期刊文献+
共找到491篇文章
< 1 2 25 >
每页显示 20 50 100
基于Deep Forest算法的对虾急性肝胰腺坏死病(AHPND)预警数学模型构建 被引量:1
1
作者 王印庚 于永翔 +5 位作者 蔡欣欣 张正 王春元 廖梅杰 朱洪洋 李昊 《渔业科学进展》 CSCD 北大核心 2024年第3期171-181,共11页
为预报池塘养殖凡纳对虾(Penaeus vannamei)急性肝胰腺坏死病(AHPND)的发生,自2020年开始,笔者对凡纳对虾养殖区开展了连续监测工作,包括与疾病发生相关的环境理化因子、微生物因子、虾体自身健康状况等18个候选预警因子指标,通过数据... 为预报池塘养殖凡纳对虾(Penaeus vannamei)急性肝胰腺坏死病(AHPND)的发生,自2020年开始,笔者对凡纳对虾养殖区开展了连续监测工作,包括与疾病发生相关的环境理化因子、微生物因子、虾体自身健康状况等18个候选预警因子指标,通过数据标准化处理后分析病原、宿主与环境之间的相关性,对候选预警因子进行筛选,基于Python语言编程结合Deep Forest、Light GBM、XGBoost算法进行数据建模和预测性能评判,仿真环境为Python2.7,以预警因子指标作为输入样本(即警兆),以对虾是否发病指标作为输出结果(即警情),根据输入样本和输出结果各自建立输入数据矩阵和目标数据矩阵,利用原始数据矩阵对输入样本进行初始化,结合函数方程进行拟合,拟合的源代码能利用已知环境、病原及对虾免疫指标数据对目标警情进行预测。最终建立了基于Deep Forest算法的虾体(肝胰腺内)细菌总数、虾体弧菌(Vibrio)占比、水体细菌总数和盐度的4维向量预警预报模型,准确率达89.00%。本研究将人工智能算法应用到对虾AHPND发生的预测预报,相关研究结果为对虾AHPND疾病预警预报建立了预警数学模型,并为对虾健康养殖和疾病防控提供了技术支撑和有力保障。 展开更多
关键词 对虾 急性肝胰腺坏死病 预警数学模型 deep forest算法 PYTHON语言
在线阅读 下载PDF
User Purchase Intention Prediction Based on Improved Deep Forest
2
作者 Yifan Zhang Qiancheng Yu Lisi Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期661-677,共17页
Widely used deep neural networks currently face limitations in achieving optimal performance for purchase intention prediction due to constraints on data volume and hyperparameter selection.To address this issue,based... Widely used deep neural networks currently face limitations in achieving optimal performance for purchase intention prediction due to constraints on data volume and hyperparameter selection.To address this issue,based on the deep forest algorithm and further integrating evolutionary ensemble learning methods,this paper proposes a novel Deep Adaptive Evolutionary Ensemble(DAEE)model.This model introduces model diversity into the cascade layer,allowing it to adaptively adjust its structure to accommodate complex and evolving purchasing behavior patterns.Moreover,this paper optimizes the methods of obtaining feature vectors,enhancement vectors,and prediction results within the deep forest algorithm to enhance the model’s predictive accuracy.Results demonstrate that the improved deep forest model not only possesses higher robustness but also shows an increase of 5.02%in AUC value compared to the baseline model.Furthermore,its training runtime speed is 6 times faster than that of deep models,and compared to other improved models,its accuracy has been enhanced by 0.9%. 展开更多
关键词 Purchase prediction deep forest differential evolution algorithm evolutionary ensemble learning model selection
在线阅读 下载PDF
Fracture identification of carbonate reservoirs by deep forest model:An example from the D oilfield in Zagros Basin
3
作者 Chunqiu Ji Shaoqun Dong +3 位作者 Lianbo Zeng Yuanyuan Liu Jingru Hao Ziyi Yang 《Energy Geoscience》 EI 2024年第3期339-350,共12页
