With the advancement of Vehicle-to-Everything(V2X)technology,efficient resource allocation in dynamic vehicular networks has become a critical challenge for achieving optimal performance.Existing methods suffer from h...With the advancement of Vehicle-to-Everything(V2X)technology,efficient resource allocation in dynamic vehicular networks has become a critical challenge for achieving optimal performance.Existing methods suffer from high computational complexity and decision latency under high-density traffic and heterogeneous network conditions.To address these challenges,this study presents an innovative framework that combines Graph Neural Networks(GNNs)with a Double Deep Q-Network(DDQN),utilizing dynamic graph structures and reinforcement learning.An adaptive neighbor sampling mechanism is introduced to dynamically select the most relevant neighbors based on interference levels and network topology,thereby improving decision accuracy and efficiency.Meanwhile,the framework models communication links as nodes and interference relationships as edges,effectively capturing the direct impact of interference on resource allocation while reducing computational complexity and preserving critical interaction information.Employing an aggregation mechanism based on the Graph Attention Network(GAT),it dynamically adjusts the neighbor sampling scope and performs attention-weighted aggregation based on node importance,ensuring more efficient and adaptive resource management.This design ensures reliable Vehicle-to-Vehicle(V2V)communication while maintaining high Vehicle-to-Infrastructure(V2I)throughput.The framework retains the global feature learning capabilities of GNNs and supports distributed network deployment,allowing vehicles to extract low-dimensional graph embeddings from local observations for real-time resource decisions.Experimental results demonstrate that the proposed method significantly reduces computational overhead,mitigates latency,and improves resource utilization efficiency in vehicular networks under complex traffic scenarios.This research not only provides a novel solution to resource allocation challenges in V2X networks but also advances the application of DDQN in intelligent transportation systems,offering substantial theoretical significance and practical value.展开更多
The multi-agent path planning problem presents significant challenges in dynamic environments,primarily due to the ever-changing positions of obstacles and the complex interactions between agents’actions.These factor...The multi-agent path planning problem presents significant challenges in dynamic environments,primarily due to the ever-changing positions of obstacles and the complex interactions between agents’actions.These factors contribute to a tendency for the solution to converge slowly,and in some cases,diverge altogether.In addressing this issue,this paper introduces a novel approach utilizing a double dueling deep Q-network(D3QN),tailored for dynamic multi-agent environments.A novel reward function based on multi-agent positional constraints is designed,and a training strategy based on incremental learning is performed to achieve collaborative path planning of multiple agents.Moreover,the greedy and Boltzmann probability selection policy is introduced for action selection and avoiding convergence to local extremum.To match radar and image sensors,a convolutional neural network-long short-term memory(CNN-LSTM)architecture is constructed to extract the feature of multi-source measurement as the input of the D3QN.The algorithm’s efficacy and reliability are validated in a simulated environment,utilizing robot operating system and Gazebo.The simulation results show that the proposed algorithm provides a real-time solution for path planning tasks in dynamic scenarios.In terms of the average success rate and accuracy,the proposed method is superior to other deep learning algorithms,and the convergence speed is also improved.展开更多
The recent surge of mobile subscribers and user data traffic has accelerated the telecommunication sector towards the adoption of the fifth-generation (5G) mobile networks. Cloud radio access network (CRAN) is a promi...The recent surge of mobile subscribers and user data traffic has accelerated the telecommunication sector towards the adoption of the fifth-generation (5G) mobile networks. Cloud radio access network (CRAN) is a prominent framework in the 5G mobile network to meet the above requirements by deploying low-cost and intelligent multiple distributed antennas known as remote radio heads (RRHs). However, achieving the optimal resource allocation (RA) in CRAN using the traditional approach is still challenging due to the complex structure. In this paper, we introduce the convolutional neural network-based deep Q-network (CNN-DQN) to balance the energy consumption and guarantee the user quality of service (QoS) demand in downlink CRAN. We first formulate the Markov decision process (MDP) for energy efficiency (EE) and build up a 3-layer CNN to capture the environment feature as an input state space. We then use DQN to turn on/off the RRHs dynamically based on the user QoS demand and energy consumption in the CRAN. Finally, we solve the RA problem based on the user constraint and transmit power to guarantee the user QoS demand and maximize the EE with a minimum number of active RRHs. In the end, we conduct the simulation to compare our proposed scheme with nature DQN and the traditional approach.展开更多
