78%�1.50%versus 60.40%�1.64%(p<0.01).At the voxel level,nnUnet is in general superior or comparable to nnDetection.The proposed ensemble methods achieve improved or comparable lesion-level accuracy,in all tested clinical scenarios.For example,at 3 false positives,the lesion-wise ensemble method achieves 82.24%�1.43%sensitivity versus 80.78%�1.50%(nnDetection)and 60.40%�1.64%(nnUNet)for detecting PIRADS≥3 lesions.Consistent conclusions are also drawn from results on the external data set. 展开更多
关键词 computer aided diagnosis deep learning magnetic resonance imaging(MRI) medical image segmentation medical object detection prostate cancer detection
暂未订购
Semantic Segmentation of Lumbar Vertebrae Using Meijering U-Net(MU-Net)on Spine Magnetic Resonance Images
10
作者 Lakshmi S V V Shiloah Elizabeth Darmanayagam Sunil Retmin Raj Cyril 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期733-757,共25页
Lower back pain is one of the most common medical problems in the world and it is experienced by a huge percentage of people everywhere.Due to its ability to produce a detailed view of the soft tissues,including the s... Lower back pain is one of the most common medical problems in the world and it is experienced by a huge percentage of people everywhere.Due to its ability to produce a detailed view of the soft tissues,including the spinal cord,nerves,intervertebral discs,and vertebrae,Magnetic Resonance Imaging is thought to be the most effective method for imaging the spine.The semantic segmentation of vertebrae plays a major role in the diagnostic process of lumbar diseases.It is difficult to semantically partition the vertebrae in Magnetic Resonance Images from the surrounding variety of tissues,including muscles,ligaments,and intervertebral discs.U-Net is a powerful deep-learning architecture to handle the challenges of medical image analysis tasks and achieves high segmentation accuracy.This work proposes a modified U-Net architecture namely MU-Net,consisting of the Meijering convolutional layer that incorporates the Meijering filter to perform the semantic segmentation of lumbar vertebrae L1 to L5 and sacral vertebra S1.Pseudo-colour mask images were generated and used as ground truth for training the model.The work has been carried out on 1312 images expanded from T1-weighted mid-sagittal MRI images of 515 patients in the Lumbar Spine MRI Dataset publicly available from Mendeley Data.The proposed MU-Net model for the semantic segmentation of the lumbar vertebrae gives better performance with 98.79%of pixel accuracy(PA),98.66%of dice similarity coefficient(DSC),97.36%of Jaccard coefficient,and 92.55%mean Intersection over Union(mean IoU)metrics using the mentioned dataset. 展开更多
关键词 Computer aided diagnosis(CAD) magnetic resonance imaging(MRI) semantic segmentation lumbar vertebrae deep learning U-Net model
在线阅读 下载PDF
Improved SE-UNet network-based semantic segmentation and extraction of hidden geological significance in geological maps
11
作者 Kai Ma Jun-jie Liu +5 位作者 Si-qi Lu Ze-hua Huang Miao Tian Jun-yuan Deng Zhong Xie Qin-jun Qiu 《China Geology》 2025年第4期643-660,共18页
Automatic segmentation and recognition of content and element information in color geological map are of great significance for researchers to analyze the distribution of mineral resources and predict disaster informa... Automatic segmentation and recognition of content and element information in color geological map are of great significance for researchers to analyze the distribution of mineral resources and predict disaster information.This article focuses on color planar raster geological map(geological maps include planar geological maps,columnar maps,and profiles).While existing deep learning approaches are often used to segment general images,their performance is limited due to complex elements,diverse regional features,and complicated backgrounds for color geological map in the domain of geoscience.To address the issue,a color geological map segmentation model is proposed that combines the Felz clustering algorithm and an improved SE-UNet deep learning network(named GeoMSeg).Firstly,a symmetrical encoder-decoder structure backbone network based on UNet is constructed,and the channel attention mechanism SENet has been incorporated to augment the network’s capacity for feature representation,enabling the model to purposefully extract map information.The SE-UNet network is employed for feature extraction from the geological map and obtain coarse segmentation results.Secondly,the Felz clustering algorithm is used for super pixel pre-segmentation of geological maps.The coarse segmentation results are refined and modified based on the super pixel pre-segmentation results to obtain the final segmentation results.This study applies GeoMSeg to the constructed dataset,and the experimental results show that the algorithm proposed in this paper has superior performance compared to other mainstream map segmentation models,with an accuracy of 91.89%and a MIoU of 71.91%. 展开更多