Identifying fractures along a well trajectory is of immense significance in determining the subsurface fracture network distribution.Typically,conventional logs exhibit responses in fracture zones,and almost all wells... Identifying fractures along a well trajectory is of immense significance in determining the subsurface fracture network distribution.Typically,conventional logs exhibit responses in fracture zones,and almost all wells have such logs.However,detecting fractures through logging responses can be challenging since the log response intensity is weak and complex.To address this problem,we propose a deep learning model for fracture identification using deep forest,which is based on a cascade structure comprising multi-layer random forests.Deep forest can extract complex nonlinear features of fractures in conventional logs through ensemble learning and deep learning.The proposed approach is tested using a dataset from the Oligocene to Miocene tight carbonate reservoirs in D oilfield,Zagros Basin,Middle East,and eight logs are selected to construct the fracture identification model based on sensitivity analysis of logging curves against fractures.The log package includes the gamma-ray,caliper,density,compensated neutron,acoustic transit time,and shallow,deep,and flushed zone resistivity logs.Experiments have shown that the deep forest obtains high recall and accuracy(>92%).In a blind well test,results from the deep forest learning model have a good correlation with fracture observation from cores.Compared to the random forest method,a widely used ensemble learning method,the proposed deep forest model improves accuracy by approximately 4.6%. 展开更多
关键词 Fracture identification Conventional log deep forest deep learning Tight carbonate reservoir
在线阅读 下载PDF
An improved deep forest model for forecast the outdoor atmospheric corrosion rate of low-alloy steels 被引量:14
4
作者 Yuanjie Zhi Tao Yang Dongmei Fu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第14期202-210,共9页
The paper proposes a new deep structure model,called Densely Connected Cascade Forest-Weighted K Nearest Neighbors(DCCF-WKNNs),to implement the corrosion data modelling and corrosion knowledgemining.Firstly,we collect... The paper proposes a new deep structure model,called Densely Connected Cascade Forest-Weighted K Nearest Neighbors(DCCF-WKNNs),to implement the corrosion data modelling and corrosion knowledgemining.Firstly,we collect 409 outdoor atmospheric corrosion samples of low-alloy steels as experiment datasets.Then,we give the proposed methods process,including random forests-K nearest neighbors(RF-WKNNs)and DCCF-WKNNs.Finally,we use the collected datasets to verify the performance of the proposed method.The results show that compared with commonly used and advanced machine-learning algorithms such as artificial neural network(ANN),support vector regression(SVR),random forests(RF),and cascade forests(cForest),the proposed method can obtain the best prediction results.In addition,the method can predict the corrosion rates with variations of any one single environmental variable,like pH,temperature,relative humidity,SO2,rainfall or Cl-.By this way,the threshold of each variable,upon which the corrosion rate may have a large change,can be further obtained. 展开更多
关键词 Random forests deep forest model Low-alloy steels Outdoor atmospheric corrosion Prediction and data-mining