To optimize machine allocation and task dispatching in smart manufacturing factories, this paper proposes a manufacturing resource scheduling framework based on reinforcement learning(RL). The framework formulates the...To optimize machine allocation and task dispatching in smart manufacturing factories, this paper proposes a manufacturing resource scheduling framework based on reinforcement learning(RL). The framework formulates the entire scheduling process as a multi-stage sequential decision problem, and further obtains the scheduling order by the combination of deep convolutional neural network(CNN) and improved deep Q-network(DQN). Specifically, with respect to the representation of the Markov decision process(MDP), the feature matrix is considered as the state space and a set of heuristic dispatching rules are denoted as the action space. In addition, the deep CNN is employed to approximate the state-action values, and the double dueling deep Qnetwork with prioritized experience replay and noisy network(D3QPN2) is adopted to determine the appropriate action according to the current state. In the experiments, compared with the traditional heuristic method, the proposed method is able to learn high-quality scheduling policy and achieve shorter makespan on the standard public datasets.展开更多
Federated learning(FL)activates distributed on-device computation techniques to model a better algorithm performance with the interaction of local model updates and global model distributions in aggregation averaging ...Federated learning(FL)activates distributed on-device computation techniques to model a better algorithm performance with the interaction of local model updates and global model distributions in aggregation averaging processes.However,in large-scale heterogeneous Internet of Things(IoT)cellular networks,massive multi-dimensional model update iterations and resource-constrained computation are challenging aspects to be tackled significantly.This paper introduces the system model of converging softwaredefined networking(SDN)and network functions virtualization(NFV)to enable device/resource abstractions and provide NFV-enabled edge FL(eFL)aggregation servers for advancing automation and controllability.Multi-agent deep Q-networks(MADQNs)target to enforce a self-learning softwarization,optimize resource allocation policies,and advocate computation offloading decisions.With gathered network conditions and resource states,the proposed agent aims to explore various actions for estimating expected longterm rewards in a particular state observation.In exploration phase,optimal actions for joint resource allocation and offloading decisions in different possible states are obtained by maximum Q-value selections.Action-based virtual network functions(VNF)forwarding graph(VNFFG)is orchestrated to map VNFs towards eFL aggregation server with sufficient communication and computation resources in NFV infrastructure(NFVI).The proposed scheme indicates deficient allocation actions,modifies the VNF backup instances,and reallocates the virtual resource for exploitation phase.Deep neural network(DNN)is used as a value function approximator,and epsilongreedy algorithm balances exploration and exploitation.The scheme primarily considers the criticalities of FL model services and congestion states to optimize long-term policy.Simulation results presented the outperformance of the proposed scheme over reference schemes in terms of Quality of Service(QoS)performance metrics,including packet drop ratio,packet drop counts,packet delivery ratio,delay,and throughput.展开更多
With the advent of Reinforcement Learning(RL)and its continuous progress,state-of-the-art RL systems have come up for many challenging and real-world tasks.Given the scope of this area,various techniques are found in ...With the advent of Reinforcement Learning(RL)and its continuous progress,state-of-the-art RL systems have come up for many challenging and real-world tasks.Given the scope of this area,various techniques are found in the literature.One such notable technique,Multiple Deep Q-Network(DQN)based RL systems use multiple DQN-based-entities,which learn together and communicate with each other.The learning has to be distributed wisely among all entities in such a scheme and the inter-entity communication protocol has to be carefully designed.As more complex DQNs come to the fore,the overall complexity of these multi-entity systems has increased many folds leading to issues like difficulty in training,need for high resources,more training time,and difficulty in fine-tuning leading to performance issues.Taking a cue from the parallel processing found in the nature and its efficacy,we propose a lightweight ensemble based approach for solving the core RL tasks.It uses multiple binary action DQNs having shared state and reward.The benefits of the proposed approach are overall simplicity,faster convergence and better performance compared to conventional DQN based approaches.The approach can potentially be extended to any type of DQN by forming its ensemble.Conducting extensive experimentation,promising results are obtained using the proposed ensemble approach on OpenAI Gym tasks,and Atari 2600 games as compared to recent techniques.The proposed approach gives a stateof-the-art score of 500 on the Cartpole-v1 task,259.2 on the LunarLander-v2 task,and state-of-the-art results on four out of five Atari 2600 games.展开更多
