期刊文献+
共找到137,581篇文章
< 1 2 250 >
每页显示 20 50 100
Multi-Agent Deep Q-Networks for Efficient Edge Federated Learning Communications in Software-Defined IoT
1
作者 Prohim Tam Sa Math +1 位作者 Ahyoung Lee Seokhoon Kim 《Computers, Materials & Continua》 SCIE EI 2022年第5期3319-3335,共17页
Federated learning(FL)activates distributed on-device computation techniques to model a better algorithm performance with the interaction of local model updates and global model distributions in aggregation averaging ... Federated learning(FL)activates distributed on-device computation techniques to model a better algorithm performance with the interaction of local model updates and global model distributions in aggregation averaging processes.However,in large-scale heterogeneous Internet of Things(IoT)cellular networks,massive multi-dimensional model update iterations and resource-constrained computation are challenging aspects to be tackled significantly.This paper introduces the system model of converging softwaredefined networking(SDN)and network functions virtualization(NFV)to enable device/resource abstractions and provide NFV-enabled edge FL(eFL)aggregation servers for advancing automation and controllability.Multi-agent deep Q-networks(MADQNs)target to enforce a self-learning softwarization,optimize resource allocation policies,and advocate computation offloading decisions.With gathered network conditions and resource states,the proposed agent aims to explore various actions for estimating expected longterm rewards in a particular state observation.In exploration phase,optimal actions for joint resource allocation and offloading decisions in different possible states are obtained by maximum Q-value selections.Action-based virtual network functions(VNF)forwarding graph(VNFFG)is orchestrated to map VNFs towards eFL aggregation server with sufficient communication and computation resources in NFV infrastructure(NFVI).The proposed scheme indicates deficient allocation actions,modifies the VNF backup instances,and reallocates the virtual resource for exploitation phase.Deep neural network(DNN)is used as a value function approximator,and epsilongreedy algorithm balances exploration and exploitation.The scheme primarily considers the criticalities of FL model services and congestion states to optimize long-term policy.Simulation results presented the outperformance of the proposed scheme over reference schemes in terms of Quality of Service(QoS)performance metrics,including packet drop ratio,packet drop counts,packet delivery ratio,delay,and throughput. 展开更多
关键词 deep q-networks federated learning network functions virtualization quality of service software-defined networking
在线阅读 下载PDF
Reinforcement Learning with an Ensemble of Binary Action Deep Q-Networks
2
作者 A.M.Hafiz M.Hassaballah +2 位作者 Abdullah Alqahtani Shtwai Alsubai Mohamed Abdel Hameed 《Computer Systems Science & Engineering》 SCIE EI 2023年第9期2651-2666,共16页
With the advent of Reinforcement Learning(RL)and its continuous progress,state-of-the-art RL systems have come up for many challenging and real-world tasks.Given the scope of this area,various techniques are found in ... With the advent of Reinforcement Learning(RL)and its continuous progress,state-of-the-art RL systems have come up for many challenging and real-world tasks.Given the scope of this area,various techniques are found in the literature.One such notable technique,Multiple Deep Q-Network(DQN)based RL systems use multiple DQN-based-entities,which learn together and communicate with each other.The learning has to be distributed wisely among all entities