原文传递
一种改进Deep Forest算法在保险购买预测场景中的应用研究 被引量:3
5
作者 林鹏程 唐辉 《现代信息科技》 2019年第22期116-122,共7页
为了实现保险场景的精准营销,同时充分利用千万级客户和保单历史成交记录的数据特点,本文经热门算法研究和统计理论分析,提出一种基于XGBoost改造的Deep Forest级联算法。该算法采用XGBoost浅层机器学习算法作为Deep Forest级联构建块,... 为了实现保险场景的精准营销,同时充分利用千万级客户和保单历史成交记录的数据特点,本文经热门算法研究和统计理论分析,提出一种基于XGBoost改造的Deep Forest级联算法。该算法采用XGBoost浅层机器学习算法作为Deep Forest级联构建块,同时用AUC-PR标准作为级联构建深度学习不平衡样本评价的自适应过程,并将此算法分别与原有XGBoost算法和原始Deep Forest算法进行性能比较。经实践,上述算法应用投产于保险购买预测场景中,分别比原有XGBoost算法和原Deep Forest算法提高5.5%和2.8%,效果显著;同时提出的浅层学习向基于Deep Forest深度优化操作流程,也为其他类似应用场景提供了实践参考方向。 展开更多
关键词 deep forest XGBoost 深度学习 保险精准营销
在线阅读 下载PDF
Research on trend prediction of component stock in fuzzy time series based on deep forest 被引量:1
6
作者 Peng Li Hengwen Gu +1 位作者 Lili Yin Benling Li 《CAAI Transactions on Intelligence Technology》 SCIE EI 2022年第4期617-626,共10页
With the continuous development of machine learning and the increasing complexity of financial data analysis,it is more popular to use models in the field of machine learning to solve the hot and difficult problems in... With the continuous development of machine learning and the increasing complexity of financial data analysis,it is more popular to use models in the field of machine learning to solve the hot and difficult problems in the financial industry.To improve the effectiveness of stock trend prediction and solve the problems in time series data processing,this paper combines the fuzzy affiliation function with stock-related technical indicators to obtain nominal data that can widely reflect the constituent stocks in the case of time series changes by analysing the S&P 500 index.Meanwhile,in order to optimise the current machine learning algorithm in which the setting and adjustment of hyperparameters rely too much on empirical knowledge,this paper combines the deep forest model to train the stock data separately.The experimental results show that(1)the accuracy of the extreme random forest and the accuracy of the multi-grain cascade forest are both higher than that of the gated recurrent unit(GRU)model when the un-fuzzy index-adjusted dataset is used as features for input,(2)the accuracy of the extreme random forest and the accuracy of the multigranular cascade forest are improved by using the fuzzy index-adjusted dataset as features for input,(3)the accuracy of the fuzzy index-adjusted dataset as features for inputting the extreme random forest is improved by 18.89% compared to that of the un-fuzzy index-adjusted dataset as features for inputting the extreme random forest and(4)the average accuracy of the fuzzy index-adjusted dataset as features for inputting multi-grain cascade forest increased by 5.67%. 展开更多
关键词 deep forest fuzzy membership function price pattern time series trend forecast
在线阅读 下载PDF
WDBM: Weighted Deep Forest Model Based Bearing Fault Diagnosis Method 被引量:1
7
作者 Letao Gao Xiaoming Wang +1 位作者 Tao Wang Mengyu Chang 《Computers, Materials & Continua》 SCIE EI 2022年第9期4741-4754,共14页
