With the advancement of Vehicle-to-Everything(V2X)technology,efficient resource allocation in dynamic vehicular networks has become a critical challenge for achieving optimal performance.Existing methods suffer from h...With the advancement of Vehicle-to-Everything(V2X)technology,efficient resource allocation in dynamic vehicular networks has become a critical challenge for achieving optimal performance.Existing methods suffer from high computational complexity and decision latency under high-density traffic and heterogeneous network conditions.To address these challenges,this study presents an innovative framework that combines Graph Neural Networks(GNNs)with a Double Deep Q-Network(DDQN),utilizing dynamic graph structures and reinforcement learning.An adaptive neighbor sampling mechanism is introduced to dynamically select the most relevant neighbors based on interference levels and network topology,thereby improving decision accuracy and efficiency.Meanwhile,the framework models communication links as nodes and interference relationships as edges,effectively capturing the direct impact of interference on resource allocation while reducing computational complexity and preserving critical interaction information.Employing an aggregation mechanism based on the Graph Attention Network(GAT),it dynamically adjusts the neighbor sampling scope and performs attention-weighted aggregation based on node importance,ensuring more efficient and adaptive resource management.This design ensures reliable Vehicle-to-Vehicle(V2V)communication while maintaining high Vehicle-to-Infrastructure(V2I)throughput.The framework retains the global feature learning capabilities of GNNs and supports distributed network deployment,allowing vehicles to extract low-dimensional graph embeddings from local observations for real-time resource decisions.Experimental results demonstrate that the proposed method significantly reduces computational overhead,mitigates latency,and improves resource utilization efficiency in vehicular networks under complex traffic scenarios.This research not only provides a novel solution to resource allocation challenges in V2X networks but also advances the application of DDQN in intelligent transportation systems,offering substantial theoretical significance and practical value.展开更多
The rudder mechanism of the X-rudder autonomous underwater cehicle(AUV)is relatively complex,and fault diagnosis capability is an important guarantee for its task execution in complex underwater environments.However,t...The rudder mechanism of the X-rudder autonomous underwater cehicle(AUV)is relatively complex,and fault diagnosis capability is an important guarantee for its task execution in complex underwater environments.However,traditional fault diagnosis methods currently rely on prior knowledge and expert experience,and lack accuracy.In order to improve the autonomy and accuracy of fault diagnosis methods,and overcome the shortcomings of traditional algorithms,this paper proposes an X-steering AUV fault diagnosis model based on the deep reinforcement learning deep Q network(DQN)algorithm,which can learn the relationship between state data and fault types,map raw residual data to corresponding fault patterns,and achieve end-to-end mapping.In addition,to solve the problem of few X-steering fault sample data,Dropout technology is introduced during the model training phase to improve the performance of the DQN algorithm.Experimental results show that the proposed model has improved the convergence speed and comprehensive performance indicators compared to the unimproved DQN algorithm,with precision,recall,F_(1-score),and accuracy reaching up to 100%,98.07%,99.02%,and 98.50% respectively,and the model’s accuracy is higher than other machine learning algorithms like back propagation,support vector machine.展开更多
The recent surge of mobile subscribers and user data traffic has accelerated the telecommunication sector towards the adoption of the fifth-generation (5G) mobile networks. Cloud radio access network (CRAN) is a promi...The recent surge of mobile subscribers and user data traffic has accelerated the telecommunication sector towards the adoption of the fifth-generation (5G) mobile networks. Cloud radio access network (CRAN) is a prominent framework in the 5G mobile network to meet the above requirements by deploying low-cost and intelligent multiple distributed antennas known as remote radio heads (RRHs). However, achieving the optimal resource allocation (RA) in CRAN using the traditional approach is still challenging due to the complex structure. In this paper, we introduce the convolutional neural network-based deep Q-network (CNN-DQN) to balance the energy consumption and guarantee the user quality of service (QoS) demand in downlink CRAN. We first formulate the Markov decision process (MDP) for energy efficiency (EE) and build up a 3-layer CNN to capture the environment feature as an input state space. We then use DQN to turn on/off the RRHs dynamically based on the user QoS demand and energy consumption in the CRAN. Finally, we solve the RA problem based on the user constraint and transmit power to guarantee the user QoS demand and maximize the EE with a minimum number of active RRHs. In the end, we conduct the simulation to compare our proposed scheme with nature DQN and the traditional approach.展开更多
To optimize machine allocation and task dispatching in smart manufacturing factories, this paper proposes a manufacturing resource scheduling framework based on reinforcement learning(RL). The framework formulates the...To optimize machine allocation and task dispatching in smart manufacturing factories, this paper proposes a manufacturing resource scheduling framework based on reinforcement learning(RL). The framework formulates the entire scheduling process as a multi-stage sequential decision problem, and further obtains the scheduling order by the combination of deep convolutional neural network(CNN) and improved deep Q-network(DQN). Specifically, with respect to the representation of the Markov decision process(MDP), the feature matrix is considered as the state space and a set of heuristic dispatching rules are denoted as the action space. In addition, the deep CNN is employed to approximate the state-action values, and the double dueling deep Qnetwork with prioritized experience replay and noisy network(D3QPN2) is adopted to determine the appropriate action according to the current state. In the experiments, compared with the traditional heuristic method, the proposed method is able to learn high-quality scheduling policy and achieve shorter makespan on the standard public datasets.展开更多
The multi-agent path planning problem presents significant challenges in dynamic environments,primarily due to the ever-changing positions of obstacles and the complex interactions between agents’actions.These factor...The multi-agent path planning problem presents significant challenges in dynamic environments,primarily due to the ever-changing positions of obstacles and the complex interactions between agents’actions.These factors contribute to a tendency for the solution to converge slowly,and in some cases,diverge altogether.In addressing this issue,this paper introduces a novel approach utilizing a double dueling deep Q-network(D3QN),tailored for dynamic multi-agent environments.A novel reward function based on multi-agent positional constraints is designed,and a training strategy based on incremental learning is performed to achieve collaborative path planning of multiple agents.Moreover,the greedy and Boltzmann probability selection policy is introduced for action selection and avoiding convergence to local extremum.To match radar and image sensors,a convolutional neural network-long short-term memory(CNN-LSTM)architecture is constructed to extract the feature of multi-source measurement as the input of the D3QN.The algorithm’s efficacy and reliability are validated in a simulated environment,utilizing robot operating system and Gazebo.The simulation results show that the proposed algorithm provides a real-time solution for path planning tasks in dynamic scenarios.In terms of the average success rate and accuracy,the proposed method is superior to other deep learning algorithms,and the convergence speed is also improved.展开更多
