期刊文献+
共找到2,751篇文章
< 1 2 138 >
每页显示 20 50 100
Discovery and its significance of late Paleozoic radiolariansilicalite in ophiolitic melange of northeasternJiangxi deep fault belt 被引量:3
1
作者 赵崇贺 何科昭 +7 位作者 莫宣学 邰道乾 叶德隆 叶栴 林培英 毕先梅 郑伯让 冯庆来 《Chinese Science Bulletin》 SCIE EI CAS 1996年第8期667-670,共4页
Metamorphic basement is widespread in northeastern Jiangxi Province withcomplicated geological structure and enriched polymetallic deposits. It is one of the impor-tant areas for geological research in China, especial... Metamorphic basement is widespread in northeastern Jiangxi Province withcomplicated geological structure and enriched polymetallic deposits. It is one of the impor-tant areas for geological research in China, especially for study of deep fault belt 展开更多
关键词 NORTHEASTERN JIANGXI deep fault BELT ophiolitic MELANGE late PALEOZOIC radiolarian.
在线阅读 下载PDF
A Deep Learning Approach for Fault Diagnosis of Induction Motors in Manufacturing 被引量:19
2
作者 Si-Yu Shao Wen-Jun Sun +2 位作者 Ru-Qiang Yan Peng Wang Robert X Gao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第6期1347-1356,共10页
Extracting features from original signals is a key procedure for traditional fault diagnosis of induction motors, as it directly influences the performance of fault recognition. However, high quality features need exp... Extracting features from original signals is a key procedure for traditional fault diagnosis of induction motors, as it directly influences the performance of fault recognition. However, high quality features need expert knowledge and human intervention. In this paper, a deep learning approach based on deep belief networks (DBN) is developed to learn features from frequency distribution of vibration signals with the purpose of characterizing work- ing status of induction motors. It combines feature extraction procedure with classification task together to achieve automated and intelligent fault diagnosis. The DBN model is built by stacking multiple-units of restricted Boltzmann machine (RBM), and is trained using layer-by- layer pre-training algorithm. Compared with traditional diagnostic approaches where feature extraction is needed, the presented approach has the ability of learning hierar- chical representations, which are suitable for fault classi- fication, directly from frequency distribution of the measurement data. The structure of the DBN model is investigated as the scale and depth of the DBN architecture directly affect its classification performance. Experimental study conducted on a machine fault simulator verifies the effectiveness of the deep learning approach for fault diagnosis of induction motors. This research proposes an intelligent diagnosis method for induction motor which utilizes deep learning model to automatically learn features from sensor data and realize working status recognition. 展开更多
关键词 fault diagnosis deep learning deep beliefnetwork. RBM CLASSIFICATION
在线阅读 下载PDF
Analysis of microseismic activity in rock mass controlled by fault in deep metal mine 被引量:2
3
作者 Liu Jianpo Liu Zhaosheng +2 位作者 Wang Shaoquan Shi Changyan Li Yuanhui 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第2期235-239,共5页
Aiming at evaluating the stability of a rock mass near a fault,a microseismic(MS) monitoring system was established in Hongtoushan copper mine.The distribution of displacement and log(/),the relationship between MS ac... Aiming at evaluating the stability of a rock mass near a fault,a microseismic(MS) monitoring system was established in Hongtoushan copper mine.The distribution of displacement and log(/),the relationship between MS activity and the exploitation process,and the stability of the rock mass controlled by a fault were studied.The results obtained from microseismic data showed that MS events were mainly concentrated al the footwall of the fault.When the distance to the fault exceeded 20 m,the rock mass reached a relatively stable state.MS activity is closely related to the mining process.Under the strong disturbance from blasting,the initiation and propagation of cracks is much faster.MS activity belongs in the category of aftershocks after large scale excavation.The displacement and log(C/) obtained from MS events can reflect the difference in physical and mechanical behavior of different areas within the rock mass,which is useful in judging the integrity and degradation of the rock mass. 展开更多
关键词 deep mining fault Microseism(MS) Stability
在线阅读 下载PDF
A DEEP SEISMIC REFLECTION PROFILE ACROSS ALTUN FAULT BELT 被引量:3
4
作者 Gao Rui 1, Liu Hongbin 2, Li Qiusheng 1,Li Pengwu 1, Yao Peiyi 1, Huang Dongding 3 (1 Lithosphere Research Center, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China,E\|mail: gaorui@cags.cn.net 2 Institute of Ge 《地学前缘》 EI CAS CSCD 2000年第S1期205-205,共1页