In a rechargeable wireless sensor network,utilizing the unmanned aerial vehicle(UAV)as a mobile base station(BS)to charge sensors and collect data effectively prolongs the network’s lifetime.In this paper,we jointly ...In a rechargeable wireless sensor network,utilizing the unmanned aerial vehicle(UAV)as a mobile base station(BS)to charge sensors and collect data effectively prolongs the network’s lifetime.In this paper,we jointly optimize the UAV’s flight trajectory and the sensor selection and operation modes to maximize the average data traffic of all sensors within a wireless sensor network(WSN)during finite UAV’s flight time,while ensuring the energy required for each sensor by wireless power transfer(WPT).We consider a practical scenario,where the UAV has no prior knowledge of sensor locations.The UAV performs autonomous navigation based on the status information obtained within the coverage area,which is modeled as a Markov decision process(MDP).The deep Q-network(DQN)is employed to execute the navigation based on the UAV position,the battery level state,channel conditions and current data traffic of sensors within the UAV’s coverage area.Our simulation results demonstrate that the DQN algorithm significantly improves the network performance in terms of the average data traffic and trajectory design.展开更多
A gait control method for a biped robot based on the deep Q-network (DQN) algorithm is proposed to enhance the stability of walking on uneven ground. This control strategy is an intelligent learning method of posture ...A gait control method for a biped robot based on the deep Q-network (DQN) algorithm is proposed to enhance the stability of walking on uneven ground. This control strategy is an intelligent learning method of posture adjustment. A robot is taken as an agent and trained to walk steadily on an uneven surface with obstacles, using a simple reward function based on forward progress. The reward-punishment (RP) mechanism of the DQN algorithm is established after obtaining the offline gait which was generated in advance foot trajectory planning. Instead of implementing a complex dynamic model, the proposed method enables the biped robot to learn to adjust its posture on the uneven ground and ensures walking stability. The performance and effectiveness of the proposed algorithm was validated in the V-REP simulation environment. The results demonstrate that the biped robot's lateral tile angle is less than 3° after implementing the proposed method and the walking stability is obviously improved.展开更多
Brain-computer interfaces(BCI)use neural activity as a control signal to enable direct communication between the human brain and external devices.The electrical signals generated by the brain are captured through elec...Brain-computer interfaces(BCI)use neural activity as a control signal to enable direct communication between the human brain and external devices.The electrical signals generated by the brain are captured through electroencephalogram(EEG)and translated into neural intentions reflecting the user’s behavior.Correct decoding of the neural intentions then facilitates the control of external devices.Reinforcement learning-based BCIs enhance decoders to complete tasks based only on feedback signals(rewards)from the environment,building a general framework for dynamic mapping from neural intentions to actions that adapt to changing environments.However,using traditional reinforcement learning methods can have challenges such as the curse of dimensionality and poor generalization.Therefore,in this paper,we use deep reinforcement learning to construct decoders for the correct decoding of EEG signals,demonstrate its feasibility through experiments,and demonstrate its stronger generalization on motion imaging(MI)EEG data signals with high dynamic characteristics.展开更多
The optimization of multi-zone residential heating,ventilation,and air conditioning(HVAC)control is not an easy task due to its complex dynamic thermal model and the uncertainty of occupant-driven cooling loads.Deep r...The optimization of multi-zone residential heating,ventilation,and air conditioning(HVAC)control is not an easy task due to its complex dynamic thermal model and the uncertainty of occupant-driven cooling loads.Deep reinforcement learning(DRL)methods have recently been proposed to address the HVAC control problem.However,the application of single-agent DRL formulti-zone residential HVAC controlmay lead to non-convergence or slow convergence.In this paper,we propose MAQMC(Multi-Agent deep Q-network for multi-zone residential HVAC Control)to address this challenge with the goal of minimizing energy consumption while maintaining occupants’thermal comfort.MAQMC is divided into MAQMC2(MAQMC with two agents:one agent controls the temperature of each zone,and the other agent controls the humidity of each zone)and MAQMC3(MAQMC with three agents:three agents control the temperature and humidity of three zones,respectively).The experimental results showthatMAQMC3 can reduce energy consumption by 6.27%andMAQMC2 by 3.73%compared with the fixed point;compared with the rule-based,MAQMC3 andMAQMC2 respectively can reduce 61.89%and 59.07%comfort violation.In addition,experiments with different regional weather data demonstrate that the well-trained MAQMC RL agents have the robustness and adaptability to unknown environments.展开更多
Early detection of faults in photovoltaic(PV)arrays has always been the center of attention to maintain system efficiency and reliability.However,conventional protection devices have shown various deficiencies,especia...Early detection of faults in photovoltaic(PV)arrays has always been the center of attention to maintain system efficiency and reliability.However,conventional protection devices have shown various deficiencies,especially when dealing with less severe faults.Hence,artificial intelligence(AI)models,specifically machine learning(ML)have complemented the conventional protection devices to compensate for their limitations.Despite their obvious advantages,ML models have also shown several shortcomings,such as(i)most of them relied on a massive amount of training dataset to provide a fairly satisfying accuracy,(ii)not many of them were able to detect less severe faults,and(iii)those which were able to detect less severe faults could not produce high accuracy.To