in such a scheme and the inter-entity communication protocol has to be carefully designed.As more complex DQNs come to the fore,the overall complexity of these multi-entity systems has increased many folds leading to issues like difficulty in training,need for high resources,more training time,and difficulty in fine-tuning leading to performance issues.Taking a cue from the parallel processing found in the nature and its efficacy,we propose a lightweight ensemble based approach for solving the core RL tasks.It uses multiple binary action DQNs having shared state and reward.The benefits of the proposed approach are overall simplicity,faster convergence and better performance compared to conventional DQN based approaches.The approach can potentially be extended to any type of DQN by forming its ensemble.Conducting extensive experimentation,promising results are obtained using the proposed ensemble approach on OpenAI Gym tasks,and Atari 2600 games as compared to recent techniques.The proposed approach gives a stateof-the-art score of 500 on the Cartpole-v1 task,259.2 on the LunarLander-v2 task,and state-of-the-art results on four out of five Atari 2600 games. 展开更多
关键词 deep q-networks ensemble learning reinforcement learning OpenAI Gym environments
在线阅读 下载PDF
Resource Allocation in V2X Networks:A Double Deep Q-Network Approach with Graph Neural Networks
3
作者 Zhengda Huan Jian Sun +3 位作者 Zeyu Chen Ziyi Zhang Xiao Sun Zenghui Xiao 《Computers, Materials & Continua》 2025年第9期5427-5443,共17页
With the advancement of Vehicle-to-Everything(V2X)technology,efficient resource allocation in dynamic vehicular networks has become a critical challenge for achieving optimal performance.Existing methods suffer from h... With the advancement of Vehicle-to-Everything(V2X)technology,efficient resource allocation in dynamic vehicular networks has become a critical challenge for achieving optimal performance.Existing methods suffer from high computational complexity and decision latency under high-density traffic and heterogeneous network conditions.To address these challenges,this study presents an innovative framework that combines Graph Neural Networks(GNNs)with a Double Deep Q-Network(DDQN),utilizing dynamic graph structures and reinforcement learning.An adaptive neighbor sampling mechanism is introduced to dynamically select the most relevant neighbors based on interference levels and network topology,thereby improving decision accuracy and efficiency.Meanwhile,the framework models communication links as nodes and interference relationships as edges,effectively capturing the direct impact of interference on resource allocation while reducing computational complexity and preserving critical interaction information.Employing an aggregation mechanism based on the Graph Attention Network(GAT),it dynamically adjusts the neighbor sampling scope and performs attention-weighted aggregation based on node importance,ensuring more efficient and adaptive resource management.This design ensures reliable Vehicle-to-Vehicle(V2V)communication while maintaining high Vehicle-to-Infrastructure(V2I)throughput.The framework retains the global feature learning capabilities of GNNs and supports distributed network deployment,allowing vehicles to extract low-dimensional graph embeddings from local observations for real-time resource decisions.Experimental results demonstrate that the proposed method significantly reduces computational overhead,mitigates latency,and improves resource utilization efficiency in vehicular networks under complex traffic scenarios.This research not only provides a novel solution to resource allocation challenges in V2X networks but also advances the application of DDQN in intelligent transportation systems,offering substantial theoretical significance and practical value. 展开更多