Altun fault is regarded as a large\|scale sinistral strike\|slip fault, it is composed of several faults with the different character, and there is a special geological structure in the fault belt, and they constitute... Altun fault is regarded as a large\|scale sinistral strike\|slip fault, it is composed of several faults with the different character, and there is a special geological structure in the fault belt, and they constitute the northwestern margin fault belt of the Qinghai\|Tibetan plateau. In order to investigate the deep crust structure in the Altun region, layers which Tarim lithosphere subducted beneath the Qinghai\|Tibetan plateau, the forward structure of the subduction plate and the scale of the plate subduction, a deep seismic reflection profile was designed. Data collection work of the deep seismic reflection profile across Altun fault was completed during 24/8/1999 to 25/9/1999. The profile locates in Qiemo county, Xinjiang Uygur Autonomous Region, the southern end of the profile stretches into Altun Mountains, the northern end locates in the Tarim desert margin. The profile is nearly SN trending and crosses the main Altun fault. The profile totally is 145km long, time record is 30 seconds, the smallest explosive amount is 72~100kg, the biggest explosive amount reaches 200~300kg, the explosive distance is 800m, and detectors are laid at a 50m distance. 展开更多
关键词 deep seismic reflection probing Altun fault BELT TARIM b lock deep CRUST structure MOHO
在线阅读 下载PDF
Fault Systems and their Control of Deep Gas Accumulations in Xujiaweizi Area 被引量:2
5
作者 SUN Yonghe KANG Lin +2 位作者 BAI Haifeng FU Xiaofei HU Ming 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2012年第6期1547-1558,共12页
A study of faults and their control of deep gas accumulations has been made on the basis of dividing fault systems in the Xujiaweizi area. The study indicates two sets of fault systems are developed vertically in the ... A study of faults and their control of deep gas accumulations has been made on the basis of dividing fault systems in the Xujiaweizi area. The study indicates two sets of fault systems are developed vertically in the Xujiaweizi area, including a lower fault system and an upper fault system. Formed in the period of the Huoshiling Formation to Yingcheng Formation, the lower fault system consists of five fault systems including Xuxi strike-slip extensional fault system, NE-trending extensional fault system, near-EW-trending regulating fault system, Xuzhong strike-slip fault system and Xudong strike-slip fault system. Formed in the period of Qingshankou Formation to Yaojia Formation, the upper fault system was affected mainly by the boundary conditions of the lower fault system, and thus plenty of muiti-directionally distributed dense fault zones were formed in the T2 reflection horizon. The Xuxi fault controlled the formation and distribution of Shahezi coal-measure source rocks, and Xuzhong and Xndong faults controlled the formation and distribution of volcanic reservoirs of Y1 Member and Y3 Member, respectively. In the forming period of the upper fault system, the Xuzhong fault was of successive strong activities and directly connected gas source rock reservoirs and volcanic reservoirs, so it is a strongly-charged direct gas source fault. The volcanic reservoir development zones of good physical properties that may be found near the Xuzhong fault are the favorable target zones for the next exploration of deep gas accumulations in Xujiaweizi area. 展开更多
关键词 deep gas accumulation fault system gas source fault volcanic reservoir XUJIAWEIZI
在线阅读 下载PDF
Extensional Tectonic System of Erlian Fault Basin Groupand Its Deep Background
6
作者 Ren Jianye Li Sitian Faculty of Earth Resources, China University of Geosciences, Wuhan 430074 Jiao Guihao Exploration and Development Research Institute, Huabei Oil Administration Bureau, Renqiu 062552 Chen Ping Faculty of Business Administratio 《Journal of Earth Science》 SCIE CAS CSCD 1998年第3期44-49,共6页
The Erlian fault basin group, a typical Basin and Range type fault basin group, was formed during Late Jurassic to Early Cretaceous, in which there are rich coal, oil and gas resources. In the present paper the abund... The Erlian fault basin group, a typical Basin and Range type fault basin group, was formed during Late Jurassic to Early Cretaceous, in which there are rich coal, oil and gas resources. In the present paper the abundant geological and petroleum information accumulated in process of industry oil and gas exploration and development of the Erlian basin group is comprehensively analyzed, the structures related to formation of basin are systematically studied, and the complete extensional tectonic system of this basin under conditions of wide rift setting and low extensional ratio is revealed by contrasting study with Basin and Range Province of the western America. Based on the above studies and achievements of the former workers, the deep background of the basin development is treated. 展开更多
关键词 Late Mesozoic rifting extensional tectonic system deep process Erlian fault basin group.