In the research field of bearing fault diagnosis,classical deep learning models have the problems of too many parameters and high computing cost.In addition,the classical deep learning models are not effective in the ... In the research field of bearing fault diagnosis,classical deep learning models have the problems of too many parameters and high computing cost.In addition,the classical deep learning models are not effective in the scenario of small data.In recent years,deep forest is proposed,which has less hyper parameters and adaptive depth of deep model.In addition,weighted deep forest(WDF)is proposed to further improve deep forest by assigning weights for decisions trees based on the accuracy of each decision tree.In this paper,weighted deep forest model-based bearing fault diagnosis method(WDBM)is proposed.The WDBM is regard as a novel bearing fault diagnosis method,which not only inherits the WDF’s advantages-strong robustness,good generalization,less parameters,faster convergence speed and so on,but also realizes effective diagnosis with high precision and low cost under the condition of small samples.To verify the performance of the WDBM,experiments are carried out on Case Western Reserve University bearing data set(CWRU).Experiments results demonstrate that WDBM can achieve comparative recognition accuracy,with less computational overhead and faster convergence speed. 展开更多
关键词 deep forest bearing fault diagnosis WEIGHTS
在线阅读 下载PDF
Deep Forest-Based Fall Detection in Internet of Medical Things Environment 被引量:1
8
作者 Mohamed Esmail Karar Omar Reyad Hazem Ibrahim Shehata 《Computer Systems Science & Engineering》 SCIE EI 2023年第6期2377-2389,共13页
This article introduces a new medical internet of things(IoT)framework for intelligent fall detection system of senior people based on our proposed deep forest model.The cascade multi-layer structure of deep forest cl... This article introduces a new medical internet of things(IoT)framework for intelligent fall detection system of senior people based on our proposed deep forest model.The cascade multi-layer structure of deep forest classifier allows to generate new features at each level with minimal hyperparameters compared to deep neural networks.Moreover,the optimal number of the deep forest layers is automatically estimated based on the early stopping criteria of validation accuracy value at each generated layer.The suggested forest classifier was successfully tested and evaluated using a public SmartFall dataset,which is acquired from three-axis accelerometer in a smartwatch.It includes 92781 training samples and 91025 testing samples with two labeled classes,namely non-fall and fall.Classification results of our deep forest classifier demonstrated a superior performance with the best accuracy score of 98.0%compared to three machine learning models,i.e.,K-nearest neighbors,decision trees and traditional random forest,and two deep learning models,which are dense neural networks and convolutional neural networks.By considering security and privacy aspects in the future work,our proposed medical IoT framework for fall detection of old people is valid for real-time healthcare application deployment. 展开更多