关键词 Resource allocation V2X double deep q-network graph neural network
在线阅读 下载PDF
基于RPA+DeepSeek的企业信息核查审计机器人研究——以ND会计师事务所市监局项目为例 被引量:3
4
作者 程平 唐涔芮 +1 位作者 胥尧 林定逢 《会计之友》 北大核心 2025年第12期107-114,共8页
传统企业信息核查审计工作因流程冗长、效率低、准确性不足及人力消耗大等问题,制约了核查质量和效率。文章以ND会计师事务所市场监督管理局项目为例,提出结合RPA与Deep Seek大模型的技术创新方案,推动核查审计工作的数字化转型。通过... 传统企业信息核查审计工作因流程冗长、效率低、准确性不足及人力消耗大等问题,制约了核查质量和效率。文章以ND会计师事务所市场监督管理局项目为例,提出结合RPA与Deep Seek大模型的技术创新方案,推动核查审计工作的数字化转型。通过构建涵盖应用层、服务层、数据层和基础设施层的审计机器人框架模型,实现从文件识别到报告生成的全流程自动化。Deep Seek大模型凭借其自然语言处理能力和本地化部署优势,提升非结构化数据处理效率和信息抽取精准度;RPA技术通过自动化流程执行,减少人工干预和错误风险。研究表明,RPA与Deep Seek大模型的深度融合显著提高了核查效率与准确性,降低了人力成本,为审计智能化转型提供了技术支撑。实际应用中需重点关注技术集成与业务流程适配、模型性能优化、数据安全与合规性保障,以及人员技术培训与转型支持。 展开更多
关键词 RPA deep Seek 企业信息核查 数字化转型 审计机器人
在线阅读 下载PDF
Deep Seek技术驱动下的童书出版智能化生产范式转型 被引量:1
5
作者 陈苗苗 应莹 《出版广角》 北大核心 2025年第5期64-71,共8页
在数字化浪潮冲击下,传统童书出版业面临选题策划失准、创作滞后、编辑断层、营销低效等结构性困境,亟须通过智能化转型重构生产范式。以Deep Seek多模态大模型为技术框架,系统解析其如何通过动态用户画像、多模态内容生成、智能校对与... 在数字化浪潮冲击下,传统童书出版业面临选题策划失准、创作滞后、编辑断层、营销低效等结构性困境,亟须通过智能化转型重构生产范式。以Deep Seek多模态大模型为技术框架,系统解析其如何通过动态用户画像、多模态内容生成、智能校对与知识图谱、强化学习决策等技术模块,深度赋能童书出版选题策划、作者创作、编辑加工、营销发行全链路智能化升级。童书出版机构在转型过程中面临选题依赖数据遮蔽儿童需求、技术理性消解作者原创性、编辑职能被技术侵蚀、营销发行同质化等挑战,需构建童书出版智能化转型的方法论框架,助力童书出版产业在数字时代重塑核心竞争力。 展开更多
关键词 deep Seek 童书出版 智能化 生产范式
在线阅读 下载PDF
改进Deep Q Networks的交通信号均衡调度算法
6
作者 贺道坤 《机械设计与制造》 北大核心 2025年第4期135-140,共6页
为进一步缓解城市道路高峰时段十字路口的交通拥堵现象,实现路口各道路车流均衡通过,基于改进Deep Q Networks提出了一种的交通信号均衡调度算法。提取十字路口与交通信号调度最相关的特征,分别建立单向十字路口交通信号模型和线性双向... 为进一步缓解城市道路高峰时段十字路口的交通拥堵现象,实现路口各道路车流均衡通过,基于改进Deep Q Networks提出了一种的交通信号均衡调度算法。提取十字路口与交通信号调度最相关的特征,分别建立单向十字路口交通信号模型和线性双向十字路口交通信号模型,并基于此构建交通信号调度优化模型;针对Deep Q Networks算法在交通信号调度问题应用中所存在的收敛性、过估计等不足,对Deep Q Networks进行竞争网络改进、双网络改进以及梯度更新策略改进,提出相适应的均衡调度算法。通过与经典Deep Q Networks仿真比对,验证论文算法对交通信号调度问题的适用性和优越性。基于城市道路数据,分别针对两种场景进行仿真计算,仿真结果表明该算法能够有效缩减十字路口车辆排队长度,均衡各路口车流通行量,缓解高峰出行方向的道路拥堵现象,有利于十字路口交通信号调度效益的提升。 展开更多
关键词 交通信号调度 十字路口 deep Q Networks 深度强化学习 智能交通
在线阅读 下载PDF
DeepSeek赋能基础教育高质量发展(笔谈) 被引量:13
7
作者 罗生全 李霓 +6 位作者 宋萑 荣晴 李洪修 王萌萌 雷浩 马玉林 曾文婕 《天津师范大学学报(基础教育版)》 北大核心 2025年第3期1-14,共14页
数字化赋能基础教育,是实现教育高质量发展的必然趋势。DeepSeek作为我国自主研发的人工智能系统,其在教育领域的多模态处理能力和个性化学习支持功能,为基础教育高质量发展提供了新的技术支撑。具体可从以下几方面着力:一是教师能力提... 数字化赋能基础教育,是实现教育高质量发展的必然趋势。DeepSeek作为我国自主研发的人工智能系统,其在教育领域的多模态处理能力和个性化学习支持功能,为基础教育高质量发展提供了新的技术支撑。具体可从以下几方面着力:一是教师能力提升应着重将培养模式向“思维发展导向”转型、实践场域向“技术嵌入型”重构、制度环境创新向弹性化动态化转变等;二是基础教育课程改革要以数据智能推动个性化教学的规模化、人机协同重构师生互动的深度、人文关怀守护教育本质的温度;三是应对课程知识形态变化需重塑知识选择标准、重构知识组织方式、规范知识表达过程、提升教师数字素养;四是DeepSeek驱动的教师教材使用需基于“思维过程可视化——文化认知与伦理嵌入——生成性交互积累”的三维智能要素,教师要创造性地理解教材、特色化地运用教材、协同化地反思教材使用等;五是DeepSeek赋能深度学习评价需关注评价指标生成的众智叠加、评价方法的教学融入和评价数据处理中的算力支持,以此促进学生的深度学习不断增值。 展开更多
关键词 deepSeek 数字化赋能 教育强国 基础教育课程改革 教师能力 课程知识形态 教师教材使用 深度学习评价
在线阅读 下载PDF
DeepSeek对教育范式的变革与影响 被引量:3
8
作者 李青 杨晋 +2 位作者 易海成 尤著宏 原嫄 《高等建筑教育》 2025年第4期1-12,共12页
生成式人工智能(GAI)技术正在重新定义教育领域的教学与学习方式。自OpenAI发布ChatGPT以来,GAI技术快速发展,应用场景逐渐从文本生成扩展到更复杂的推理与创作。中国深度求索公司推出的DeepSeek模型进一步推动了这一技术在教育中的应用... 生成式人工智能(GAI)技术正在重新定义教育领域的教学与学习方式。自OpenAI发布ChatGPT以来,GAI技术快速发展,应用场景逐渐从文本生成扩展到更复杂的推理与创作。中国深度求索公司推出的DeepSeek模型进一步推动了这一技术在教育中的应用。DeepSeek通过优化推理流程、提高计算效率、提供个性化学习路径,突破了传统教育模式的局限,促进了教育理念的转型。从知识传授向能力培养、从标准化教育向个性化教育转变,DeepSeek不仅推动了教学内容和方法的创新,还促进了教育公平和个性化教学的实现。然而,随着技术的快速发展,教育领域面临诸多风险,包括知识准确性、隐性偏见、数据隐私和学生自主学习能力等问题。探讨了DeepSeek在教育变革中的潜力与挑战,分析其在推动教育理念和教学模式重塑过程中的优势与风险,并提出相应的应对策略。最后,强调教育机构、教师和技术供应商的合作,确保AI技术在推动教育数字化转型的同时,保持人文关怀与教育目标的完整性,以培养具备创新能力、批判性思维和社会责任感的未来公民。 展开更多
关键词 人工智能 教育理念 教学模式 深度融合
在线阅读 下载PDF
技术革命周期与我国算力竞争战略选择——基于DeepSeek复杂经济系统的思考 被引量:5
9