Federated learning(FL)activates distributed on-device computation techniques to model a better algorithm performance with the interaction of local model updates and global model distributions in aggregation averaging ...Federated learning(FL)activates distributed on-device computation techniques to model a better algorithm performance with the interaction of local model updates and global model distributions in aggregation averaging processes.However,in large-scale heterogeneous Internet of Things(IoT)cellular networks,massive multi-dimensional model update iterations and resource-constrained computation are challenging aspects to be tackled significantly.This paper introduces the system model of converging softwaredefined networking(SDN)and network functions virtualization(NFV)to enable device/resource abstractions and provide NFV-enabled edge FL(eFL)aggregation servers for advancing automation and controllability.Multi-agent deep Q-networks(MADQNs)target to enforce a self-learning softwarization,optimize resource allocation policies,and advocate computation offloading decisions.With gathered network conditions and resource states,the proposed agent aims to explore various actions for estimating expected longterm rewards in a particular state observation.In exploration phase,optimal actions for joint resource allocation and offloading decisions in different possible states are obtained by maximum Q-value selections.Action-based virtual network functions(VNF)forwarding graph(VNFFG)is orchestrated to map VNFs towards eFL aggregation server with sufficient communication and computation resources in NFV infrastructure(NFVI).The proposed scheme indicates deficient allocation actions,modifies the VNF backup instances,and reallocates the virtual resource for exploitation phase.Deep neural network(DNN)is used as a value function approximator,and epsilongreedy algorithm balances exploration and exploitation.The scheme primarily considers the criticalities of FL model services and congestion states to optimize long-term policy.Simulation results presented the outperformance of the proposed scheme over reference schemes in terms of Quality of Service(QoS)performance metrics,including packet drop ratio,packet drop counts,packet delivery ratio,delay,and throughput.展开更多
With the advent of Reinforcement Learning(RL)and its continuous progress,state-of-the-art RL systems have come up for many challenging and real-world tasks.Given the scope of this area,various techniques are found in ...With the advent of Reinforcement Learning(RL)and its continuous progress,state-of-the-art RL systems have come up for many challenging and real-world tasks.Given the scope of this area,various techniques are found in the literature.One such notable technique,Multiple Deep Q-Network(DQN)based RL systems use multiple DQN-based-entities,which learn together and communicate with each other.The learning has to be distributed wisely among all entities in such a scheme and the inter-entity communication protocol has to be carefully designed.As more complex DQNs come to the fore,the overall complexity of these multi-entity systems has increased many folds leading to issues like difficulty in training,need for high resources,more training time,and difficulty in fine-tuning leading to performance issues.Taking a cue from the parallel processing found in the nature and its efficacy,we propose a lightweight ensemble based approach for solving the core RL tasks.It uses multiple binary action DQNs having shared state and reward.The benefits of the proposed approach are overall simplicity,faster convergence and better performance compared to conventional DQN based approaches.The approach can potentially be extended to any type of DQN by forming its ensemble.Conducting extensive experimentation,promising results are obtained using the proposed ensemble approach on OpenAI Gym tasks,and Atari 2600 games as compared to recent techniques.The proposed approach gives a stateof-the-art score of 500 on the Cartpole-v1 task,259.2 on the LunarLander-v2 task,and state-of-the-art results on four out of five Atari 2600 games.展开更多
In a rechargeable wireless sensor network,utilizing the unmanned aerial vehicle(UAV)as a mobile base station(BS)to charge sensors and collect data effectively prolongs the network’s lifetime.In this paper,we jointly ...In a rechargeable wireless sensor network,utilizing the unmanned aerial vehicle(UAV)as a mobile base station(BS)to charge sensors and collect data effectively prolongs the network’s lifetime.In this paper,we jointly optimize the UAV’s flight trajectory and the sensor selection and operation modes to maximize the average data traffic of all sensors within a wireless sensor network(WSN)during finite UAV’s flight time,while ensuring the energy required for each sensor by wireless power transfer(WPT).We consider a practical scenario,where the UAV has no prior knowledge of sensor locations.The UAV performs autonomous navigation based on the status information obtained within the coverage area,which is modeled as a Markov decision process(MDP).The deep Q-network(DQN)is employed to execute the navigation based on the UAV position,the battery level state,channel conditions and current data traffic of sensors within the UAV’s coverage area.Our simulation results demonstrate that the DQN algorithm significantly improves the network performance in terms of the average data traffic and trajectory design.展开更多
A gait control method for a biped robot based on the deep Q-network (DQN) algorithm is proposed to enhance the stability of walking on uneven ground. This control strategy is an intelligent learning method of posture ...A gait control method for a biped robot based on the deep Q-network (DQN) algorithm is proposed to enhance the stability of walking on uneven ground. This control strategy is an intelligent learning method of posture adjustment. A robot is taken as an agent and trained to walk steadily on an uneven surface with obstacles, using a simple reward function based on forward progress. The reward-punishment (RP) mechanism of the DQN algorithm is established after obtaining the offline gait which was generated in advance foot trajectory planning. Instead of implementing a complex dynamic model, the proposed method enables the biped robot to learn to adjust its posture on the uneven ground and ensures walking stability. The performance and effectiveness of the proposed algorithm was validated in the V-REP simulation environment. The results demonstrate that the biped robot's lateral tile angle is less than 3° after implementing the proposed method and the walking stability is obviously improved.展开更多
Brain-computer interfaces(BCI)use neural activity as a control signal to enable direct communication between the human brain and external devices.The electrical signals generated by the brain are captured through elec...Brain-computer interfaces(BCI)use neural activity as a control signal to enable direct communication between the human brain and external devices.The electrical signals generated by the brain are captured through electroencephalogram(EEG)and translated into neural intentions reflecting the user’s behavior.Correct decoding of the neural intentions then facilitates the control of external devices.Reinforcement learning-based BCIs enhance decoders to complete tasks based only on feedback signals(rewards)from the environment,building a general framework for dynamic mapping from neural intentions to actions that adapt to changing environments.However,using traditional reinforcement learning methods can have challenges such as the curse of dimensionality and poor generalization.Therefore,in this paper,we use deep reinforcement learning to construct decoders for the correct decoding of EEG signals,demonstrate its feasibility through experiments,and demonstrate its stronger generalization on motion imaging(MI)EEG data signals with high dynamic characteristics.展开更多
The optimization of multi-zone residential heating,ventilation,and air conditioning(HVAC)control is not an easy task due to its complex dynamic thermal model and the uncertainty of occupant-driven cooling loads.Deep r...The optimization of multi-zone residential heating,ventilation,and air conditioning(HVAC)control is not an easy task due to its complex dynamic thermal model and the uncertainty of occupant-driven cooling loads.Deep reinforcement learning(DRL)methods have recently been proposed to address the HVAC control problem.However,the application of single-agent DRL formulti-zone residential HVAC controlmay lead to non-convergence or slow convergence.In this paper,we propose MAQMC(Multi-Agent deep Q-network for multi-zone residential HVAC Control)to address this challenge with the goal of minimizing energy consumption while maintaining occupants’thermal comfort.MAQMC is divided into MAQMC2(MAQMC with two agents:one agent controls the temperature of each zone,and the other agent controls the humidity of each zone)and MAQMC3(MAQMC with three agents:three agents control the temperature and humidity of three zones,respectively).The experimental results showthatMAQMC3 can reduce energy consumption by 6.27%andMAQMC2 by 3.73%compared with the fixed point;compared with the rule-based,MAQMC3 andMAQMC2 respectively can reduce 61.89%and 59.07%comfort violation.In addition,experiments with different regional weather data demonstrate that the well-trained MAQMC RL agents have the robustness and adaptability to unknown environments.展开更多