在线阅读 下载PDF
基于Deep SVDD的核电站无监督微弱故障异常检测方法
7
作者 艾鑫 刘永阔 +1 位作者 单龙飞 高嘉嵘 《核动力工程》 北大核心 2025年第6期251-260,共10页
核电站运行数据呈现复杂的高维非线性特性,经典的主元分析(PCA)异常检测方法不具备非线性特征学习能力,检测准确率有待提高。本研究建立了基于深度支持向量数据描述(Deep SVDD)的核电站无监督微弱故障异常检测方法,使用PCTRAN仿真机对... 核电站运行数据呈现复杂的高维非线性特性,经典的主元分析(PCA)异常检测方法不具备非线性特征学习能力,检测准确率有待提高。本研究建立了基于深度支持向量数据描述(Deep SVDD)的核电站无监督微弱故障异常检测方法,使用PCTRAN仿真机对多种故障程度的典型故障以及电动阀门故障试验台内漏故障数据进行测试。测试结果表明,Deep SVDD异常检测方法相比于经典的PCA异常检测方法具有更高的微弱故障检测准确率。本研究为核电站微弱故障异常检测方法的研究提供了参考。 展开更多
关键词 核电站 异常检测 微弱故障 deep SVDD 堆叠自编码网络
原文传递
Application of Improved Deep Auto-Encoder Network in Rolling Bearing Fault Diagnosis 被引量:1
8
作者 Jian Di Leilei Wang 《Journal of Computer and Communications》 2018年第7期41-53,共13页
Since the effectiveness of extracting fault features is not high under traditional bearing fault diagnosis method, a bearing fault diagnosis method based on Deep Auto-encoder Network (DAEN) optimized by Cloud Adaptive... Since the effectiveness of extracting fault features is not high under traditional bearing fault diagnosis method, a bearing fault diagnosis method based on Deep Auto-encoder Network (DAEN) optimized by Cloud Adaptive Particle Swarm Optimization (CAPSO) was proposed. On the basis of analyzing CAPSO and DAEN, the CAPSO-DAEN fault diagnosis model is built. The model uses the randomness and stability of CAPSO algorithm to optimize the connection weight of DAEN, to reduce the constraints on the weights and extract fault features adaptively. Finally, efficient and accurate fault diagnosis can be implemented with the Softmax classifier. The results of test show that the proposed method has higher diagnostic accuracy and more stable diagnosis results than those based on the DAEN, Support Vector Machine (SVM) and the Back Propagation algorithm (BP) under appropriate parameters. 展开更多
关键词 fault Diagnosis ROLLING BEARING deep Auto-Encoder NETWORK CAPSO Algorithm Feature Extraction
暂未订购
Study on relationship between deep and shallow structures along north boundary fault of Yanqing-Fanshan basin
9
作者 YU Gui-hua XU Xi-wei +6 位作者 ZHU Ai-lan MA Wen-tao DIAO Gui-ling ZHANG Si-chang ZHANG Xian-kang LIU Bao-jin SUN Zhen-guo 《Acta Seismologica Sinica(English Edition)》 CSCD 2004年第1期70-79,共10页
Based on the results of surface geology, shallow and deep seismic survey, features of micro-earthquake activity along the north boundary fault of Yanqing-Fanshan sub-basin and their relationship with the surface activ... Based on the results of surface geology, shallow and deep seismic survey, features of micro-earthquake activity along the north boundary fault of Yanqing-Fanshan sub-basin and their relationship with the surface active faults and the deep-seated crustal structure are analyzed using the recordings from the high-resolution digital seismic network. The focal mechanism solutions of micro-earthquakes, whose