作者 黄晓野 代栓平 李克 《工业技术经济》 北大核心 2025年第4期25-31,共7页
算力是信息化、数字化、智能化时代的新质生产力,是大国博弈利器。算力竞争战略选择关乎一国能否抓住新技术新产业革命机遇,实现综合国力跃迁式增长。以技术-经济范式模型为理论依据,结合全球人工智能发展实践,本文提出我国目前处于算... 算力是信息化、数字化、智能化时代的新质生产力,是大国博弈利器。算力竞争战略选择关乎一国能否抓住新技术新产业革命机遇,实现综合国力跃迁式增长。以技术-经济范式模型为理论依据,结合全球人工智能发展实践,本文提出我国目前处于算力技术革命从导入期过渡到展开期的关键节点,算力发展战略重点应从算力基础设施转移至算力经济领域。高质量算力经济通过整体配置社会资源引领我国进入算力技术革命展开期,充分释放算力市场潜力。以DeepSeek为代表的自主可控产业链、创新性创业主体、经济生态赋能、经济逻辑引导技术创新、因地制宜发展中国式算力经济的复杂算力经济系统,为算力经济高质量发展提供了示范效应。伴随算力市场的扩张,需要提前完善算力市场机制并拓展市场功能。本文认为,应关注“杰文斯悖论(Jevons Paradox)”前瞻性布局与高质量算力经济匹配的算力设施建设;积极完善研发引领长期盈利的竞争机制,以集成创新驱动算力经济,推动完善价值共创机制,壮大算力商品市场和匹配市场。 展开更多
关键词 算力 技术革命周期 算力经济 竞争战略 deepSeek 复杂经济系统 杰文斯悖论 新质生产力
在线阅读 下载PDF
Multi-Agent Path Planning Method Based on Improved Deep Q-Network in Dynamic Environments
10
作者 LI Shuyi LI Minzhe JING Zhongliang 《Journal of Shanghai Jiaotong university(Science)》 EI 2024年第4期601-612,共12页
The multi-agent path planning problem presents significant challenges in dynamic environments,primarily due to the ever-changing positions of obstacles and the complex interactions between agents’actions.These factor... The multi-agent path planning problem presents significant challenges in dynamic environments,primarily due to the ever-changing positions of obstacles and the complex interactions between agents’actions.These factors contribute to a tendency for the solution to converge slowly,and in some cases,diverge altogether.In addressing this issue,this paper introduces a novel approach utilizing a double dueling deep Q-network(D3QN),tailored for dynamic multi-agent environments.A novel reward function based on multi-agent positional constraints is designed,and a training strategy based on incremental learning is performed to achieve collaborative path planning of multiple agents.Moreover,the greedy and Boltzmann probability selection policy is introduced for action selection and avoiding convergence to local extremum.To match radar and image sensors,a convolutional neural network-long short-term memory(CNN-LSTM)architecture is constructed to extract the feature of multi-source measurement as the input of the D3QN.The algorithm’s efficacy and reliability are validated in a simulated environment,utilizing robot operating system and Gazebo.The simulation results show that the proposed algorithm provides a real-time solution for path planning tasks in dynamic scenarios.In terms of the average success rate and accuracy,the proposed method is superior to other deep learning algorithms,and the convergence speed is also improved. 展开更多
关键词 MULTI-AGENT path planning deep reinforcement learning deep q-network
原文传递
Transformer-Aided Deep Double Dueling Spatial-Temporal Q-Network for Spatial Crowdsourcing Analysis
11
作者 Yu Li Mingxiao Li +2 位作者 Dongyang Ou Junjie Guo Fangyuan Pan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期893-909,共17页
With the rapid development ofmobile Internet,spatial crowdsourcing has becomemore andmore popular.Spatial crowdsourcing consists of many different types of applications,such as spatial crowd-sensing services.In terms ... With the rapid development ofmobile Internet,spatial crowdsourcing has becomemore andmore popular.Spatial crowdsourcing consists of many different types of applications,such as spatial crowd-sensing services.In terms of spatial crowd-sensing,it collects and analyzes traffic sensing data from clients like vehicles and traffic lights to construct intelligent traffic prediction models.Besides collecting sensing data,spatial crowdsourcing also includes spatial delivery services like DiDi and Uber.Appropriate task assignment and worker selection dominate