关键词 Geological map UNet model Image segmentation semantic segmentation Pixel pre-segmentation Clustering algorithm Attention mechanism deep learning Artificial intelligence Geological survey engineering
在线阅读 下载PDF
Automatic mapping and pattern analysis of retrogressive thaw slumps on the central Tibetan Plateau using deep learning
12
作者 YUAN Yi ZHOU Guiyun +3 位作者 DING Jinzhi LI Shihua LIU Ziyin HE Binbin 《Journal of Geographical Sciences》 2025年第10期2248-2270,共23页
The thawing of ice-rich permafrost leads to the formation of thermokarst landforms.Precise mapping of retrogressive thaw slumps(RTSs)is imperative for assessing the degradation and carbon exchange of permafrost at bot... The thawing of ice-rich permafrost leads to the formation of thermokarst landforms.Precise mapping of retrogressive thaw slumps(RTSs)is imperative for assessing the degradation and carbon exchange of permafrost at both local and regional scales on the Tibetan Plateau(TP).However,previous methods for RTSs mapping rely on a large number of samples and complex classifiers with low automation level or unnecessary complexity.We propose an automatic mapping network(AmRTSNet)for producing decimeter-level RTSs maps from GaoFen-7 images based on deep learning.Both the quantitative metrics and qualitative evaluations show that AmRTSNet trained in the Beiluhe offers significant advantages over previous methods.Without further fine-tuning,we conducted RTSs automatic mapping based on AmRTSNet in the Wulanwula,Chumarhe,and Gaolinggo.Over 141,312 ha on the TP have been automatically mapped,comprising 926 RTS regions with a total RTS area of 2318.72 ha.The average statistics of the mapped RTSs show low roundness(0.38),moderate rectangularity(0.61),and high convexity(0.79).About 90%of the RTSs are smaller than 6 ha.The average aspect ratio is 2.18.RTSs are unevenly distributed in belt-like aggregations with dominant density peaks.RTSs often concentrate in hillslopes and along lateral streams,with more dense areas more likely to have larger RTSs. 展开更多
关键词 Tibetan Plateau permafrost degradation retrogressive thaw slumps remote sensing deep learning semantic segmentation GaoFen-7
原文传递
CAMSNet:Few-Shot Semantic Segmentation via Class Activation Map and Self-Cross Attention Block
13
作者 Jingjing Yan Xuyang Zhuang +2 位作者 Xuezhuan Zhao Xiaoyan Shao Jiaqi Han 《Computers, Materials & Continua》 2025年第3期5363-5386,共24页
The key to the success of few-shot semantic segmentation(FSS)depends on the efficient use of limited annotated support set to accurately segment novel classes in the query set.Due to the few samples in the support set... The key to the success of few-shot semantic segmentation(FSS)depends on the efficient use of limited annotated support set to accurately segment novel classes in the query set.Due to the few samples in the support set,FSS faces challenges such as intra-class differences,background(BG)mismatches between query and support sets,and ambiguous segmentation between the foreground(FG)and BG in the query set.To address these issues,The paper propose a multi-module network called CAMSNet,which includes four modules:the General Information Module(GIM),the Class Activation Map Aggregation(CAMA)module,the Self-Cross Attention(SCA)Block,and the Feature Fusion Module(FFM).In CAMSNet,The GIM employs an improved triplet loss,which concatenates word embedding vectors and support prototypes as anchors,and uses local support features of FG and BG as positive and negative samples to help solve the problem of intra-class differences.Then for the first time,the Class Activation Map(CAM)from the Weakly Supervised Semantic Segmentation(WSSS)is applied to FSS within the CAMA module.This method replaces the traditional use of cosine similarity to locate query information.Subsequently,the SCA Block processes the support and query features aggregated by the CAMA module,significantly enhancing the understanding of input information,leading to more accurate predictions and effectively addressing BG mismatch and ambiguous FG-BG segmentation.Finally,The FFM combines general class information with the enhanced query information to achieve accurate segmentation of the query image.Extensive Experiments on PASCAL and COCO demonstrate that-5i-20ithe CAMSNet yields superior performance and set a state-of-the-art. 展开更多
关键词 Few-shot semantic segmentation semantic segmentation meta learning
在线阅读 下载PDF
Advancements in Liver Tumor Detection:A Comprehensive Review of Various Deep Learning Models
14