this end,the present paper proposes a state-of-the-art deep reinforcement learning(DRL)model based on deep Q-network(DQN)to overcome all the existing challenges in previous ML models for PV arrays fault detection and diagnosis.The model carries out a two-stage process employing two DQN-based agents which is not only able to accurately detect and classify(first stage)various faults in PV arrays,but it is also able to assess the severity of line-to-line(LL)and line-to-ground(LG)faults(second stage)in PV arrays using only a small training dataset.The training and testing datasets include several voltage and current values on PV array current-voltage(I-V)characteristic curve which is extracted using the variable load technique for PV array I-V curve extraction.The model has been implemented on an experimental standalone PV array and the results show outstanding accuracies of 98.61%and 100%when it is verified by testing datasets in the first and the second stage,respectively.展开更多
The Virtual Power Plant(VPP),as an innovative power management architecture,achieves flexible dispatch and resource optimization of power systems by integrating distributed energy resources.However,due to significant ...The Virtual Power Plant(VPP),as an innovative power management architecture,achieves flexible dispatch and resource optimization of power systems by integrating distributed energy resources.However,due to significant differences in operational costs and flexibility of various types of generation resources,as well as the volatility and uncertainty of renewable energy sources(such as wind and solar power)and the complex variability of load demand,the scheduling optimization of virtual power plants has become a critical issue that needs to be addressed.To solve this,this paper proposes an intelligent scheduling method for virtual power plants based on Deep Reinforcement Learning(DRL),utilizing Deep Q-Networks(DQN)for real-time optimization scheduling of dynamic peaking unit(DPU)and stable baseload unit(SBU)in the virtual power plant.By modeling the scheduling problem as a Markov Decision Process(MDP)and designing an optimization objective function that integrates both performance and cost,the scheduling efficiency and economic performance of the virtual power plant are significantly improved.Simulation results show that,compared with traditional scheduling methods and other deep reinforcement learning algorithms,the proposed method demonstrates significant advantages in key performance indicators:response time is shortened by up to 34%,task success rate is increased by up to 46%,and costs are reduced by approximately 26%.Experimental results verify the efficiency and scalability of the method under complex load environments and the volatility of renewable energy,providing strong technical support for the intelligent scheduling of virtual power plants.展开更多
With the rapid development ofmobile Internet,spatial crowdsourcing has becomemore andmore popular.Spatial crowdsourcing consists of many different types of applications,such as spatial crowd-sensing services.In terms ...With the rapid development ofmobile Internet,spatial crowdsourcing has becomemore andmore popular.Spatial crowdsourcing consists of many different types of applications,such as spatial crowd-sensing services.In terms of spatial crowd-sensing,it collects and analyzes traffic sensing data from clients like vehicles and traffic lights to construct intelligent traffic prediction models.Besides collecting sensing data,spatial crowdsourcing also includes spatial delivery services like DiDi and Uber.Appropriate task assignment and worker selection dominate the service quality for spatial crowdsourcing applications.Previous research conducted task assignments via traditional matching approaches or using simple network models.However,advanced mining methods are lacking to explore the relationship between workers,task publishers,and the spatio-temporal attributes in tasks.Therefore,in this paper,we propose a Deep Double Dueling Spatial-temporal Q Network(D3SQN)to adaptively learn the spatialtemporal relationship between task,task publishers,and workers in a dynamic environment to achieve optimal allocation.Specifically,D3SQNis revised through reinforcement learning by adding a spatial-temporal transformer that can estimate the expected state values and action advantages so as to improve the accuracy of task assignments.Extensive experiments are conducted over real data collected fromDiDi and ELM,and the simulation results verify the effectiveness of our proposed models.展开更多
Early identification and treatment of stroke can greatly improve patient outcomes and quality of life.Although clinical tests such as the Cincinnati Pre-hospital Stroke Scale(CPSS)and the Face Arm Speech Test(FAST)are...Early identification and treatment of stroke can greatly improve patient outcomes and quality of life.Although clinical tests such as the Cincinnati Pre-hospital Stroke Scale(CPSS)and the Face Arm Speech Test(FAST)are commonly used for stroke screening,accurate administration is dependent on specialized training.In this study,we proposed a novel multimodal deep learning approach,based on the FAST,for assessing suspected stroke patients exhibiting symptoms such as limb weakness,facial paresis,and speech disorders in acute settings.We collected a dataset comprising videos and audio recordings of emergency room patients performing designated limb movements,facial expressions,and speech tests based on the FAST.We compared the constructed deep learning model,which was designed to process multi-modal datasets,with six prior models that achieved good action classification performance,including the I3D,SlowFast,X3D,TPN,TimeSformer,and MViT.We found that the findings of our deep learning model had a higher clinical value compared with the other approaches.Moreover,the multi-modal model outperformed its single-module variants,highlighting the benefit of utilizing multiple types of patient data,such as action videos and speech audio.These results indicate that a multi-modal deep learning model combined with the FAST could greatly improve the accuracy and sensitivity of early stroke identification of stroke,thus providing a practical and powerful tool for assessing stroke patients in an emergency clinical setting.展开更多