the service quality for spatial crowdsourcing applications.Previous research conducted task assignments via traditional matching approaches or using simple network models.However,advanced mining methods are lacking to explore the relationship between workers,task publishers,and the spatio-temporal attributes in tasks.Therefore,in this paper,we propose a Deep Double Dueling Spatial-temporal Q Network(D3SQN)to adaptively learn the spatialtemporal relationship between task,task publishers,and workers in a dynamic environment to achieve optimal allocation.Specifically,D3SQNis revised through reinforcement learning by adding a spatial-temporal transformer that can estimate the expected state values and action advantages so as to improve the accuracy of task assignments.Extensive experiments are conducted over real data collected fromDiDi and ELM,and the simulation results verify the effectiveness of our proposed models. 展开更多
关键词 Historical behavior analysis spatial crowdsourcing deep double dueling q-networks
在线阅读 下载PDF
Early identification of stroke through deep learning with multi-modal human speech and movement data 被引量:4
12
作者 Zijun Ou Haitao Wang +9 位作者 Bin Zhang Haobang Liang Bei Hu Longlong Ren Yanjuan Liu Yuhu Zhang Chengbo Dai Hejun Wu Weifeng Li Xin Li 《Neural Regeneration Research》 SCIE CAS 2025年第1期234-241,共8页
Early identification and treatment of stroke can greatly improve patient outcomes and quality of life.Although clinical tests such as the Cincinnati Pre-hospital Stroke Scale(CPSS)and the Face Arm Speech Test(FAST)are... Early identification and treatment of stroke can greatly improve patient outcomes and quality of life.Although clinical tests such as the Cincinnati Pre-hospital Stroke Scale(CPSS)and the Face Arm Speech Test(FAST)are commonly used for stroke screening,accurate administration is dependent on specialized training.In this study,we proposed a novel multimodal deep learning approach,based on the FAST,for assessing suspected stroke patients exhibiting symptoms such as limb weakness,facial paresis,and speech disorders in acute settings.We collected a dataset comprising videos and audio recordings of emergency room patients performing designated limb movements,facial expressions,and speech tests based on the FAST.We compared the constructed deep learning model,which was designed to process multi-modal datasets,with six prior models that achieved good action classification performance,including the I3D,SlowFast,X3D,TPN,TimeSformer,and MViT.We found that the findings of our deep learning model had a higher clinical value compared with the other approaches.Moreover,the multi-modal model outperformed its single-module variants,highlighting the benefit of utilizing multiple types of patient data,such as action videos and speech audio.These results indicate that a multi-modal deep learning model combined with the FAST could greatly improve the accuracy and sensitivity of early stroke identification of stroke,thus providing a practical and powerful tool for assessing stroke patients in an emergency clinical setting. 展开更多
关键词 artificial intelligence deep learning DIAGNOSIS early detection FAST SCREENING STROKE
在线阅读 下载PDF
基于ReDeepWaveNet的水下图像增强网络设计
13
作者 张丹 苏里阳 +2 位作者 段舒婷 孙贵新 张雨杭 《无线电工程》 2025年第6期1238-1243,共6页
水下图像由于对比度低,色彩失真严重,衰减程度随波长的变化而变化,导致颜色不对称传输等问题。尽管深度学习技术在水下图像恢复(Underwater Image Restoration,UIR)方面已经取得了较好效果,但颜色不对称性问题依然存在。已知基于颜色通... 水下图像由于对比度低,色彩失真严重,衰减程度随波长的变化而变化,导致颜色不对称传输等问题。尽管深度学习技术在水下图像恢复(Underwater Image Restoration,UIR)方面已经取得了较好效果,但颜色不对称性问题依然存在。已知基于颜色通道的卷积范围赋予正确的接受野大小(上下文),可以有效提升UIR任务的性能,同时抑制不相关的多上下文特征,增强模型的表示能力。提出基于跳过机制来自适应地改进学习到的多上下文特征的框架ReDeepWaveNet,采用全局注意力机制(Global Attention Mechanism,GAM)来替代卷积块注意力模块(Convolutional Block Attention Module,CBAM),抑制来自前一层的无关的颜色局部跳跃信息;设计双分支通路(Dual Branch Pathway,DBP)模块,通过多尺度特征提取更丰富的图像细节特征;设计了新的复合损失函数,更准确地控制恢复图像的质量。在多个数据集上的实验表明,该方案在主客观图像质量上优于现有的方法。 展开更多