Fiber allocation in optical cable production is critical for optimizing production efficiency,product quality,and inventory management.However,factors like fiber length and storage time complicate this process,making ...Fiber allocation in optical cable production is critical for optimizing production efficiency,product quality,and inventory management.However,factors like fiber length and storage time complicate this process,making heuristic optimization algorithms inadequate.To tackle these challenges,this paper proposes a new framework:the dueling-double-deep Q-network with twin state-value and action-advantage functions (D3QNTF).First,dual action-advantage and state-value functions are used to prevent overestimation of action values.Second,a method for random initialization of feasible solutions improves sample quality early in the optimization.Finally,a strict penalty for errors is added to the reward mechanism,making the agent more sensitive to and better at avoiding illegal actions,which reduces decision errors.Experimental results show that the proposed method outperforms state-of-the-art algorithms,including greedy algorithms,genetic algorithms,deep Q-networks,double deep Q-networks,and standard dueling-double-deep Q-networks.The findings highlight the potential of the D3QNTF framework for fiber allocation in optical cable production.展开更多
Early detection of faults in photovoltaic(PV)arrays has always been the center of attention to maintain system efficiency and reliability.However,conventional protection devices have shown various deficiencies,especia...Early detection of faults in photovoltaic(PV)arrays has always been the center of attention to maintain system efficiency and reliability.However,conventional protection devices have shown various deficiencies,especially when dealing with less severe faults.Hence,artificial intelligence(AI)models,specifically machine learning(ML)have complemented the conventional protection devices to compensate for their limitations.Despite their obvious advantages,ML models have also shown several shortcomings,such as(i)most of them relied on a massive amount of training dataset to provide a fairly satisfying accuracy,(ii)not many of them were able to detect less severe faults,and(iii)those which were able to detect less severe faults could not produce high accuracy.To this end,the present paper proposes a state-of-the-art deep reinforcement learning(DRL)model based on deep Q-network(DQN)to overcome all the existing challenges in previous ML models for PV arrays fault detection and diagnosis.The model carries out a two-stage process employing two DQN-based agents which is not only able to accurately detect and classify(first stage)various faults in PV arrays,but it is also able to assess the severity of line-to-line(LL)and line-to-ground(LG)faults(second stage)in PV arrays using only a small training dataset.The training and testing datasets include several voltage and current values on PV array current-voltage(I-V)characteristic curve which is extracted using the variable load technique for PV array I-V curve extraction.The model has been implemented on an experimental standalone PV array and the results show outstanding accuracies of 98.61%and 100%when it is verified by testing datasets in the first and the second stage,respectively.展开更多
Wearable sensors integrated with deep learning techniques have the potential to revolutionize seamless human-machine interfaces for real-time health monitoring,clinical diagnosis,and robotic applications.Nevertheless,...Wearable sensors integrated with deep learning techniques have the potential to revolutionize seamless human-machine interfaces for real-time health monitoring,clinical diagnosis,and robotic applications.Nevertheless,it remains a critical challenge to simultaneously achieve desirable mechanical and electrical performance along with biocompatibility,adhesion,self-healing,and environmental robustness with excellent sensing metrics.Herein,we report a multifunctional,anti-freezing,selfadhesive,and self-healable organogel pressure sensor composed of cobalt nanoparticle encapsulated nitrogen-doped carbon nanotubes(CoN CNT)embedded in a polyvinyl alcohol-gelatin(PVA/GLE)matrix.Fabricated using a binary solvent system of water and ethylene glycol(EG),the CoN CNT/PVA/GLE organogel exhibits excellent flexibility,biocompatibility,and temperature tolerance with remarkable environmental stability.Electrochemical impedance spectroscopy confirms near-stable performance across a broad humidity range(40%-95%RH).Freeze-tolerant conductivity under sub-zero conditions(-20℃)is attributed to the synergistic role of CoN CNT and EG,preserving mobility and network integrity.The Co N CNT/PVA/GLE organogel sensor exhibits high sensitivity of 5.75 k Pa^(-1)in the detection range from 0 to 20 k Pa,ideal for subtle biomechanical motion detection.A smart human-machine interface for English letter recognition using deep learning achieved 98%accuracy.The organogel sensor utility was extended to detect human gestures like finger bending,wrist motion,and throat vibration during speech.展开更多
Deep learning-based methods have become alternatives to traditional numerical weather prediction systems,offering faster computation and the ability to utilize large historical datasets.However,the application of deep...Deep learning-based methods have become alternatives to traditional numerical weather prediction systems,offering faster computation and the ability to utilize large historical datasets.However,the application of deep learning to medium-range regional weather forecasting with limited data remains a significant challenge.In this work,three key solutions are proposed:(1)motivated by the need to improve model performance in data-scarce regional forecasting scenarios,the authors innovatively apply semantic segmentation models,to better capture spatiotemporal features and improve prediction accuracy;(2)recognizing the challenge of overfitting and the inability of traditional noise-based data augmentation methods to effectively enhance model robustness,a novel learnable Gaussian noise mechanism is introduced that allows the model to adaptively optimize perturbations for different locations,ensuring more effective learning;and(3)to address the issue of error accumulation in autoregressive prediction,as well as the challenge of learning difficulty and the lack of intermediate data utilization in one-shot prediction,the authors propose a cascade prediction approach that effectively resolves these problems while significantly improving model forecasting performance.The method achieves a competitive result in The East China Regional AI Medium Range Weather Forecasting Competition.Ablation experiments further validate the effectiveness of each component,highlighting their contributions to enhancing prediction performance.展开更多
Underwater pipeline inspection plays a vital role in the proactive maintenance and management of critical marine infrastructure and subaquatic systems.However,the inspection of underwater pipelines presents a challeng...Underwater pipeline inspection plays a vital role in the proactive maintenance and management of critical marine infrastructure and subaquatic systems.However,the inspection of underwater pipelines presents a challenge due to factors such as light scattering,absorption,restricted visibility,and ambient noise.The advancement of deep learning has introduced powerful techniques for processing large amounts of unstructured and imperfect data collected from underwater environments.This study evaluated the efficacy of the You Only Look Once(YOLO)algorithm,a real-time object detection and localization model based on convolutional neural networks,in identifying and classifying various types of pipeline defects in underwater settings.YOLOv8,the latest evolution in the YOLO family,integrates advanced capabilities,such as anchor-free detection,a cross-stage partial network backbone for efficient feature extraction,and a feature pyramid network+path aggregation network neck for robust multi-scale object detection,which make it particularly well-suited for complex underwater environments.Due to the lack of suitable open-access datasets for underwater pipeline defects,a custom dataset was captured using a remotely operated vehicle in a controlled environment.This application has the following assets available for use.Extensive experimentation demonstrated that YOLOv8 X-Large consistently outperformed other models in terms of pipe defect detection and classification and achieved a strong balance between precision and recall in identifying pipeline cracks,rust,corners,defective welds,flanges,tapes,and holes.This research establishes the baseline performance of YOLOv8 for underwater defect detection and showcases its potential to enhance the reliability and efficiency of pipeline inspection tasks in challenging underwater environments.展开更多