基金Project ZR2023MF111 supported by Shandong Provincial Natural Science Foundation。
文摘With the advancement of Vehicle-to-Everything(V2X)technology,efficient resource allocation in dynamic vehicular networks has become a critical challenge for achieving optimal performance.Existing methods suffer from high computational complexity and decision latency under high-density traffic and heterogeneous network conditions.To address these challenges,this study presents an innovative framework that combines Graph Neural Networks(GNNs)with a Double Deep Q-Network(DDQN),utilizing dynamic graph structures and reinforcement learning.An adaptive neighbor sampling mechanism is introduced to dynamically select the most relevant neighbors based on interference levels and network topology,thereby improving decision accuracy and efficiency.Meanwhile,the framework models communication links as nodes and interference relationships as edges,effectively capturing the direct impact of interference on resource allocation while reducing computational complexity and preserving critical interaction information.Employing an aggregation mechanism based on the Graph Attention Network(GAT),it dynamically adjusts the neighbor sampling scope and performs attention-weighted aggregation based on node importance,ensuring more efficient and adaptive resource management.This design ensures reliable Vehicle-to-Vehicle(V2V)communication while maintaining high Vehicle-to-Infrastructure(V2I)throughput.The framework retains the global feature learning capabilities of GNNs and supports distributed network deployment,allowing vehicles to extract low-dimensional graph embeddings from local observations for real-time resource decisions.Experimental results demonstrate that the proposed method significantly reduces computational overhead,mitigates latency,and improves resource utilization efficiency in vehicular networks under complex traffic scenarios.This research not only provides a novel solution to resource allocation challenges in V2X networks but also advances the application of DDQN in intelligent transportation systems,offering substantial theoretical significance and practical value.
基金National Natural Science Foundation of China(Nos.61673262 and 50779033)National GF Basic Research Program(No.JCKY2021110B134)Fundamental Research Funds for the Central Universities。
文摘The multi-agent path planning problem presents significant challenges in dynamic environments,primarily due to the ever-changing positions of obstacles and the complex interactions between agents’actions.These factors contribute to a tendency for the solution to converge slowly,and in some cases,diverge altogether.In addressing this issue,this paper introduces a novel approach utilizing a double dueling deep Q-network(D3QN),tailored for dynamic multi-agent environments.A novel reward function based on multi-agent positional constraints is designed,and a training strategy based on incremental learning is performed to achieve collaborative path planning of multiple agents.Moreover,the greedy and Boltzmann probability selection policy is introduced for action selection and avoiding convergence to local extremum.To match radar and image sensors,a convolutional neural network-long short-term memory(CNN-LSTM)architecture is constructed to extract the feature of multi-source measurement as the input of the D3QN.The algorithm’s efficacy and reliability are validated in a simulated environment,utilizing robot operating system and Gazebo.The simulation results show that the proposed algorithm provides a real-time solution for path planning tasks in dynamic scenarios.In terms of the average success rate and accuracy,the proposed method is superior to other deep learning algorithms,and the convergence speed is also improved.
基金supported by the Universiti Tunku Abdul Rahman (UTAR) Malaysia under UTARRF (IPSR/RMC/UTARRF/2021-C1/T05)
文摘The recent surge of mobile subscribers and user data traffic has accelerated the telecommunication sector towards the adoption of the fifth-generation (5G) mobile networks. Cloud radio access network (CRAN) is a prominent framework in the 5G mobile network to meet the above requirements by deploying low-cost and intelligent multiple distributed antennas known as remote radio heads (RRHs). However, achieving the optimal resource allocation (RA) in CRAN using the traditional approach is still challenging due to the complex structure. In this paper, we introduce the convolutional neural network-based deep Q-network (CNN-DQN) to balance the energy consumption and guarantee the user quality of service (QoS) demand in downlink CRAN. We first formulate the Markov decision process (MDP) for energy efficiency (EE) and build up a 3-layer CNN to capture the environment feature as an input state space. We then use DQN to turn on/off the RRHs dynamically based on the user QoS demand and energy consumption in the CRAN. Finally, we solve the RA problem based on the user constraint and transmit power to guarantee the user QoS demand and maximize the EE with a minimum number of active RRHs. In the end, we conduct the simulation to compare our proposed scheme with nature DQN and the traditional approach.