关键词 Elderly population fall detection wireless sensor networks internet of medical things deep forest
在线阅读 下载PDF
Ohesa Monastery Tucked Away in Deep Forests
9
作者 XUXINHUA 《China's Tibet》 1998年第6期27-27,共1页
关键词 Ohesa Monastery Tucked Away in deep forests
在线阅读 下载PDF
面向ICS的CGAN-DEEPFOREST入侵检测 被引量:6
10
作者 郑灿伟 李世明 +3 位作者 王禹贺 杜军 倪蕴涛 赵艳 《小型微型计算机系统》 CSCD 北大核心 2023年第4期868-874,共7页
随着工业化与信息化的深度融合,工业控制系统(ICS)的安全问题广受关注,ICS领域出现了许多入侵检测模型.但是,现存模型存在局限性,无法同时解决数据不平衡、分类时间长、小样本检测率低和准确率低的问题.因此,本文提出CGAN-DeepForest入... 随着工业化与信息化的深度融合,工业控制系统(ICS)的安全问题广受关注,ICS领域出现了许多入侵检测模型.但是,现存模型存在局限性,无法同时解决数据不平衡、分类时间长、小样本检测率低和准确率低的问题.因此,本文提出CGAN-DeepForest入侵检测模型解决上述问题.首先,采用改进的条件生成对抗网络(CGAN)定向扩充数据来改善数据的不平衡性.其次,采用随机森林对平衡后的数据集进行特征提取,降低分类模型训练时间和分类时间.再次,采用深度森林(DeepForest)进行分类,提高小样本检测率和整体准确率,输出分类结果.最后,使用数据集Gas验证模型效果.实验结果表明,本文模型与简单深度森林模型相比准确率整体提升3%,小样本数据NMRI、MFCI、Dos的查全率、查准率、F1分别提高至95%、84%、90%;与随机森林模型相比,准确率整体提高6%,小样本NMRI的查全率提升23%;与深度卷积神经网络相比,准确率接近94%时,模型训练时间和分类时间提高约50%. 展开更多
关键词 工业控制系统 入侵检测 CGAN-deep forest 不平衡性 分类时间
在线阅读 下载PDF
Dark-Forest:Analysis on the Behavior of Dark Web Traffic via DeepForest and PSO Algorithm
11
作者 Xin Tong Changlin Zhang +2 位作者 Jingya Wang Zhiyan Zhao Zhuoxian Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第4期561-581,共21页
The dark web is a shadow area hidden in the depths of the Internet,which is difficult to access through common search engines.Because of its anonymity,the dark web has gradually become a hotbed for a variety of cyber-... The dark web is a shadow area hidden in the depths of the Internet,which is difficult to access through common search engines.Because of its anonymity,the dark web has gradually become a hotbed for a variety of cyber-crimes.Although some research based on machine learning or deep learning has been shown to be effective in the task of analyzing dark web traffic in recent years,there are still pain points such as low accuracy,insufficient real-time performance,and limited application scenarios.Aiming at the difficulties faced by the existing automated dark web traffic analysis methods,a novel method named Dark-Forest to analyze the behavior of dark web traffic is proposed.In this method,firstly,particle swarm optimization algorithm is used to filter the redundant features of dark web traffic data,which can effectively shorten the training and inference time of the model to meet the realtime requirements of dark web detection task.Then,the selected features of traffic are analyzed and classified using the DeepForest model as a backbone classifier.The comparison experiment with the current mainstream methods shows that Dark-Forest takes into account the advantages of statistical machine learning and deep learning,and achieves an accuracy rate of 87.84%.This method not only outperforms baseline methods such as Random Forest,MLP,CNN,and the original DeepForest in both large-scale and small-scale dataset based learning tasks,but also can detect normal network traffic,tunnel network traffic and anonymous network traffic,which may close the gap between different network traffic analysis tasks.Thus,it has a wider application scenario and higher practical value. 展开更多