An image processing and deep learning method for identifying different types of rock images was proposed.Preprocessing,such as rock image acquisition,gray scaling,Gaussian blurring,and feature dimensionality reduction...An image processing and deep learning method for identifying different types of rock images was proposed.Preprocessing,such as rock image acquisition,gray scaling,Gaussian blurring,and feature dimensionality reduction,was conducted to extract useful feature information and recognize and classify rock images using Tensor Flow-based convolutional neural network(CNN)and Py Qt5.A rock image dataset was established and separated into workouts,confirmation sets,and test sets.The framework was subsequently compiled and trained.The categorization approach was evaluated using image data from the validation and test datasets,and key metrics,such as accuracy,precision,and recall,were analyzed.Finally,the classification model conducted a probabilistic analysis of the measured data to determine the equivalent lithological type for each image.The experimental results indicated that the method combining deep learning,Tensor Flow-based CNN,and Py Qt5 to recognize and classify rock images has an accuracy rate of up to 98.8%,and can be successfully utilized for rock image recognition.The system can be extended to geological exploration,mine engineering,and other rock and mineral resource development to more efficiently and accurately recognize rock samples.Moreover,it can match them with the intelligent support design system to effectively improve the reliability and economy of the support scheme.The system can serve as a reference for supporting the design of other mining and underground space projects.展开更多
The rapid growth of biomedical data,particularly multi-omics data including genomes,transcriptomics,proteomics,metabolomics,and epigenomics,medical research and clinical decision-making confront both new opportunities...The rapid growth of biomedical data,particularly multi-omics data including genomes,transcriptomics,proteomics,metabolomics,and epigenomics,medical research and clinical decision-making confront both new opportunities and obstacles.The huge and diversified nature of these datasets cannot always be managed using traditional data analysis methods.As a consequence,deep learning has emerged as a strong tool for analysing numerous omics data due to its ability to handle complex and non-linear relationships.This paper explores the fundamental concepts of deep learning and how they are used in multi-omics medical data mining.We demonstrate how autoencoders,variational autoencoders,multimodal models,attention mechanisms,transformers,and graph neural networks enable pattern analysis and recognition across all omics data.Deep learning has been found to be effective in illness classification,biomarker identification,gene network learning,and therapeutic efficacy prediction.We also consider critical problems like as data quality,model explainability,whether findings can be repeated,and computational power requirements.We now consider future elements of combining omics with clinical and imaging data,explainable AI,federated learning,and real-time diagnostics.Overall,this study emphasises the need of collaborating across disciplines to advance deep learning-based multi-omics research for precision medicine and comprehending complicated disorders.展开更多
Alzheimer's disease is the most common type of cognitive disorder,and there is an urgent need to develop more effective,targeted and safer therapies for patients with this condition.Deep brain stimulation is an in...Alzheimer's disease is the most common type of cognitive disorder,and there is an urgent need to develop more effective,targeted and safer therapies for patients with this condition.Deep brain stimulation is an invasive surgical treatment that modulates abnormal neural activity by implanting electrodes into specific brain areas followed by electrical stimulation.As an emerging therapeutic approach,deep brain stimulation shows significant promise as a potential new therapy for Alzheimer's disease.Here,we review the potential mechanisms and therapeutic effects of deep brain stimulation in the treatment of Alzheimer's disease based on existing clinical and basic research.In clinical studies,the most commonly targeted sites include the fornix,the nucleus basalis of Meynert,and the ventral capsule/ventral striatum.Basic research has found that the most frequently targeted areas include the fornix,nucleus basalis of Meynert,hippocampus,entorhinal cortex,and rostral intralaminar thalamic nucleus.All of these individual targets exhibit therapeutic potential for patients with Alzheimer's disease and associated mechanisms of action have been investigated.Deep brain stimulation may exert therapeutic effects on Alzheimer's disease through various mechanisms,including reducing the deposition of amyloid-β,activation of the cholinergic system,increasing the levels of neurotrophic factors,enhancing synaptic activity and plasticity,promoting neurogenesis,and improving glucose metabolism.Currently,clinical trials investigating deep brain stimulation for Alzheimer's disease remain insufficient.In the future,it is essential to focus on translating preclinical mechanisms into clinical trials.Furthermore,consecutive follow-up studies are needed to evaluate the long-term safety and efficacy of deep brain stimulation for Alzheimer's disease,including cognitive function,neuropsychiatric symptoms,quality of life and changes in Alzheimer's disease biomarkers.Researchers must also prioritize the initiation of multi-center clinical trials of deep brain stimulation with large sample sizes and target earlier therapeutic windows,such as the prodromal and even the preclinical stages of Alzheimer's disease.Adopting these approaches will permit the efficient exploration of more effective and safer deep brain stimulation therapies for patients with Alzheimer's disease.展开更多
Recent years have seen the rapid development of autonomous driving systems,which are typically designed in a hierarchical architecture or an end-to-end architecture.The hierarchical architecture is always complicated ...Recent years have seen the rapid development of autonomous driving systems,which are typically designed in a hierarchical architecture or an end-to-end architecture.The hierarchical architecture is always complicated and hard to design,while the end-to-end architecture is more promising due to its simple structure.This paper puts forward an end-to-end autonomous driving method through a deep reinforcement learning algorithm Dueling Double Deep Q-Network,making it possible for the vehicle to learn end-to-end driving by itself.This paper firstly proposes an architecture for the end-to-end lane-keeping task.Unlike the traditional image-only state space,the presented state space is composed of both camera images and vehicle motion information.Then corresponding dueling neural network structure is introduced,which reduces the variance and improves sampling efficiency.Thirdly,the proposed method is applied to The Open Racing Car Simulator(TORCS)to demonstrate its great performance,where it surpasses human drivers.Finally,the saliency map of the neural network is visualized,which indicates the trained network drives by observing the lane lines.A video for the presented work is available online,https://youtu.be/76ciJ mIHMD8 or https://v.youku.com/v_show/id_XNDM4 ODc0M TM4NA==.html.展开更多
基金Project ZR2023MF111 supported by Shandong Provincial Natural Science Foundation。
文摘With the advancement of Vehicle-to-Everything(V2X)technology,efficient resource allocation in dynamic vehicular networks has become a critical challenge for achieving optimal performance.Existing methods suffer from high computational complexity and decision latency under high-density traffic and heterogeneous network conditions.To address these challenges,this study presents an innovative framework that combines Graph Neural Networks(GNNs)with a Double Deep Q-Network(DDQN),utilizing dynamic graph structures and reinforcement learning.An adaptive neighbor sampling mechanism is introduced to dynamically select the most relevant neighbors based on interference levels and network topology,thereby improving decision accuracy and efficiency.Meanwhile,the framework models communication links as nodes and interference relationships as edges,effectively capturing the direct impact of interference on resource allocation while reducing computational complexity and preserving critical interaction information.Employing an aggregation mechanism based on the Graph Attention Network(GAT),it dynamically adjusts the neighbor sampling scope and performs attention-weighted aggregation based on node importance,ensuring more efficient and adaptive resource management.This design ensures reliable Vehicle-to-Vehicle(V2V)communication while maintaining high Vehicle-to-Infrastructure(V2I)throughput.The framework retains the global feature learning capabilities of GNNs and supports distributed network deployment,allowing vehicles to extract low-dimensional graph embeddings from local observations for real-time resource decisions.Experimental results demonstrate that the proposed method significantly reduces computational overhead,mitigates latency,and improves resource utilization efficiency in vehicular networks under complex traffic scenarios.This research not only provides a novel solution to resource allocation challenges in V2X networks but also advances the application of DDQN in intelligent transportation systems,offering substantial theoretical significance and practical value.