基金Supported by the National Key Research and Development Plan(2019YFB1706401)。
文摘To optimize machine allocation and task dispatching in smart manufacturing factories, this paper proposes a manufacturing resource scheduling framework based on reinforcement learning(RL). The framework formulates the entire scheduling process as a multi-stage sequential decision problem, and further obtains the scheduling order by the combination of deep convolutional neural network(CNN) and improved deep Q-network(DQN). Specifically, with respect to the representation of the Markov decision process(MDP), the feature matrix is considered as the state space and a set of heuristic dispatching rules are denoted as the action space. In addition, the deep CNN is employed to approximate the state-action values, and the double dueling deep Qnetwork with prioritized experience replay and noisy network(D3QPN2) is adopted to determine the appropriate action according to the current state. In the experiments, compared with the traditional heuristic method, the proposed method is able to learn high-quality scheduling policy and achieve shorter makespan on the standard public datasets.
基金This work was funded by BK21 FOUR(Fostering Outstanding Universities for Research)(No.5199990914048)this research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(NRF-2020R1I1A3066543)In addition,this work was supported by the Soonchunhyang University Research Fund.
文摘Federated learning(FL)activates distributed on-device computation techniques to model a better algorithm performance with the interaction of local model updates and global model distributions in aggregation averaging processes.However,in large-scale heterogeneous Internet of Things(IoT)cellular networks,massive multi-dimensional model update iterations and resource-constrained computation are challenging aspects to be tackled significantly.This paper introduces the system model of converging softwaredefined networking(SDN)and network functions virtualization(NFV)to enable device/resource abstractions and provide NFV-enabled edge FL(eFL)aggregation servers for advancing automation and controllability.Multi-agent deep Q-networks(MADQNs)target to enforce a self-learning softwarization,optimize resource allocation policies,and advocate computation offloading decisions.With gathered network conditions and resource states,the proposed agent aims to explore various actions for estimating expected longterm rewards in a particular state observation.In exploration phase,optimal actions for joint resource allocation and offloading decisions in different possible states are obtained by maximum Q-value selections.Action-based virtual network functions(VNF)forwarding graph(VNFFG)is orchestrated to map VNFs towards eFL aggregation server with sufficient communication and computation resources in NFV infrastructure(NFVI).The proposed scheme indicates deficient allocation actions,modifies the VNF backup instances,and reallocates the virtual resource for exploitation phase.Deep neural network(DNN)is used as a value function approximator,and epsilongreedy algorithm balances exploration and exploitation.The scheme primarily considers the criticalities of FL model services and congestion states to optimize long-term policy.Simulation results presented the outperformance of the proposed scheme over reference schemes in terms of Quality of Service(QoS)performance metrics,including packet drop ratio,packet drop counts,packet delivery ratio,delay,and throughput.
文摘With the advent of Reinforcement Learning(RL)and its continuous progress,state-of-the-art RL systems have come up for many challenging and real-world tasks.Given the scope of this area,various techniques are found in the literature.One such notable technique,Multiple Deep Q-Network(DQN)based RL systems use multiple DQN-based-entities,which learn together and communicate with each other.The learning has to be distributed wisely among all entities in such a scheme and the inter-entity communication protocol has to be carefully designed.As more complex DQNs come to the fore,the overall complexity of these multi-entity systems has increased many folds leading to issues like difficulty in training,need for high resources,more training time,and difficulty in fine-tuning leading to performance issues.Taking a cue from the parallel processing found in the nature and its efficacy,we propose a lightweight ensemble based approach for solving the core RL tasks.It uses multiple binary action DQNs having shared state and reward.The benefits of the proposed approach are overall simplicity,faster convergence and better performance compared to conventional DQN based approaches.The approach can potentially be extended to any type of DQN by forming its ensemble.Conducting extensive experimentation,promising results are obtained using the proposed ensemble approach on OpenAI Gym tasks,and Atari 2600 games as compared to recent techniques.The proposed approach gives a stateof-the-art score of 500 on the Cartpole-v1 task,259.2 on the LunarLander-v2 task,and state-of-the-art results on four out of five Atari 2600 games.
文摘In a rechargeable wireless sensor network,utilizing the unmanned aerial vehicle(UAV)as a mobile base station(BS)to charge sensors and collect data effectively prolongs the network’s lifetime.In this paper,we jointly optimize the UAV’s flight trajectory and the sensor selection and operation modes to maximize the average data traffic of all sensors within a wireless sensor network(WSN)during finite UAV’s flight time,while ensuring the energy required for each sensor by wireless power transfer(WPT).We consider a practical scenario,where the UAV has no prior knowledge of sensor locations.The UAV performs autonomous navigation based on the status information obtained within the coverage area,which is modeled as a Markov decision process(MDP).The deep Q-network(DQN)is employed to execute the navigation based on the UAV position,the battery level state,channel conditions and current data traffic of sensors within the UAV’s coverage area.Our simulation results demonstrate that the DQN algorithm significantly improves the network performance in terms of the average data traffic and trajectory design.