关键词 水下图像恢复 deep WaveNet 全局注意力机制 多尺度特征提取 复合损失
在线阅读 下载PDF
DEEP NEURAL NETWORKS COMBINING MULTI-TASK LEARNING FOR SOLVING DELAY INTEGRO-DIFFERENTIAL EQUATIONS 被引量:1
14
作者 WANG Chen-yao SHI Feng 《数学杂志》 2025年第1期13-38,共26页
Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay di... Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay differential equations(DDEs)and delay integrodifferential equations(DIDEs)with constant delays,primarily due to their low regularity at delayinduced breaking points.In this paper,a DNN method that combines multi-task learning(MTL)which is proposed to solve both the forward and inverse problems of DIDEs.The core idea of this approach is to divide the original equation into multiple tasks based on the delay,using auxiliary outputs to represent the integral terms,followed by the use of MTL to seamlessly incorporate the properties at the breaking points into the loss function.Furthermore,given the increased training dificulty associated with multiple tasks and outputs,we employ a sequential training scheme to reduce training complexity and provide reference solutions for subsequent tasks.This approach significantly enhances the approximation accuracy of solving DIDEs with DNNs,as demonstrated by comparisons with traditional DNN methods.We validate the effectiveness of this method through several numerical experiments,test various parameter sharing structures in MTL and compare the testing results of these structures.Finally,this method is implemented to solve the inverse problem of nonlinear DIDE and the results show that the unknown parameters of DIDE can be discovered with sparse or noisy data. 展开更多
关键词 Delay integro-differential equation Multi-task learning parameter sharing structure deep neural network sequential training scheme
在线阅读 下载PDF
DeepSeek模型分析及其在AI辅助蛋白质工程中的应用 被引量:1
15
作者 李明辰 钟博子韬 +6 位作者 余元玺 姜帆 张良 谭扬 虞慧群 范贵生 洪亮 《合成生物学》 北大核心 2025年第3期636-650,共15页
2025年年初,杭州深度求索人工智能基础技术研究有限公司发布并开源了其自主研发的DeepSeek-R1对话大模型。该模型具备极低的推理成本和出色的思维链推理能力,在多种任务上能够媲美甚至超越闭源的GPT-4o和o1模型,引发了国际社会的高度关... 2025年年初,杭州深度求索人工智能基础技术研究有限公司发布并开源了其自主研发的DeepSeek-R1对话大模型。该模型具备极低的推理成本和出色的思维链推理能力,在多种任务上能够媲美甚至超越闭源的GPT-4o和o1模型,引发了国际社会的高度关注。此外,DeepSeek模型在中文对话上的优异表现以及免费商用的策略,在国内引发了部署和使用的热潮,推动了人工智能技术的普惠与发展。本文围绕DeepSeek模型的架构设计、训练方法与推理机制进行系统性分析,探讨其核心技术在AI蛋白质研究中的迁移潜力与应用前景。DeepSeek模型融合了多项自主创新的前沿技术,包括多头潜在注意力机制、混合专家网络及其负载均衡、低精度训练等,显著降低了Transformer模型的训练和推理成本。尽管DeepSeek模型原生设计用于人类语言的理解与生成,但其优化技术对同样基于Transformer模型的蛋白质预训练语言模型具有重要的参考价值。借助DeepSeek所采用的关键技术,蛋白质语言模型在训练成本、推理成本等方面有望得到显著降低。 展开更多
关键词 大语言模型 AI蛋白质 深度自注意力变换网络 蛋白质语言模型 深度学习
在线阅读 下载PDF
Intelligent Scheduling of Virtual Power Plants Based on Deep Reinforcement Learning
16
作者 Shaowei He Wenchao Cui +3 位作者 Gang Li Hairun Xu Xiang Chen Yu Tai 《Computers, Materials & Continua》 2025年第7期861-886,共26页
The Virtual Power Plant(VPP),as an innovative power management architecture,achieves flexible dispatch and resource optimization of power systems by integrating distributed energy resources.However,due to significant ... The Virtual Power Plant(VPP),as an innovative power management architecture,achieves flexible dispatch and resource optimization of power systems by integrating distributed energy resources.However,due to significant differences in operational costs and flexibility of various types of generation resources,as well as the volatility and uncertainty