基金Supported by the National Natural Science Foundation of China under Grant Nos.52071099,52071104National Key Project of Research and Development Program under Grant No.2021YFC2801300Research Fund from National Key Laboratory of Autonomous Marine Vehicle Technology under Grant No.2023-SXJQR-SYSJJ01.
文摘The rudder mechanism of the X-rudder autonomous underwater cehicle(AUV)is relatively complex,and fault diagnosis capability is an important guarantee for its task execution in complex underwater environments.However,traditional fault diagnosis methods currently rely on prior knowledge and expert experience,and lack accuracy.In order to improve the autonomy and accuracy of fault diagnosis methods,and overcome the shortcomings of traditional algorithms,this paper proposes an X-steering AUV fault diagnosis model based on the deep reinforcement learning deep Q network(DQN)algorithm,which can learn the relationship between state data and fault types,map raw residual data to corresponding fault patterns,and achieve end-to-end mapping.In addition,to solve the problem of few X-steering fault sample data,Dropout technology is introduced during the model training phase to improve the performance of the DQN algorithm.Experimental results show that the proposed model has improved the convergence speed and comprehensive performance indicators compared to the unimproved DQN algorithm,with precision,recall,F_(1-score),and accuracy reaching up to 100%,98.07%,99.02%,and 98.50% respectively,and the model’s accuracy is higher than other machine learning algorithms like back propagation,support vector machine.
基金supported by the Universiti Tunku Abdul Rahman (UTAR) Malaysia under UTARRF (IPSR/RMC/UTARRF/2021-C1/T05)
文摘The recent surge of mobile subscribers and user data traffic has accelerated the telecommunication sector towards the adoption of the fifth-generation (5G) mobile networks. Cloud radio access network (CRAN) is a prominent framework in the 5G mobile network to meet the above requirements by deploying low-cost and intelligent multiple distributed antennas known as remote radio heads (RRHs). However, achieving the optimal resource allocation (RA) in CRAN using the traditional approach is still challenging due to the complex structure. In this paper, we introduce the convolutional neural network-based deep Q-network (CNN-DQN) to balance the energy consumption and guarantee the user quality of service (QoS) demand in downlink CRAN. We first formulate the Markov decision process (MDP) for energy efficiency (EE) and build up a 3-layer CNN to capture the environment feature as an input state space. We then use DQN to turn on/off the RRHs dynamically based on the user QoS demand and energy consumption in the CRAN. Finally, we solve the RA problem based on the user constraint and transmit power to guarantee the user QoS demand and maximize the EE with a minimum number of active RRHs. In the end, we conduct the simulation to compare our proposed scheme with nature DQN and the traditional approach.
基金Supported by the National Key Research and Development Plan(2019YFB1706401)。
文摘To optimize machine allocation and task dispatching in smart manufacturing factories, this paper proposes a manufacturing resource scheduling framework based on reinforcement learning(RL). The framework formulates the entire scheduling process as a multi-stage sequential decision problem, and further obtains the scheduling order by the combination of deep convolutional neural network(CNN) and improved deep Q-network(DQN). Specifically, with respect to the representation of the Markov decision process(MDP), the feature matrix is considered as the state space and a set of heuristic dispatching rules are denoted as the action space. In addition, the deep CNN is employed to approximate the state-action values, and the double dueling deep Qnetwork with prioritized experience replay and noisy network(D3QPN2) is adopted to determine the appropriate action according to the current state. In the experiments, compared with the traditional heuristic method, the proposed method is able to learn high-quality scheduling policy and achieve shorter makespan on the standard public datasets.
基金National Natural Science Foundation of China(Nos.61673262 and 50779033)National GF Basic Research Program(No.JCKY2021110B134)Fundamental Research Funds for the Central Universities。
文摘The multi-agent path planning problem presents significant challenges in dynamic environments,primarily due to the ever-changing positions of obstacles and the complex interactions between agents’actions.These factors contribute to a tendency for the solution to converge slowly,and in some cases,diverge altogether.In addressing this issue,this paper introduces a novel approach utilizing a double dueling deep Q-network(D3QN),tailored for dynamic multi-agent environments.A novel reward function based on multi-agent positional constraints is designed,and a training strategy based on incremental learning is performed to achieve collaborative path planning of multiple agents.Moreover,the greedy and Boltzmann probability selection policy is introduced for action selection and avoiding convergence to local extremum.To match radar and image sensors,a convolutional neural network-long short-term memory(CNN-LSTM)architecture is constructed to extract the feature of multi-source measurement as the input of the D3QN.The algorithm’s efficacy and reliability are validated in a simulated environment,utilizing robot operating system and Gazebo.The simulation results show that the proposed algorithm provides a real-time solution for path planning tasks in dynamic scenarios.In terms of the average success rate and accuracy,the proposed method is superior to other deep learning algorithms,and the convergence speed is also improved.