作者 Shanmugasundaram Hariharan D.Anandan +3 位作者 Murugaperumal Krishnamoorthy Vinay Kukreja Nitin Goyal Shih-Yu Chen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期91-122,共32页
Liver cancer remains a leading cause of mortality worldwide,and precise diagnostic tools are essential for effective treatment planning.Liver Tumors(LTs)vary significantly in size,shape,and location,and can present wi... Liver cancer remains a leading cause of mortality worldwide,and precise diagnostic tools are essential for effective treatment planning.Liver Tumors(LTs)vary significantly in size,shape,and location,and can present with tissues of similar intensities,making automatically segmenting and classifying LTs from abdominal tomography images crucial and challenging.This review examines recent advancements in Liver Segmentation(LS)and Tumor Segmentation(TS)algorithms,highlighting their strengths and limitations regarding precision,automation,and resilience.Performance metrics are utilized to assess key detection algorithms and analytical methods,emphasizing their effectiveness and relevance in clinical contexts.The review also addresses ongoing challenges in liver tumor segmentation and identification,such as managing high variability in patient data and ensuring robustness across different imaging conditions.It suggests directions for future research,with insights into technological advancements that can enhance surgical planning and diagnostic accuracy by comparing popular methods.This paper contributes to a comprehensive understanding of current liver tumor detection techniques,provides a roadmap for future innovations,and improves diagnostic and therapeutic outcomes for liver cancer by integrating recent progress with remaining challenges. 展开更多
关键词 Liver tumor detection liver tumor segmentation image processing liver tumor diagnosis feature extraction tumor classification deep learning machine learning
暂未订购
A Deep Learning Based Broadcast Approach for Image Semantic Communication over Fading Channels 被引量:2
15
作者 Ma Kangning Shi Yuxuan +1 位作者 Shao Shuo Tao Meixia 《China Communications》 SCIE CSCD 2024年第7期78-94,共17页
We consider an image semantic communication system in a time-varying fading Gaussian MIMO channel,with a finite number of channel states.A deep learning-aided broadcast approach scheme is proposed to benefit the adapt... We consider an image semantic communication system in a time-varying fading Gaussian MIMO channel,with a finite number of channel states.A deep learning-aided broadcast approach scheme is proposed to benefit the adaptive semantic transmission in terms of different channel states.We combine the classic broadcast approach with the image transformer to implement this adaptive joint source and channel coding(JSCC)scheme.Specifically,we utilize the neural network(NN)to jointly optimize the hierarchical image compression and superposition code mapping within this scheme.The learned transformers and codebooks allow recovering of the image with an adaptive quality and low error rate at the receiver side,in each channel state.The simulation results exhibit our proposed scheme can dynamically adapt the coding to the current channel state and outperform some existing intelligent schemes with the fixed coding block. 展开更多
关键词 broadcast approach deep learning fading channels semantic communication
在线阅读 下载PDF
Deep Learning and Artificial Intelligence-Driven Advanced Methods for Acute Lymphoblastic Leukemia Identification and Classification: A Systematic Review
16
作者 Syed Ijaz Ur Rahman Naveed Abbas +5 位作者 Sikandar Ali Muhammad Salman Ahmed Alkhayat Jawad Khan Dildar Hussain Yeong Hyeon Gu 《Computer Modeling in Engineering & Sciences》 2025年第2期1199-1231,共33页
Automatic detection of Leukemia or blood cancer is one of the most challenging tasks that need to be addressed in the healthcare system.Analysis of white blood cells(WBCs)in the blood or bone marrow microscopic slide ... Automatic detection of Leukemia or blood cancer is one of the most challenging tasks that need to be addressed in the healthcare system.Analysis of white blood cells(WBCs)in the blood or bone marrow microscopic slide images play a crucial part in early identification to facilitate medical experts.For Acute Lymphocytic Leukemia(ALL),the most preferred part of the blood or marrow is to be analyzed by the experts before it spreads in the whole body and the condition becomes worse.The researchers have done a lot of work in this field,to demonstrate a comprehensive analysis few literature reviews have been published focusing on various artificial intelligence-based techniques like machine and deep learning detection of ALL.The systematic review has been done in this article under the PRISMA guidelines which presents the most recent advancements in this field.Different image segmentation techniques were broadly studied and categorized from various online databases like Google Scholar,Science Direct,and PubMed as image processing-based,traditional machine and deep learning-based,and advanced deep learning-based models were presented.Convolutional Neural Networks(CNN)based on traditional models and then the recent advancements in CNN used for the classification of ALL into its subtypes.A critical analysis of the existing methods is provided to offer clarity on the current state of the field.Finally,the paper concludes with insights and suggestions for future research,aiming to guide new researchers in the development of advanced automated systems for detecting life-threatening diseases. 展开更多