of renewable energy sources(such as wind and solar power)and the complex variability of load demand,the scheduling optimization of virtual power plants has become a critical issue that needs to be addressed.To solve this,this paper proposes an intelligent scheduling method for virtual power plants based on Deep Reinforcement Learning(DRL),utilizing Deep Q-Networks(DQN)for real-time optimization scheduling of dynamic peaking unit(DPU)and stable baseload unit(SBU)in the virtual power plant.By modeling the scheduling problem as a Markov Decision Process(MDP)and designing an optimization objective function that integrates both performance and cost,the scheduling efficiency and economic performance of the virtual power plant are significantly improved.Simulation results show that,compared with traditional scheduling methods and other deep reinforcement learning algorithms,the proposed method demonstrates significant advantages in key performance indicators:response time is shortened by up to 34%,task success rate is increased by up to 46%,and costs are reduced by approximately 26%.Experimental results verify the efficiency and scalability of the method under complex load environments and the volatility of renewable energy,providing strong technical support for the intelligent scheduling of virtual power plants. 展开更多
关键词 deep reinforcement learning deep q-network virtual power plant lntelligent scheduling markov decision process
在线阅读 下载PDF
State of the art and current trends on the metal corrosion and protection strategies in deep sea 被引量:2
17
作者 Yangmin Wu Wenjie Zhao Liping Wang 《Journal of Materials Science & Technology》 2025年第12期192-213,共22页
Deep sea,with rich oil,gas,and mineral resources,plays an increasingly crucial role in scientific and industrial realms.However,the highly corrosive feature of deep sea hinders further exploration and development,whic... Deep sea,with rich oil,gas,and mineral resources,plays an increasingly crucial role in scientific and industrial realms.However,the highly corrosive feature of deep sea hinders further exploration and development,which requires metal materials with robust corrosion resistance.This review covers an in-depth and all-around overview of the up-to-date advances in corrosion and protection of metals in deep-sea environment.Firstly,the unique characteristics of deep-sea environment are summarized in detail.Subsequently,the corrosion performances of metals in both in situ and simulated deep-sea environments are illustrated systematically.Furthermore,corrosion prevent strategies of metals,including sacrificial anode protection,organic coatings,as well as coatings achieved by physical vapor deposition(PVD coatings),are highlighted.Finally,we outline current challenges and development trends of corrosion and protection of metals in deep-sea environment in the future.The purpose of this review is not only to summarize the recent progress on metal corrosion and protection in deep sea,but also to aid us in understanding them more comprehensively and deeply in a short time,so as to boost their fast development. 展开更多
关键词 deep sea Corrosion protection Sacrificial anode protection Organic coatings PVD coatings
原文传递
Research status of high efficiency deep penetration welding of medium-thick plate titanium alloy:A review 被引量:4
18
作者 Zhihai Dong Ye Tian +4 位作者 Long Zhang Tong Jiang Dafeng Wang Yunlong Chang Donggao Chen 《Defence Technology(防务技术)》 2025年第3期178-202,共25页