基金This work was funded by BK21 FOUR(Fostering Outstanding Universities for Research)(No.5199990914048)this research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(NRF-2020R1I1A3066543)In addition,this work was supported by the Soonchunhyang University Research Fund.
文摘Federated learning(FL)activates distributed on-device computation techniques to model a better algorithm performance with the interaction of local model updates and global model distributions in aggregation averaging processes.However,in large-scale heterogeneous Internet of Things(IoT)cellular networks,massive multi-dimensional model update iterations and resource-constrained computation are challenging aspects to be tackled significantly.This paper introduces the system model of converging softwaredefined networking(SDN)and network functions virtualization(NFV)to enable device/resource abstractions and provide NFV-enabled edge FL(eFL)aggregation servers for advancing automation and controllability.Multi-agent deep Q-networks(MADQNs)target to enforce a self-learning softwarization,optimize resource allocation policies,and advocate computation offloading decisions.With gathered network conditions and resource states,the proposed agent aims to explore various actions for estimating expected longterm rewards in a particular state observation.In exploration phase,optimal actions for joint resource allocation and offloading decisions in different possible states are obtained by maximum Q-value selections.Action-based virtual network functions(VNF)forwarding graph(VNFFG)is orchestrated to map VNFs towards eFL aggregation server with sufficient communication and computation resources in NFV infrastructure(NFVI).The proposed scheme indicates deficient allocation actions,modifies the VNF backup instances,and reallocates the virtual resource for exploitation phase.Deep neural network(DNN)is used as a value function approximator,and epsilongreedy algorithm balances exploration and exploitation.The scheme primarily considers the criticalities of FL model services and congestion states to optimize long-term policy.Simulation results presented the outperformance of the proposed scheme over reference schemes in terms of Quality of Service(QoS)performance metrics,including packet drop ratio,packet drop counts,packet delivery ratio,delay,and throughput.
文摘With the advent of Reinforcement Learning(RL)and its continuous progress,state-of-the-art RL systems have come up for many challenging and real-world tasks.Given the scope of this area,various techniques are found in the literature.One such notable technique,Multiple Deep Q-Network(DQN)based RL systems use multiple DQN-based-entities,which learn together and communicate with each other.The learning has to be distributed wisely among all entities in such a scheme and the inter-entity communication protocol has to be carefully designed.As more complex DQNs come to the fore,the overall complexity of these multi-entity systems has increased many folds leading to issues like difficulty in training,need for high resources,more training time,and difficulty in fine-tuning leading to performance issues.Taking a cue from the parallel processing found in the nature and its efficacy,we propose a lightweight ensemble based approach for solving the core RL tasks.It uses multiple binary action DQNs having shared state and reward.The benefits of the proposed approach are overall simplicity,faster convergence and better performance compared to conventional DQN based approaches.The approach can potentially be extended to any type of DQN by forming its ensemble.Conducting extensive experimentation,promising results are obtained using the proposed ensemble approach on OpenAI Gym tasks,and Atari 2600 games as compared to recent techniques.The proposed approach gives a stateof-the-art score of 500 on the Cartpole-v1 task,259.2 on the LunarLander-v2 task,and state-of-the-art results on four out of five Atari 2600 games.
文摘In a rechargeable wireless sensor network,utilizing the unmanned aerial vehicle(UAV)as a mobile base station(BS)to charge sensors and collect data effectively prolongs the network’s lifetime.In this paper,we jointly optimize the UAV’s flight trajectory and the sensor selection and operation modes to maximize the average data traffic of all sensors within a wireless sensor network(WSN)during finite UAV’s flight time,while ensuring the energy required for each sensor by wireless power transfer(WPT).We consider a practical scenario,where the UAV has no prior knowledge of sensor locations.The UAV performs autonomous navigation based on the status information obtained within the coverage area,which is modeled as a Markov decision process(MDP).The deep Q-network(DQN)is employed to execute the navigation based on the UAV position,the battery level state,channel conditions and current data traffic of sensors within the UAV’s coverage area.Our simulation results demonstrate that the DQN algorithm significantly improves the network performance in terms of the average data traffic and trajectory design.
基金Supported by the National Ministries and Research Funds(3020020221111)
文摘A gait control method for a biped robot based on the deep Q-network (DQN) algorithm is proposed to enhance the stability of walking on uneven ground. This control strategy is an intelligent learning method of posture adjustment. A robot is taken as an agent and trained to walk steadily on an uneven surface with obstacles, using a simple reward function based on forward progress. The reward-punishment (RP) mechanism of the DQN algorithm is established after obtaining the offline gait which was generated in advance foot trajectory planning. Instead of implementing a complex dynamic model, the proposed method enables the biped robot to learn to adjust its posture on the uneven ground and ensures walking stability. The performance and effectiveness of the proposed algorithm was validated in the V-REP simulation environment. The results demonstrate that the biped robot's lateral tile angle is less than 3° after implementing the proposed method and the walking stability is obviously improved.
文摘Brain-computer interfaces(BCI)use neural activity as a control signal to enable direct communication between the human brain and external devices.The electrical signals generated by the brain are captured through electroencephalogram(EEG)and translated into neural intentions reflecting the user’s behavior.Correct decoding of the neural intentions then facilitates the control of external devices.Reinforcement learning-based BCIs enhance decoders to complete tasks based only on feedback signals(rewards)from the environment,building a general framework for dynamic mapping from neural intentions to actions that adapt to changing environments.However,using traditional reinforcement learning methods can have challenges such as the curse of dimensionality and poor generalization.Therefore,in this paper,we use deep reinforcement learning to construct decoders for the correct decoding of EEG signals,demonstrate its feasibility through experiments,and demonstrate its stronger generalization on motion imaging(MI)EEG data signals with high dynamic characteristics.
基金supported by Primary Research and Development Plan of China(No.2020YFC2006602)National Natural Science Foundation of China(Nos.62072324,61876217,61876121,61772357)+2 种基金University Natural Science Foundation of Jiangsu Province(No.21KJA520005)Primary Research and Development Plan of Jiangsu Province(No.BE2020026)Natural Science Foundation of Jiangsu Province(No.BK20190942).
文摘The optimization of multi-zone residential heating,ventilation,and air conditioning(HVAC)control is not an easy task due to its complex dynamic thermal model and the uncertainty of occupant-driven cooling loads.Deep reinforcement learning(DRL)methods have recently been proposed to address the HVAC control problem.However,the application of single-agent DRL formulti-zone residential HVAC controlmay lead to non-convergence or slow convergence.In this paper,we propose MAQMC(Multi-Agent deep Q-network for multi-zone residential HVAC Control)to address this challenge with the goal of minimizing energy consumption while maintaining occupants’thermal comfort.MAQMC is divided into MAQMC2(MAQMC with two agents:one agent controls the temperature of each zone,and the other agent controls the humidity of each zone)and MAQMC3(MAQMC with three agents:three agents control the temperature and humidity of three zones,respectively).The experimental results showthatMAQMC3 can reduce energy consumption by 6.27%andMAQMC2 by 3.73%compared with the fixed point;compared with the rule-based,MAQMC3 andMAQMC2 respectively can reduce 61.89%and 59.07%comfort violation.In addition,experiments with different regional weather data demonstrate that the well-trained MAQMC RL agents have the robustness and adaptability to unknown environments.