关键词 Acute lymphoblastic bone marrow segmentation CLASSIFICATION machine learning deep learning convolutional neural network
暂未订购
PPFormer:Patch Prototype Transformer for Semantic Segmentation
17
作者 Shanyuan Liu Yonggang Lu 《Journal of Beijing Institute of Technology》 2025年第4期405-417,共13页
Since the introduction of vision Transformers into the computer vision field,many vision tasks such as semantic segmentation tasks,have undergone radical changes.Although Transformer enhances the correlation of each l... Since the introduction of vision Transformers into the computer vision field,many vision tasks such as semantic segmentation tasks,have undergone radical changes.Although Transformer enhances the correlation of each local feature of an image object in the hidden space through the attention mechanism,it is difficult for a segmentation head to accomplish the mask prediction for dense embedding of multi-category and multi-local features.We present patch prototype vision Transformer(PPFormer),a Transformer architecture for semantic segmentation based on knowledge-embedded patch prototypes.1)The hierarchical Transformer encoder can generate multi-scale and multi-layered patch features including seamless patch projection to obtain information of multiscale patches,and feature-clustered self-attention to enhance the interplay of multi-layered visual information with implicit position encodes.2)PPFormer utilizes a non-parametric prototype decoder to extract region observations which represent significant parts of the objects by unlearnable patch prototypes and then calculate similarity between patch prototypes and pixel embeddings.The proposed contrasting patch prototype alignment module,which uses new patch prototypes to update prototype bank,effectively maintains class boundaries for prototypes.For different application scenarios,we have launched PPFormer-S,PPFormer-M and PPFormer-L by expanding the scale.Experimental results demonstrate that PPFormer can outperform fully convolutional networks(FCN)-and attention-based semantic segmentation models on the PASCAL VOC 2012,ADE20k,and Cityscapes datasets. 展开更多
关键词 hierarchical backbones patch prototype nonparametric learning semantic segmentation
在线阅读 下载PDF
Enhancing microseismic event detection with TransUNet:A deep learning approach for simultaneous pickings of P-wave and S-wave first arrivals
18
作者 Kun Chen Meng Li +5 位作者 Xiaolian Li Guangzhi Cui Jia Tian JiaLe Li RuoYao Mu JunJie Zhu 《Artificial Intelligence in Geosciences》 2025年第1期282-298,共17页
Microseismic monitoring is essential for understanding subsurface dynamics and optimizing oil and gas pro-duction.However,traditional methods for the automatic detection of microseismic events rely heavily on characte... Microseismic monitoring is essential for understanding subsurface dynamics and optimizing oil and gas pro-duction.However,traditional methods for the automatic detection of microseismic events rely heavily on characteristic functions and human intervention,often resulting in suboptimal performance when dealing with complex and noisy data.In this study,we propose a novel approach that leverages deep learning frame to extract multiscale features from microseismic data using a TransUNet neural network.Our model integrates the ad-vantages of Transformer and UNet architectures to achieve high accuracy in multivariate image segmentation and precise picking of P-wave and S-wave first arrivals simultaneously.We validate our approach using both synthetic and field microseismic datasets recorded from gas storage monitoring and roof fracturing in a coal seam.The robustness of the proposed method has been verified in the testing of synthetic data with various levels of Gaussian and real background noises extracted from field data.The comparisons of the proposed method with UNet and SwinUNet in terms of the model architecture and classification performance demonstrate the Tran-sUNet achieves the optimal balance in its architecture and inference speed.With relatively low inference time and network complexity,it operates effectively in high-precision microseismic phase pickings.This advancement holds significant promise for enhancing microseismic monitoring technology in hydraulic fracturing and reser-voir monitoring applications. 展开更多