关键词 Dark web encrypted traffic deep forest particle swarm optimization
在线阅读 下载PDF
Deep Development of Forest Eco-tourism in Xishan District of Kunming City in China
12
作者 环绍军 《Journal of Landscape Research》 2012年第5期54-56,60,共4页
By taking forest resource in Xishan District of Kunming City as an example,the principles and objectives of deep development have been analyzed based on forest resources endowment,and finally specific planning content... By taking forest resource in Xishan District of Kunming City as an example,the principles and objectives of deep development have been analyzed based on forest resources endowment,and finally specific planning contents and basic guarantee measures have been proposed. 展开更多
关键词 forest ECO-TOURISM deep DEVELOPMENT
在线阅读 下载PDF
地下厂房洞室群施工通风频率IHPO-XDF鲁棒预测模型
13
作者 王晓玲 郭章潮 +3 位作者 余佳 余红玲 刘长欣 吴斌平 《水利学报》 北大核心 2025年第8期1072-1083,共12页
水电站地下厂房洞室群洞室布置纵横交错、通风死角多、风流组织紊乱,确定合适的施工通风频率是保障通风安全的关键。但其施工过程中存在的电磁干扰和爆破振动常导致环境监测数据出现噪声与缺失现象,而现有基于机器学习的施工通风频率预... 水电站地下厂房洞室群洞室布置纵横交错、通风死角多、风流组织紊乱,确定合适的施工通风频率是保障通风安全的关键。但其施工过程中存在的电磁干扰和爆破振动常导致环境监测数据出现噪声与缺失现象,而现有基于机器学习的施工通风频率预测模型对异常值十分敏感,模型鲁棒性差。针对上述问题,选择深度森林(DF)模型作为通风频率预测的基础模型,并将其中的随机森林基学习器改进为极致梯度提升树(XGBoost),利用XGboost的梯度提升机制以及正则化策略增强模型的鲁棒性和泛化能力;此外,采用改进的猎人猎物优化(IHPO)算法对DF模型进行超参数优化,以弥补传统人工调参难以获得最优超参数的不足,从而构建出地下厂房洞室群施工通风频率IHPO-XDF鲁棒预测模型。进一步,基于Shapley加性解释(SHAP)对IHPO-XDF模型进行可解释性分析,挖掘影响施工通风频率预测结果的关键特征。案例研究表明,与XGBoost改进的DF模型、传统DF、梯度提升决策树(GBDT)和决策树(DT)4种模型相比,本文模型在预测精度方面分别提升3.48%、5.01%、13.13%和13.48%,且在异常值环境下预测精度降低幅度最小,表现出良好的鲁棒性。 展开更多
关键词 地下厂房洞室群 通风频率鲁棒预测 深度森林模型 XGBoost 改进的猎人猎物算法 可解释性
在线阅读 下载PDF
基于特征融合的部分有序深度森林模型
14
作者 许行 温萧轲 王文剑 《计算机工程与应用》 北大核心 2025年第7期165-175,共11页
部分有序数据是同时包含有序特征与无序特征的一类数据,其广泛存在于现实生活中。传统的有序分类方法或者将所有特征都视为有序特征,或者对有序与无序特征分别进行处理,忽略了二者之间的关系,这些方法难以有效解决部分有序数据上的分类... 部分有序数据是同时包含有序特征与无序特征的一类数据,其广泛存在于现实生活中。传统的有序分类方法或者将所有特征都视为有序特征,或者对有序与无序特征分别进行处理,忽略了二者之间的关系,这些方法难以有效解决部分有序数据上的分类问题。针对该问题,提出一种基于特征融合的部分有序深度森林模型,称为FFDF(feature fusion-based deep forest)。利用典型相关分析的思想,设计特征融合的贡献度计算方法,将有序特征和无序特征融合到同一特征空间,统一度量二者之间的关系。对融合的特征空间进行数据粒化,降低模型处理连续变量时的复杂性。设计融合空间下的特征矩阵输入级联森林,构建部分有序的深度森林模型。在来自UCI和WEKA的13个公共数据集上与部分单调决策树、有序分类模型、深度森林模型等六种方法进行比较实验,结果表明所提方法在准确性和平均绝对误差方面均优于对比方法;与集成模型深度森林gcForest和DF21进行了时间性能上的对比实验,结果表明所提方法在时间性能上优于对比方法。 展开更多
关键词 有序分类 部分有序数据 特征融合 深度森林 典型相关分析
在线阅读 下载PDF
融合CNN和WDF模型的电商企业商品销量预测研究
15
作者 袁瑞萍 魏辉 +1 位作者 傅之家 李俊韬 《计算机工程与应用》 北大核心 2025年第2期335-343,共9页
为了适应电商企业商品销量数据规模大、维度高、非线性等特征,并提高销量预测的准确性,创新性地提出一种卷积神经网络融合加权深度森林(CNN-WDF)的销量预测方法。利用卷积神经网络(CNN)处理高维数据的优势对电商企业商品销量数据进行特... 为了适应电商企业商品销量数据规模大、维度高、非线性等特征,并提高销量预测的准确性,创新性地提出一种卷积神经网络融合加权深度森林(CNN-WDF)的销量预测方法。利用卷积神经网络(CNN)处理高维数据的优势对电商企业商品销量数据进行特征提取,降低冗余度和模型训练复杂度。提出一种改进的加权深度森林模型(WDF)进行商品销量预测。该模型依据各个子树的预测准确率计算每一级森林中该子树的权重以提高整体预测准确性,且相对于传统深度网络模型具有超参数少、可解释性强等优点。利用京东商品销量数据进行实验验证,结果表明:CNN-WDF融合模型在不同规模京东销售数据集上,预测准确率均显著高于其他对比模型,且随着数据集规模的扩大,预测准确率提高更加明显。 展开更多
关键词 商品销量预测 深度学习 融合模型 卷积神经网络 加权深度森林
在线阅读 下载PDF
基于FCMFS特征选择算法的煤层气压裂效果预测
16