locations are precisely determined by the seismic network, have confirmed the structural characteristics to be the rotational planar normal fault and demon-strated the surface traces of the north boundary fault of Yanqing-Fanshan sub-basin. By using the digital recordings of earthquakes with the high resolutions and analyzing the mechanism solutions, our study has revealed the rela-tionship between the geological phenomena in the shallow and deep structures in Yanqing-Huailai basin and the transition features from the brittle to ductile deformation with the crustal depth. 展开更多
关键词 shallow and deep structures rotational planar normal fault focal mechanism
在线阅读 下载PDF
Deep- Seated Tectonic Activation of Tancheng-Lujiang Fault Zone and Its Control over Jiaodong Gold Concentrated Region, China
10
作者 Cai Xinping Zhang Baolin Institute of Geology, Chinese Academy of Sciences, Beijing 100029 《Journal of Earth Science》 SCIE CAS CSCD 1999年第1期55-57,共3页
A comprehensive discussion on the deep seated genesis of gold metallogenic materials and the tectono magmatic controls over gold deposits is given in this paper, which is based on the crustal and upper mantle struct... A comprehensive discussion on the deep seated genesis of gold metallogenic materials and the tectono magmatic controls over gold deposits is given in this paper, which is based on the crustal and upper mantle structural characteristics of the Jiaodong massif, the property, activation history and styles of the Tancheng Lujiang fault zone, as well as a series of accompanying tectono magmatic events. Prediction for further prospecting gold deposits in the area is also made. 展开更多
关键词 deep seated tectonic activation Tancheng Lujiang fault zone Jiaodong gold concentrated region.
在线阅读 下载PDF
A Cloud Computing Fault Detection Method Based on Deep Learning 被引量:1
11
作者 Weipeng Gao Youchan Zhu 《Journal of Computer and Communications》 2017年第12期24-34,共11页
In the cloud computing, in order to provide reliable and continuous service, the need for accurate and timely fault detection is necessary. However, cloud failure data, especially cloud fault feature data acquisition ... In the cloud computing, in order to provide reliable and continuous service, the need for accurate and timely fault detection is necessary. However, cloud failure data, especially cloud fault feature data acquisition is difficult and the amount of data is too small, with large data training methods to solve a certain degree of difficulty. Therefore, a fault detection method based on depth learning is proposed. An auto-encoder with sparse denoising is used to construct a parallel structure network. It can automatically learn and extract the fault data characteristics and realize fault detection through deep learning. The experiment shows that this method can detect the cloud computing abnormality and determine the fault more effectively and accurately than the traditional method in the case of the small amount of cloud fault feature data. 展开更多