关键词 deep learning Microseismic event detection TransUNet Image segmentation Attention mechanism
暂未订购
Deep learning applications for diabetic retinopathy and retinopathy of prematurity diseases diagnosis:a systematic review
19
作者 Elizabeth Ndunge Mutua Bernard Shibwabo Kasamani Christoph Reich 《International Journal of Ophthalmology(English edition)》 2025年第8期1594-1602,共9页
To review the existing deep learning applications for diagnosing diabetic retinopathy and retinopathy of prematurity diseases,the available public retinal databases for the diseases and apply the International Journal... To review the existing deep learning applications for diagnosing diabetic retinopathy and retinopathy of prematurity diseases,the available public retinal databases for the diseases and apply the International Journal of Medical Informatics(IJMEDI)checklist were assessed the quality of included studies;an in-depth literature search in Scopus,Web of Science,IEEE and ACM databases targeting articles from inception up to 31st January 2023 was done by two independent reviewers.In the review,26 out of 1476 articles with a total of 36 models were included.Data size and model validation were found to be challenges for most studies.Deep learning models are gaining focus in the development of medical diagnosis tools and applications.However,there seems to be a critical issue with most of the studies being published,with some not including information about data sources and data sizes which is important for their performance verification. 展开更多
关键词 diabetic retinopathy retinopathy of prematurity retinal vessel segmentation retinal database deep learning
原文传递
A Hybrid Framework Combining Rule-Based and Deep Learning Approaches for Data-Driven Verdict Recommendations
20
作者 Muhammad Hameed Siddiqi Menwa Alshammeri +6 位作者 Jawad Khan Muhammad Faheem Khan Asfandyar Khan Madallah Alruwaili Yousef Alhwaiti Saad Alanazi Irshad Ahmad 《Computers, Materials & Continua》 2025年第6期5345-5371,共27页
As legal cases grow in complexity and volume worldwide,integrating machine learning and artificial intelligence into judicial systems has become a pivotal research focus.This study introduces a comprehensive framework... As legal cases grow in complexity and volume worldwide,integrating machine learning and artificial intelligence into judicial systems has become a pivotal research focus.This study introduces a comprehensive framework for verdict recommendation that synergizes rule-based methods with deep learning techniques specifically tailored to the legal domain.The proposed framework comprises three core modules:legal feature extraction,semantic similarity assessment,and verdict recommendation.For legal feature extraction,a rule-based approach leverages Black’s Law Dictionary and WordNet Synsets to construct feature vectors from judicial texts.Semantic similarity between cases is evaluated using a hybrid method that combines rule-based logic with an LSTM model,analyzing the feature vectors of query cases against a legal knowledge base.Verdicts are then recommended through a rule-based retrieval system,enhanced by predefined legal statutes and regulations.By merging rule-based methodologies with deep learning,this framework addresses the interpretability challenges often associated with contemporary AImodels,thereby enhancing both transparency and generalizability across diverse legal contexts.The system was rigorously tested using a legal corpus of 43,000 case laws across six categories:Criminal,Revenue,Service,Corporate,Constitutional,and Civil law,ensuring its adaptability across a wide range of judicial scenarios.Performance evaluation showed that the feature extraction module achieved an average accuracy of 91.6%with an F-Score of 95%.The semantic similarity module,tested using Manhattan,Euclidean,and Cosine distance metrics,achieved 88%accuracy and a 93%F-Score for short queries(Manhattan),89%accuracy and a 93.7%F-Score for medium-length queries(Euclidean),and 87%accuracy with a 92.5%F-Score for longer queries(Cosine).The verdict recommendation module outperformed existing methods,achieving 90%accuracy and a 93.75%F-Score.This study highlights the potential of hybrid AI frameworks to improve judicial decision-making and streamline legal processes,offering a robust,interpretable,and adaptable solution for the evolving demands of modern legal systems. 展开更多
关键词 Verdict recommendation legal knowledge base judicial text case laws semantic similarity legal domain features RULE-BASED deep learning
在线阅读 下载PDF
上一页 1 2 176 下一页 到第
使用帮助 返回顶部