基金Supported by the National Ministries and Research Funds(3020020221111)
文摘A gait control method for a biped robot based on the deep Q-network (DQN) algorithm is proposed to enhance the stability of walking on uneven ground. This control strategy is an intelligent learning method of posture adjustment. A robot is taken as an agent and trained to walk steadily on an uneven surface with obstacles, using a simple reward function based on forward progress. The reward-punishment (RP) mechanism of the DQN algorithm is established after obtaining the offline gait which was generated in advance foot trajectory planning. Instead of implementing a complex dynamic model, the proposed method enables the biped robot to learn to adjust its posture on the uneven ground and ensures walking stability. The performance and effectiveness of the proposed algorithm was validated in the V-REP simulation environment. The results demonstrate that the biped robot's lateral tile angle is less than 3° after implementing the proposed method and the walking stability is obviously improved.
文摘Brain-computer interfaces(BCI)use neural activity as a control signal to enable direct communication between the human brain and external devices.The electrical signals generated by the brain are captured through electroencephalogram(EEG)and translated into neural intentions reflecting the user’s behavior.Correct decoding of the neural intentions then facilitates the control of external devices.Reinforcement learning-based BCIs enhance decoders to complete tasks based only on feedback signals(rewards)from the environment,building a general framework for dynamic mapping from neural intentions to actions that adapt to changing environments.However,using traditional reinforcement learning methods can have challenges such as the curse of dimensionality and poor generalization.Therefore,in this paper,we use deep reinforcement learning to construct decoders for the correct decoding of EEG signals,demonstrate its feasibility through experiments,and demonstrate its stronger generalization on motion imaging(MI)EEG data signals with high dynamic characteristics.
基金supported by Primary Research and Development Plan of China(No.2020YFC2006602)National Natural Science Foundation of China(Nos.62072324,61876217,61876121,61772357)+2 种基金University Natural Science Foundation of Jiangsu Province(No.21KJA520005)Primary Research and Development Plan of Jiangsu Province(No.BE2020026)Natural Science Foundation of Jiangsu Province(No.BK20190942).
文摘The optimization of multi-zone residential heating,ventilation,and air conditioning(HVAC)control is not an easy task due to its complex dynamic thermal model and the uncertainty of occupant-driven cooling loads.Deep reinforcement learning(DRL)methods have recently been proposed to address the HVAC control problem.However,the application of single-agent DRL formulti-zone residential HVAC controlmay lead to non-convergence or slow convergence.In this paper,we propose MAQMC(Multi-Agent deep Q-network for multi-zone residential HVAC Control)to address this challenge with the goal of minimizing energy consumption while maintaining occupants’thermal comfort.MAQMC is divided into MAQMC2(MAQMC with two agents:one agent controls the temperature of each zone,and the other agent controls the humidity of each zone)and MAQMC3(MAQMC with three agents:three agents control the temperature and humidity of three zones,respectively).The experimental results showthatMAQMC3 can reduce energy consumption by 6.27%andMAQMC2 by 3.73%compared with the fixed point;compared with the rule-based,MAQMC3 andMAQMC2 respectively can reduce 61.89%and 59.07%comfort violation.In addition,experiments with different regional weather data demonstrate that the well-trained MAQMC RL agents have the robustness and adaptability to unknown environments.
文摘Early detection of faults in photovoltaic(PV)arrays has always been the center of attention to maintain system efficiency and reliability.However,conventional protection devices have shown various deficiencies,especially when dealing with less severe faults.Hence,artificial intelligence(AI)models,specifically machine learning(ML)have complemented the conventional protection devices to compensate for their limitations.Despite their obvious advantages,ML models have also shown several shortcomings,such as(i)most of them relied on a massive amount of training dataset to provide a fairly satisfying accuracy,(ii)not many of them were able to detect less severe faults,and(iii)those which were able to detect less severe faults could not produce high accuracy.To this end,the present paper proposes a state-of-the-art deep reinforcement learning(DRL)model based on deep Q-network(DQN)to overcome all the existing challenges in previous ML models for PV arrays fault detection and diagnosis.The model carries out a two-stage process employing two DQN-based agents which is not only able to accurately detect and classify(first stage)various faults in PV arrays,but it is also able to assess the severity of line-to-line(LL)and line-to-ground(LG)faults(second stage)in PV arrays using only a small training dataset.The training and testing datasets include several voltage and current values on PV array current-voltage(I-V)characteristic curve which is extracted using the variable load technique for PV array I-V curve extraction.The model has been implemented on an experimental standalone PV array and the results show outstanding accuracies of 98.61%and 100%when it is verified by testing datasets in the first and the second stage,respectively.