关键词 fault Detection Cloud Computing Auto-Encoder SPARSE DENOISING deep Learning
在线阅读 下载PDF
深度学习在磨矿分级给矿系统的应用综述
12
作者 何济帆 黄宋魏 +1 位作者 程贯瑞 吴丽萍 《煤炭技术》 2026年第1期191-195,共5页
深度学习在磨矿分级给矿系统中的应用日益广泛,对于提高选矿厂生产效率、降低能耗、提升智能化水平具有重要的作用。磨矿分级给矿系统是选矿过程的重要环节,其安全性、精确性和合理性关系到整个选矿过程的运行效果,也是选矿过程智能化... 深度学习在磨矿分级给矿系统中的应用日益广泛,对于提高选矿厂生产效率、降低能耗、提升智能化水平具有重要的作用。磨矿分级给矿系统是选矿过程的重要环节,其安全性、精确性和合理性关系到整个选矿过程的运行效果,也是选矿过程智能化应用的重要环节。近年来,深度学习在给矿系统的设备运行状态检测、给矿流量检测与控制、给矿流量动态误差补偿、给矿矿石粒度检测等方面得到了应用,应用的深度学习技术包括卷积神经网络(CNN)、循环神经网络(RNN)、长短期记忆网络(LSTM)等,显著提高了设备故障诊断的准确性和响应速度,以及矿石流量的检测精度,呈现出向多模态数据融合、模型轻量化、边缘计算与分布式协同优化等发展趋势。 展开更多
关键词 给矿系统 深度学习 故障诊断 给矿流量 矿石粒度
原文传递
Characteristics of the Deep Crustal Structure of the Greenland–Iceland–Faroe Ridge in the North Atlantic
13
作者 ZHANG Chunguan LI Fengyuan +3 位作者 ZHANG Qiang ZHANG Guoli HU Hongchuan YIN Rui 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第S01期87-89,共3页
The Greenland–Iceland–Faroe Ridge,located between the central eastern part of Greenland and the northwestern edge of Europe,spans across the North Atlantic.As the core component of the Greenland–Iceland–Faroe Ridg... The Greenland–Iceland–Faroe Ridge,located between the central eastern part of Greenland and the northwestern edge of Europe,spans across the North Atlantic.As the core component of the Greenland–Iceland–Faroe Ridge,the Iceland is an alkaline basalt area,which belongs to the periodic submarine magmatism and submarine volcano eruption resulting from mantle plume upwelling(Jiang et al.,2020).For the oceanic plateaus,the characteristics of the Iceland are closest to the continental crust,so the Iceland is considered the most suitable for simulating the earliest continental crust on the Earth(Reimink et al.,2014). 展开更多
关键词 crustal thickness deep fault Moho surface gravity anomaly Greenland-Iceland-Faroe Ridge
在线阅读 下载PDF
基于DCAE-AM的轴承健康指标构建
14
作者 李名洪 张林鍹 +2 位作者 邱朝洁 郑兴 张盼盼 《轴承》 北大核心 2026年第1期111-119,共9页
在基于数据驱动和深度学习的轴承剩余使用寿命(RUL)预测流程中,构建能准确描述轴承退化状态的健康指标(HI)是至关重要的步骤。针对基于传统特征和无监督学习方法构建的健康指标性能较差,无法合理反映轴承退化状态的问题,使用深度卷积自... 在基于数据驱动和深度学习的轴承剩余使用寿命(RUL)预测流程中,构建能准确描述轴承退化状态的健康指标(HI)是至关重要的步骤。针对基于传统特征和无监督学习方法构建的健康指标性能较差,无法合理反映轴承退化状态的问题,使用深度卷积自编码器(DCAE)从原始振动信号中提取故障特征,考虑到每组特征都具有时间序列的性质,在编码器中引入自注意力机制(AM)自动学习序列内部元素相互关系并赋予不同权重,提出了构建健康指标的DCAE-AM模型。为合理反映轴承的退化过程并避免引入大量的先验知识,使用基于二次函数的标签训练模型。在PHM2012轴承数据集上进行模型验证并设定了失效阈值,相比于PCA,SOM,WGAN,CNN以及DCAE等方法,DCAE-AM模型所构建健康指标的融合性能评分最少提升了7.3%,最多提升了89.7%。 展开更多
关键词 滚动轴承 深度学习 剩余寿命 编码器 监督学习 故障特征
在线阅读 下载PDF
基于AHRFaultSegNet深度学习网络的地震数据断层自动识别 被引量:1
15
作者 李克文 李文韬 +2 位作者 窦一民 朱信源 阳致煊 《石油地球物理勘探》 EI CSCD 北大核心 2024年第6期1225-1234,共10页