作者 闵超 郭星 +2 位作者 华青 张娜 张馨慧 《西南石油大学学报(自然科学版)》 北大核心 2025年第2期95-104,共10页
煤层气压裂效果与特征之间存在的非线性关系难以从机理层面进行分析,针对该问题,开展煤层气压裂效果特征内在联系研究,提出了一种基于FCMFS特征选择算法的煤层气压裂效果预测方法。该方法利用模糊综合评价进行标签标定,并采用遗传编程和... 煤层气压裂效果与特征之间存在的非线性关系难以从机理层面进行分析,针对该问题,开展煤层气压裂效果特征内在联系研究,提出了一种基于FCMFS特征选择算法的煤层气压裂效果预测方法。该方法利用模糊综合评价进行标签标定,并采用遗传编程和XGBoost算法进行影响因素特征构造和筛选,包括2个新构造特征(应力比和地质施工遗传因素)以及射孔段厚度、渗透率、破裂压力、煤体结构、含气饱和度和加砂强度等6个特征。实验结果表明,基于FCMFS特征选择算法所构造和筛选的8个特征,结合多种机器学习算法进行煤层气压裂效果预测时,在准确率、召回率、F1分类评价指标上提高了约5%~10%,其中,深度森林模型在训练集和测试集上具有最优的预测分类效果,在3项分类评价指标上均达到95%和80%以上。 展开更多
关键词 煤层气 压裂效果 主控因素 遗传编程 深度森林模型
在线阅读 下载PDF
基于SwinTransformer的去雾算法在森林消防中的应用
17
作者 季长清 曹思雨 +1 位作者 李艳志 汪祖民 《消防科学与技术》 北大核心 2025年第6期839-845,共7页
为了及时控制森林火灾,在了解起火地区的地表植被、地形地势信息后预测火灾的下一步蔓延趋势,并针对具体的地表信息制定灭火计划至关重要。但对于遥感拍摄的地表图像,往往由于天气原因含有不均匀的云雾遮挡,这些云雾会影响地表植被信息... 为了及时控制森林火灾,在了解起火地区的地表植被、地形地势信息后预测火灾的下一步蔓延趋势,并针对具体的地表信息制定灭火计划至关重要。但对于遥感拍摄的地表图像,往往由于天气原因含有不均匀的云雾遮挡,这些云雾会影响地表植被信息的观测,从而对火灾的蔓延趋势产生影响。Dehazeformer作为一种基于深度学习的去雾方法,展现出了一定的去雾效果,但该算法在面对具有实时性要求的任务时无法拥有更好的表现。因此,针对该去雾模型参数量过大、对雾霾细节处理不够完善的缺点,本文在其基础上做出了改进,以实现轻量化以及去雾效果方面的提升。改进后模型的测试结果显示,PSNR,SSIM两种指标分别实现了一定的提升,在具体火灾监测场景中该模型能够通过去雾显著提高火灾周围地表信息的辨识度,为预测火灾蔓延趋势提供帮助。 展开更多
关键词 图像去雾 遥感 深度学习 火灾蔓延 森林火灾
在线阅读 下载PDF
基于不平衡数据的企业财务风险预测
18
作者 周传华 曾辉 +2 位作者 郝敏 王勇 吴忠雯 《武汉理工大学学报(信息与管理工程版)》 2025年第4期499-505,共7页
从供应链整体角度,基于风险预测的企业财务数据训练深度学习模型。首先,使用集成风险特征选择方法和LDA-DBSCAN方法对供应链节点企业和非节点企业异常财务数据进行筛选;其次,选择融合决策树和基于神经网络特征的深度森林作为基分类器,... 从供应链整体角度,基于风险预测的企业财务数据训练深度学习模型。首先,使用集成风险特征选择方法和LDA-DBSCAN方法对供应链节点企业和非节点企业异常财务数据进行筛选;其次,选择融合决策树和基于神经网络特征的深度森林作为基分类器,引入优化算法对其进行参数优化,构建CGAN-GCForest预测模型;最后,选择多个基准模型和评估方法进行实验验证,结果表明该模型效果较优,证明该领域基于集成模型的方法的精度优于基于单一模型的方法,为供应链企业实施风险识别提供积极支撑。 展开更多
关键词 供应链管理 企业风险 不平衡数据 特征选择 深度森林集成
在线阅读 下载PDF
基于SHAP的可解释机器学习的滑坡易发性评价模型 被引量:6
19
作者 崔婷婷 安雪莲 +2 位作者 孙德亮 陈东升 朱有晨 《成都理工大学学报(自然科学版)》 北大核心 2025年第1期153-172,共20页
机器学习在构建滑坡易发性评价模型中因其训练复杂且预测结果难以解释而发展受限。通过SHAP(SHapley Additive exPlanations)结合机器学习模型揭示各影响因子对滑坡发育的影响,增强模型可信度与可解释性。以三峡库区忠县为研究区,通过... 机器学习在构建滑坡易发性评价模型中因其训练复杂且预测结果难以解释而发展受限。通过SHAP(SHapley Additive exPlanations)结合机器学习模型揭示各影响因子对滑坡发育的影响,增强模型可信度与可解释性。以三峡库区忠县为研究区,通过随机森林、XGBoost(eXtreme Gradient Boosting)以及深度随机森林机器学习算法结合贝叶斯优化算法分别构建滑坡易发性评价模型;利用混淆矩阵及受试者工作特征曲线开展评价精度验证;基于4种分级方法得到滑坡易发性区划图;通过SHAP分析影响滑坡发育的主导因子。结果表明,优化后的XGBoost模型受试者工作特征曲线下面积(AUC)值(0.817)高于随机森林的AUC值(0.803)和深度随机森林的AUC值(0.806);不同分级方式下的易发性区划图分布差异很大,其中基于相等间隔法和XGBoost模型的分级效果相对更好,极高-高易发区主要集中在研究区的东南部和东北部,特别是长江及其支流两岸。SHAP图揭示各主导因子不同特征值对滑坡发育有明显差异,高程和距河流距离是研究区滑坡发育的主要影响因子,对滑坡发育贡献显著。本研究的XGBoost模型具有较高的预测精度,模型可解释性强,为滑坡灾害的精准防治提供科学依据。 展开更多
关键词 XGBoost 深度随机森林 SHAP 三峡库区 滑坡易发性评价
在线阅读 下载PDF
基于动态深度学习的风电功率在线预测方法
20
作者 赵洪山 杨铎 +3 位作者 刘欣雨 倪恒毅 张扬帆 林诗雨 《太阳能学报》 北大核心 2025年第9期171-180,共10页
为适应风电出力的随机性,提出一种基于动态深度学习的风电功率在线预测方法。首先,构建基于双向长短期记忆网络和双向门控循环单元的风电功率基准预测模型,根据训练数据集设置初始参数与权重;其次,采用快速霍夫丁漂移检测方法进行风电... 为适应风电出力的随机性,提出一种基于动态深度学习的风电功率在线预测方法。首先,构建基于双向长短期记忆网络和双向门控循环单元的风电功率基准预测模型,根据训练数据集设置初始参数与权重;其次,采用快速霍夫丁漂移检测方法进行风电状态监测,根据检测结果动态更新深度学习模型;最后,引入随机森林回归模型对预测功率误差进行校正,并通过时间窗实现模型的滚动在线预测。验证结果表明,所提算法相较于Transformev方法均方根误差(RMSE)提高5.68%,平均绝对误差(MAE)提高18.56%,相关系数(R2)提高2.06%,具有较好的预测性能,充分证明所提出的方法能有效提升风电功率预测的准确性。 展开更多
关键词 风电功率预测 动态深度学习 在线预测 双向长短期记忆网络 双向门控循环单元 随机森林
原文传递
上一页 1 2 25 下一页 到第
使用帮助 返回顶部