基金supported by the National Key Research and Development Program of China,Grant No.2020YFB0905900.
文摘The Virtual Power Plant(VPP),as an innovative power management architecture,achieves flexible dispatch and resource optimization of power systems by integrating distributed energy resources.However,due to significant differences in operational costs and flexibility of various types of generation resources,as well as the volatility and uncertainty of renewable energy sources(such as wind and solar power)and the complex variability of load demand,the scheduling optimization of virtual power plants has become a critical issue that needs to be addressed.To solve this,this paper proposes an intelligent scheduling method for virtual power plants based on Deep Reinforcement Learning(DRL),utilizing Deep Q-Networks(DQN)for real-time optimization scheduling of dynamic peaking unit(DPU)and stable baseload unit(SBU)in the virtual power plant.By modeling the scheduling problem as a Markov Decision Process(MDP)and designing an optimization objective function that integrates both performance and cost,the scheduling efficiency and economic performance of the virtual power plant are significantly improved.Simulation results show that,compared with traditional scheduling methods and other deep reinforcement learning algorithms,the proposed method demonstrates significant advantages in key performance indicators:response time is shortened by up to 34%,task success rate is increased by up to 46%,and costs are reduced by approximately 26%.Experimental results verify the efficiency and scalability of the method under complex load environments and the volatility of renewable energy,providing strong technical support for the intelligent scheduling of virtual power plants.
基金supported in part by the Pioneer and Leading Goose R&D Program of Zhejiang Province under Grant 2022C01083 (Dr.Yu Li,https://zjnsf.kjt.zj.gov.cn/)Pioneer and Leading Goose R&D Program of Zhejiang Province under Grant 2023C01217 (Dr.Yu Li,https://zjnsf.kjt.zj.gov.cn/).
文摘With the rapid development ofmobile Internet,spatial crowdsourcing has becomemore andmore popular.Spatial crowdsourcing consists of many different types of applications,such as spatial crowd-sensing services.In terms of spatial crowd-sensing,it collects and analyzes traffic sensing data from clients like vehicles and traffic lights to construct intelligent traffic prediction models.Besides collecting sensing data,spatial crowdsourcing also includes spatial delivery services like DiDi and Uber.Appropriate task assignment and worker selection dominate the service quality for spatial crowdsourcing applications.Previous research conducted task assignments via traditional matching approaches or using simple network models.However,advanced mining methods are lacking to explore the relationship between workers,task publishers,and the spatio-temporal attributes in tasks.Therefore,in this paper,we propose a Deep Double Dueling Spatial-temporal Q Network(D3SQN)to adaptively learn the spatialtemporal relationship between task,task publishers,and workers in a dynamic environment to achieve optimal allocation.Specifically,D3SQNis revised through reinforcement learning by adding a spatial-temporal transformer that can estimate the expected state values and action advantages so as to improve the accuracy of task assignments.Extensive experiments are conducted over real data collected fromDiDi and ELM,and the simulation results verify the effectiveness of our proposed models.
基金supported by the Ministry of Science and Technology of China,No.2020AAA0109605(to XL)Meizhou Major Scientific and Technological Innovation PlatformsProjects of Guangdong Provincial Science & Technology Plan Projects,No.2019A0102005(to HW).
文摘Early identification and treatment of stroke can greatly improve patient outcomes and quality of life.Although clinical tests such as the Cincinnati Pre-hospital Stroke Scale(CPSS)and the Face Arm Speech Test(FAST)are commonly used for stroke screening,accurate administration is dependent on specialized training.In this study,we proposed a novel multimodal deep learning approach,based on the FAST,for assessing suspected stroke patients exhibiting symptoms such as limb weakness,facial paresis,and speech disorders in acute settings.We collected a dataset comprising videos and audio recordings of emergency room patients performing designated limb movements,facial expressions,and speech tests based on the FAST.We compared the constructed deep learning model,which was designed to process multi-modal datasets,with six prior models that achieved good action classification performance,including the I3D,SlowFast,X3D,TPN,TimeSformer,and MViT.We found that the findings of our deep learning model had a higher clinical value compared with the other approaches.Moreover,the multi-modal model outperformed its single-module variants,highlighting the benefit of utilizing multiple types of patient data,such as action videos and speech audio.These results indicate that a multi-modal deep learning model combined with the FAST could greatly improve the accuracy and sensitivity of early stroke identification of stroke,thus providing a practical and powerful tool for assessing stroke patients in an emergency clinical setting.