断层识别是地震数据解释的重要环节之一。深度学习技术的发展有效提高了断层自动识别的效率和准确性。然而,目前在断层的自动识别任务中,如何准确捕捉断层细微结构并有效抵抗噪声干扰仍然是一个具有挑战性的问题。为此,在HRNet网络的基... 断层识别是地震数据解释的重要环节之一。深度学习技术的发展有效提高了断层自动识别的效率和准确性。然而,目前在断层的自动识别任务中,如何准确捕捉断层细微结构并有效抵抗噪声干扰仍然是一个具有挑战性的问题。为此,在HRNet网络的基础上,构建了一种基于解耦自注意力机制的高分辨率断层识别网络模型AHRFaultSegNet。对于自注意力机制解耦,结合空间注意力和通道注意力,代替HRNet中并行传播的卷积层,在减少传统自注意力机制计算量的同时,模型可以在全局范围内计算输入特征的相关性,更准确地建模非局部特征;对解耦自注意力使用残差连接来保留原始特征,在加速模型训练的同时,使模型能够更好地保持细节信息。实验结果表明,所提出的网络模型在Dice、Fmeasure、IoU、Precision、Recall等性能评价指标上均优于其他常见的断层自动识别网络模型。通过对合成地震数据与实际地震数据等进行测试,证明了该方法对断层细微结构具有良好的识别效果并且具有良好的抗噪能力。 展开更多
关键词 断层检测识别 深度学习 解耦自注意力机制 残差连接
在线阅读 下载PDF
基于可解释模型的低速重载轴承故障诊断
16
作者 孙艳玲 孙显彬 +2 位作者 贾新月 宋益民 于春雨 《轴承》 北大核心 2026年第1期84-90,共7页
针对低速重载轴承低转速导致故障信号微弱,故障特征提取困难的技术难点,以及深度学习由于自身“黑盒”特性导致诊断结果的不可解释和不可信任的问题,构建了一种基于注意力机制和自适应激活函数的小波内核可解释网络模型,以实现低速重载... 针对低速重载轴承低转速导致故障信号微弱,故障特征提取困难的技术难点,以及深度学习由于自身“黑盒”特性导致诊断结果的不可解释和不可信任的问题,构建了一种基于注意力机制和自适应激活函数的小波内核可解释网络模型,以实现低速重载轴承的故障诊断。设计了一个能够自动调整参数的自适应激活函数适应不同的任务,以Morlet小波和Laplace小波内核代替随机卷积核使模型具有理论上的可解释性,引入注意力机制和自适应激活函数提高网络的特征表达能力。通过振动数据与声发射数据驱动可解释网络模型的对比试验表明:可解释网络模型在低速重载轴承故障诊断领域具有诊断精度高、可信任性强等特点;与振动信号相比,基于声发射信号的低速重载轴承故障诊断更具优势。 展开更多
关键词 滚动轴承 深度学习 小波变换 激活函数 故障诊断
在线阅读 下载PDF
Deep-SBFL:基于频谱的深度神经网络缺陷定位方法 被引量:5
17
作者 李铮 崔展齐 +3 位作者 陈翔 王荣存 刘建宾 郑丽伟 《软件学报》 EI CSCD 北大核心 2023年第5期2231-2250,共20页
深度神经网络已经在自动驾驶和智能医疗等领域取得了广泛的应用.与传统软件一样,深度神经网络也不可避免地包含缺陷,如果做出错误决定,可能会造成严重后果.因此,深度神经网络的质量保障受到了广泛关注.然而,深度神经网络与传统软件存在... 深度神经网络已经在自动驾驶和智能医疗等领域取得了广泛的应用.与传统软件一样,深度神经网络也不可避免地包含缺陷,如果做出错误决定,可能会造成严重后果.因此,深度神经网络的质量保障受到了广泛关注.然而,深度神经网络与传统软件存在较大差异,传统软件质量保障方法无法直接应用于深度神经网络,需要设计有针对性的质量保障方法.软件缺陷定位是保障软件质量的重要方法之一,基于频谱的缺陷定位方法在传统软件的缺陷定位中取得了很好的效果,但无法直接应用于深度神经网络.在传统软件缺陷定位方法的基础上提出了一种基于频谱的深度神经网络缺陷定位方法Deep-SBFL.该方法首先通过收集深度神经网络的神经元输出信息和预测结果作为频谱信息;然后将频谱信息进行处理作为贡献信息,以用于量化神经元对预测结果所做的贡献;最后提出了针对深度神经网络缺陷定位的怀疑度公式,基于贡献信息计算深度神经网络中神经元的怀疑度并进行排序,以找出最有可能存在缺陷的神经元.为验证该方法的有效性,以EInspect@n(结果排序列表前n个位置内成功定位的缺陷数)和EXAM(在找到缺陷元素之前必须检查元素的百分比)作为评测指标,在使用MNIST数据集训练的深度神经网络上进行了实验.结果表明,该方法可有效定位深度神经网络中不同类型的缺陷. 展开更多
关键词 软件质量保障 软件缺陷定位 深度神经网络(DNN) 频谱 怀疑度
在线阅读 下载PDF
人工智能技术在信息化运维中的应用研究
18
作者 赵珊珊 华亮 宋善坤 《办公自动化》 2026年第2期123-125,共3页
信息化运维面临着效率及质量的双重挑战,急切要开展智能化转型升级,文章对人工智能技术在信息化运维里的应用展开深入探究,提出采用深度学习的智能监控预警方案、融合知识图谱的故障诊断手段以及强化学习的智能决策支持架构,在网络、服... 信息化运维面临着效率及质量的双重挑战,急切要开展智能化转型升级,文章对人工智能技术在信息化运维里的应用展开深入探究,提出采用深度学习的智能监控预警方案、融合知识图谱的故障诊断手段以及强化学习的智能决策支持架构,在网络、服务器和应用系统等典型的运维场景中,构建起智能运维技术体系跟评估办法,研究所得证实,人工智能技术明显提升运维效率及服务质量,把运维成本给降低,给信息化运维的智能化转型提供新思路与实践借鉴。 展开更多
关键词 信息化运维 人工智能 故障诊断 知识图谱 深度学习
在线阅读 下载PDF
一种基于Deep-GBM的航空发动机中介轴承故障诊断方法 被引量:12
19
作者 田晶 李有儒 艾延廷 《航空动力学报》 EI CAS CSCD 北大核心 2019年第4期756-763,共8页
针对航空发动机中介轴承故障信号难于识别的特点,提出了一种深度梯度提升模型(DeepGBM)对振动信号特征进行逐层学习以提高分类模型的准确率。开展某型航空发动机中介轴承故障模拟实验,并采用经验模式分解(EMD)方法对采集的振动信号进行... 针对航空发动机中介轴承故障信号难于识别的特点,提出了一种深度梯度提升模型(DeepGBM)对振动信号特征进行逐层学习以提高分类模型的准确率。开展某型航空发动机中介轴承故障模拟实验,并采用经验模式分解(EMD)方法对采集的振动信号进行分解,提取内蕴模式函数(IMF)分量非线性动力学参数样本熵作为原始故障特征。采用Deep-GBM对中介轴承内环故障、内环和滚动体综合故障、正常、滚棒剥落、滚棒划伤五种不同状态进行识别。实验结果表明,所提出的Deep-GBM故障诊断准确率达到87%,相对于传统的机器学习模型准确率最高提升了28%,并具有良好的泛化能力。 展开更多
关键词 故障诊断 中介轴承 样本熵 机器学习 梯度提升模型