基金supported by the National Natural Science Foundation of China(Grant Nos.52205519 and 62273264).
文摘Fiber allocation in optical cable production is critical for optimizing production efficiency,product quality,and inventory management.However,factors like fiber length and storage time complicate this process,making heuristic optimization algorithms inadequate.To tackle these challenges,this paper proposes a new framework:the dueling-double-deep Q-network with twin state-value and action-advantage functions (D3QNTF).First,dual action-advantage and state-value functions are used to prevent overestimation of action values.Second,a method for random initialization of feasible solutions improves sample quality early in the optimization.Finally,a strict penalty for errors is added to the reward mechanism,making the agent more sensitive to and better at avoiding illegal actions,which reduces decision errors.Experimental results show that the proposed method outperforms state-of-the-art algorithms,including greedy algorithms,genetic algorithms,deep Q-networks,double deep Q-networks,and standard dueling-double-deep Q-networks.The findings highlight the potential of the D3QNTF framework for fiber allocation in optical cable production.
文摘Early detection of faults in photovoltaic(PV)arrays has always been the center of attention to maintain system efficiency and reliability.However,conventional protection devices have shown various deficiencies,especially when dealing with less severe faults.Hence,artificial intelligence(AI)models,specifically machine learning(ML)have complemented the conventional protection devices to compensate for their limitations.Despite their obvious advantages,ML models have also shown several shortcomings,such as(i)most of them relied on a massive amount of training dataset to provide a fairly satisfying accuracy,(ii)not many of them were able to detect less severe faults,and(iii)those which were able to detect less severe faults could not produce high accuracy.To this end,the present paper proposes a state-of-the-art deep reinforcement learning(DRL)model based on deep Q-network(DQN)to overcome all the existing challenges in previous ML models for PV arrays fault detection and diagnosis.The model carries out a two-stage process employing two DQN-based agents which is not only able to accurately detect and classify(first stage)various faults in PV arrays,but it is also able to assess the severity of line-to-line(LL)and line-to-ground(LG)faults(second stage)in PV arrays using only a small training dataset.The training and testing datasets include several voltage and current values on PV array current-voltage(I-V)characteristic curve which is extracted using the variable load technique for PV array I-V curve extraction.The model has been implemented on an experimental standalone PV array and the results show outstanding accuracies of 98.61%and 100%when it is verified by testing datasets in the first and the second stage,respectively.
基金supported by the Basic Science Research Program(2023R1A2C3004336,RS-202300243807)&Regional Leading Research Center(RS-202400405278)through the National Research Foundation of Korea(NRF)grant funded by the Korea Government(MSIT)。
文摘Wearable sensors integrated with deep learning techniques have the potential to revolutionize seamless human-machine interfaces for real-time health monitoring,clinical diagnosis,and robotic applications.Nevertheless,it remains a critical challenge to simultaneously achieve desirable mechanical and electrical performance along with biocompatibility,adhesion,self-healing,and environmental robustness with excellent sensing metrics.Herein,we report a multifunctional,anti-freezing,selfadhesive,and self-healable organogel pressure sensor composed of cobalt nanoparticle encapsulated nitrogen-doped carbon nanotubes(CoN CNT)embedded in a polyvinyl alcohol-gelatin(PVA/GLE)matrix.Fabricated using a binary solvent system of water and ethylene glycol(EG),the CoN CNT/PVA/GLE organogel exhibits excellent flexibility,biocompatibility,and temperature tolerance with remarkable environmental stability.Electrochemical impedance spectroscopy confirms near-stable performance across a broad humidity range(40%-95%RH).Freeze-tolerant conductivity under sub-zero conditions(-20℃)is attributed to the synergistic role of CoN CNT and EG,preserving mobility and network integrity.The Co N CNT/PVA/GLE organogel sensor exhibits high sensitivity of 5.75 k Pa^(-1)in the detection range from 0 to 20 k Pa,ideal for subtle biomechanical motion detection.A smart human-machine interface for English letter recognition using deep learning achieved 98%accuracy.The organogel sensor utility was extended to detect human gestures like finger bending,wrist motion,and throat vibration during speech.
基金supported by the National Natural Science Foundation of China[grant number 62376217]the Young Elite Scientists Sponsorship Program by CAST[grant number 2023QNRC001]the Joint Research Project for Meteorological Capacity Improvement[grant number 24NLTSZ003]。
文摘Deep learning-based methods have become alternatives to traditional numerical weather prediction systems,offering faster computation and the ability to utilize large historical datasets.However,the application of deep learning to medium-range regional weather forecasting with limited data remains a significant challenge.In this work,three key solutions are proposed:(1)motivated by the need to improve model performance in data-scarce regional forecasting scenarios,the authors innovatively apply semantic segmentation models,to better capture spatiotemporal features and improve prediction accuracy;(2)recognizing the challenge of overfitting and the inability of traditional noise-based data augmentation methods to effectively enhance model robustness,a novel learnable Gaussian noise mechanism is introduced that allows the model to adaptively optimize perturbations for different locations,ensuring more effective learning;and(3)to address the issue of error accumulation in autoregressive prediction,as well as the challenge of learning difficulty and the lack of intermediate data utilization in one-shot prediction,the authors propose a cascade prediction approach that effectively resolves these problems while significantly improving model forecasting performance.The method achieves a competitive result in The East China Regional AI Medium Range Weather Forecasting Competition.Ablation experiments further validate the effectiveness of each component,highlighting their contributions to enhancing prediction performance.
文摘Underwater pipeline inspection plays a vital role in the proactive maintenance and management of critical marine infrastructure and subaquatic systems.However,the inspection of underwater pipelines presents a challenge due to factors such as light scattering,absorption,restricted visibility,and ambient noise.The advancement of deep learning has introduced powerful techniques for processing large amounts of unstructured and imperfect data collected from underwater environments.This study evaluated the efficacy of the You Only Look Once(YOLO)algorithm,a real-time object detection and localization model based on convolutional neural networks,in identifying and classifying various types of pipeline defects in underwater settings.YOLOv8,the latest evolution in the YOLO family,integrates advanced capabilities,such as anchor-free detection,a cross-stage partial network backbone for efficient feature extraction,and a feature pyramid network+path aggregation network neck for robust multi-scale object detection,which make it particularly well-suited for complex underwater environments.Due to the lack of suitable open-access datasets for underwater pipeline defects,a custom dataset was captured using a remotely operated vehicle in a controlled environment.This application has the following assets available for use.Extensive experimentation demonstrated that YOLOv8 X-Large consistently outperformed other models in terms of pipe defect detection and classification and achieved a strong balance between precision and recall in identifying pipeline cracks,rust,corners,defective welds,flanges,tapes,and holes.This research establishes the baseline performance of YOLOv8 for underwater defect detection and showcases its potential to enhance the reliability and efficiency of pipeline inspection tasks in challenging underwater environments.