Titanium alloy has the advantages of high strength,strong corrosion resistance,excellent high and low temperature mechanical properties,etc.,and is widely used in aerospace,shipbuilding,weapons and equipment,and other... Titanium alloy has the advantages of high strength,strong corrosion resistance,excellent high and low temperature mechanical properties,etc.,and is widely used in aerospace,shipbuilding,weapons and equipment,and other fields.In recent years,with the continuous increase in demand for medium-thick plate titanium alloys,corresponding welding technologies have also continued to develop.Therefore,this article reviews the research progress of deep penetration welding technology for medium-thick plate titanium alloys,mainly covering traditional arc welding,high-energy beam welding,and other welding technologies.Among many methods,narrow gap welding,hybrid welding,and external energy field assistance welding all contribute to improving the welding efficiency and quality of medium-thick plate titanium alloys.Finally,the development trend of deep penetration welding technology for mediumthick plate titanium alloys is prospected. 展开更多
关键词 Titanium alloy deep penetration welding Narrow gap welding Hybrid welding External energy field assistance welding
在线阅读 下载PDF
Correction:Deep Learning-Enhanced Brain Tumor Prediction via Entropy-Coded BPSO in CIELAB Color Space
19
作者 Mudassir Khalil Muhammad Imran Sharif +3 位作者 Ahmed Naeem Muhammad Umar Chaudhry Hafiz Tayyab Rauf Adham E.Ragab 《Computers, Materials & Continua》 SCIE EI 2025年第1期1461-1461,共1页
In the article“Deep Learning-Enhanced Brain Tumor Prediction via Entropy-Coded BPSO in CIELAB Color Space”by Mudassir Khalil,Muhammad Imran Sharif,Ahmed Naeem,Muhammad Umar Chaudhry,Hafiz Tayyab Rauf,Adham E.Ragab C... In the article“Deep Learning-Enhanced Brain Tumor Prediction via Entropy-Coded BPSO in CIELAB Color Space”by Mudassir Khalil,Muhammad Imran Sharif,Ahmed Naeem,Muhammad Umar Chaudhry,Hafiz Tayyab Rauf,Adham E.Ragab Computers,Materials&Continua,2023,Vol.77,No.2,pp.2031–2047.DOI:10.32604/cmc.2023.043687,URL:https://www.techscience.com/cmc/v77n2/54831,there was an error regarding the affiliation for the author Hafiz Tayyab Rauf.Instead of“Centre for Smart Systems,AI and Cybersecurity,Staffordshire University,Stoke-on-Trent,ST42DE,UK”,the affiliation should be“Independent Researcher,Bradford,BD80HS,UK”. 展开更多
关键词 deep Code CIELAB
在线阅读 下载PDF
Research on Bearing Fault Diagnosis Method Based on Deep Learning 被引量:1
20
作者 Ting Zheng 《Journal of Electronic Research and Application》 2025年第1期1-6,共6页
Bearing is an indispensable key component in mechanical equipment,and its working state is directly related to the stability and safety of the whole equipment.In recent years,with the rapid development of artificial i... Bearing is an indispensable key component in mechanical equipment,and its working state is directly related to the stability and safety of the whole equipment.In recent years,with the rapid development of artificial intelligence technology,especially the breakthrough of deep learning technology,it provides a new idea for bearing fault diagnosis.Deep learning can automatically learn features from a large amount of data,has a strong nonlinear modeling ability,and can effectively solve the problems existing in traditional methods.Aiming at the key problems in bearing fault diagnosis,this paper studies the fault diagnosis method based on deep learning,which not only provides a new solution for bearing fault diagnosis but also provides a reference for the application of deep learning in other mechanical fault diagnosis fields. 展开更多
关键词 deep learning Bearing failure Diagnostic methods
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部