原文传递
Signal-Based Intelligent Hydraulic Fault Diagnosis Methods: Review and Prospects 被引量:24
20
作者 Juying Dai Jian Tang +1 位作者 Shuzhan Huang Yangyang Wang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2019年第5期1-22,共22页
Hydraulic systems have the characteristics of strong fault concealment,powerful nonlinear time-varying signals,and a complex vibration transmission mechanism;hence,diagnosis of these systems is a challenge.To provide ... Hydraulic systems have the characteristics of strong fault concealment,powerful nonlinear time-varying signals,and a complex vibration transmission mechanism;hence,diagnosis of these systems is a challenge.To provide accurate diagnosis results automatically,numerous studies have been carried out.Among them,signal-based methods are commonly used,which employ signal processing techniques based on the state signal used for extracting features,and further input the features into the classifier for fault recognition.However,their main deficiencies include the following:(1)The features are manually designed and thus may have a lack of objectivity.(2)For signal processing,feature extraction and pattern recognition are conducted using independent models,which cannot be jointly optimized globally.(3)The machine learning algorithms adopted by these methods have a shallow architecture,which limits their capacity to deeply mine the essential features of a fault.As a breakthrough in artificial intelligence,deep learning holds the potential to overcome such deficiencies.Based on deep learning,deep neural networks(DNNs)can automatically learn the complex nonlinear relations implied in a signal,can be globally optimized,and can obtain the high-level features of multi-dimensional data.In this paper,the main technology used in an intelligent fault diagnosis and the current research status of hydraulic system fault diagnosis are summarized and analyzed.The significant prospect of applying deep learning in the field of intelligent fault diagnosis is presented,and the main ideas,methods,and principles of several typical DNNs are described and summarized.The commonality between a fault diagnosis and other issues regarding typical pattern recognition are analyzed,and research ideas for applying DNNs for hydraulic fault diagnosis are proposed.Meanwhile,the research advantages and development trend of DNNs(both domestically and overseas)as applied to an intelligent fault diagnosis are reviewed.Furthermore,the fault characteristics of a complex hydraulic system are summarized and discussed,and the key problems and possible research ideas of applying DNNs to an intelligent hydraulic fault diagnosis are presented and comprehensively analyzed. 展开更多
关键词 HYDRAULIC system INTELLIGENT fault diagnosis deep NEURAL networks
在线阅读 下载PDF
上一页 1 2 138 下一页 到第
使用帮助 返回顶部