基金financially supported by the National Science and Technology Major Project——Deep Earth Probe and Mineral Resources Exploration(No.2024ZD1003701)the National Key R&D Program of China(No.2022YFC2905004)。
文摘An image processing and deep learning method for identifying different types of rock images was proposed.Preprocessing,such as rock image acquisition,gray scaling,Gaussian blurring,and feature dimensionality reduction,was conducted to extract useful feature information and recognize and classify rock images using Tensor Flow-based convolutional neural network(CNN)and Py Qt5.A rock image dataset was established and separated into workouts,confirmation sets,and test sets.The framework was subsequently compiled and trained.The categorization approach was evaluated using image data from the validation and test datasets,and key metrics,such as accuracy,precision,and recall,were analyzed.Finally,the classification model conducted a probabilistic analysis of the measured data to determine the equivalent lithological type for each image.The experimental results indicated that the method combining deep learning,Tensor Flow-based CNN,and Py Qt5 to recognize and classify rock images has an accuracy rate of up to 98.8%,and can be successfully utilized for rock image recognition.The system can be extended to geological exploration,mine engineering,and other rock and mineral resource development to more efficiently and accurately recognize rock samples.Moreover,it can match them with the intelligent support design system to effectively improve the reliability and economy of the support scheme.The system can serve as a reference for supporting the design of other mining and underground space projects.
文摘The rapid growth of biomedical data,particularly multi-omics data including genomes,transcriptomics,proteomics,metabolomics,and epigenomics,medical research and clinical decision-making confront both new opportunities and obstacles.The huge and diversified nature of these datasets cannot always be managed using traditional data analysis methods.As a consequence,deep learning has emerged as a strong tool for analysing numerous omics data due to its ability to handle complex and non-linear relationships.This paper explores the fundamental concepts of deep learning and how they are used in multi-omics medical data mining.We demonstrate how autoencoders,variational autoencoders,multimodal models,attention mechanisms,transformers,and graph neural networks enable pattern analysis and recognition across all omics data.Deep learning has been found to be effective in illness classification,biomarker identification,gene network learning,and therapeutic efficacy prediction.We also consider critical problems like as data quality,model explainability,whether findings can be repeated,and computational power requirements.We now consider future elements of combining omics with clinical and imaging data,explainable AI,federated learning,and real-time diagnostics.Overall,this study emphasises the need of collaborating across disciplines to advance deep learning-based multi-omics research for precision medicine and comprehending complicated disorders.
基金supported by the Capital Fund for Health Improvement and Research,No.2022-2-2048(to WZ)the National Natural Science Foundation of China,No.81970992(to WZ)+3 种基金Capital Clinical Characteristic Application Research,No.Z121107001012161(to WZ)the Natural Science Foundation of Beijing,No.7082032(to WZ)the Key Technology R&D Program of Beijing Municipal Education Commission,No.KZ201610025030(to WZ)Project of Scientific and Technological Development of Traditional Chinese Medicine in Beijing,No.JJ2018-48(to WZ)。
文摘Alzheimer's disease is the most common type of cognitive disorder,and there is an urgent need to develop more effective,targeted and safer therapies for patients with this condition.Deep brain stimulation is an invasive surgical treatment that modulates abnormal neural activity by implanting electrodes into specific brain areas followed by electrical stimulation.As an emerging therapeutic approach,deep brain stimulation shows significant promise as a potential new therapy for Alzheimer's disease.Here,we review the potential mechanisms and therapeutic effects of deep brain stimulation in the treatment of Alzheimer's disease based on existing clinical and basic research.In clinical studies,the most commonly targeted sites include the fornix,the nucleus basalis of Meynert,and the ventral capsule/ventral striatum.Basic research has found that the most frequently targeted areas include the fornix,nucleus basalis of Meynert,hippocampus,entorhinal cortex,and rostral intralaminar thalamic nucleus.All of these individual targets exhibit therapeutic potential for patients with Alzheimer's disease and associated mechanisms of action have been investigated.Deep brain stimulation may exert therapeutic effects on Alzheimer's disease through various mechanisms,including reducing the deposition of amyloid-β,activation of the cholinergic system,increasing the levels of neurotrophic factors,enhancing synaptic activity and plasticity,promoting neurogenesis,and improving glucose metabolism.Currently,clinical trials investigating deep brain stimulation for Alzheimer's disease remain insufficient.In the future,it is essential to focus on translating preclinical mechanisms into clinical trials.Furthermore,consecutive follow-up studies are needed to evaluate the long-term safety and efficacy of deep brain stimulation for Alzheimer's disease,including cognitive function,neuropsychiatric symptoms,quality of life and changes in Alzheimer's disease biomarkers.Researchers must also prioritize the initiation of multi-center clinical trials of deep brain stimulation with large sample sizes and target earlier therapeutic windows,such as the prodromal and even the preclinical stages of Alzheimer's disease.Adopting these approaches will permit the efficient exploration of more effective and safer deep brain stimulation therapies for patients with Alzheimer's disease.
基金This work is supported by the National Key Research and Development Project of China under Grant 2018YFB1600600Beijing Natural Science Foundation with JQ18010.The authors should also thank the support from Tsinghua University-Didi Joint Research Center for Future Mobility.
文摘Recent years have seen the rapid development of autonomous driving systems,which are typically designed in a hierarchical architecture or an end-to-end architecture.The hierarchical architecture is always complicated and hard to design,while the end-to-end architecture is more promising due to its simple structure.This paper puts forward an end-to-end autonomous driving method through a deep reinforcement learning algorithm Dueling Double Deep Q-Network,making it possible for the vehicle to learn end-to-end driving by itself.This paper firstly proposes an architecture for the end-to-end lane-keeping task.Unlike the traditional image-only state space,the presented state space is composed of both camera images and vehicle motion information.Then corresponding dueling neural network structure is introduced,which reduces the variance and improves sampling efficiency.Thirdly,the proposed method is applied to The Open Racing Car Simulator(TORCS)to demonstrate its great performance,where it surpasses human drivers.Finally,the saliency map of the neural network is visualized,which indicates the trained network drives by observing the lane lines.A video for the presented work is available online,https://youtu.be/76ciJ mIHMD8 or https://v.youku.com/v_show/id_XNDM4 ODc0M TM4NA==.html.