期刊文献+
共找到997篇文章
< 1 2 50 >
每页显示 20 50 100
Deep Neural Network Based Behavioral Model of Nonlinear Circuits
1
作者 Zhe Jin Sekouba Kaba 《Journal of Applied Mathematics and Physics》 2021年第3期403-412,共10页
With the rapid growth of complexity and functionality of modern electronic systems, creating precise behavioral models of nonlinear circuits has become an attractive topic. Deep neural networks (DNNs) have been recogn... With the rapid growth of complexity and functionality of modern electronic systems, creating precise behavioral models of nonlinear circuits has become an attractive topic. Deep neural networks (DNNs) have been recognized as a powerful tool for nonlinear system modeling. To characterize the behavior of nonlinear circuits, a DNN based modeling approach is proposed in this paper. The procedure is illustrated by modeling a power amplifier (PA), which is a typical nonlinear circuit in electronic systems. The PA model is constructed based on a feedforward neural network with three hidden layers, and then Multisim circuit simulator is applied to generating the raw training data. Training and validation are carried out in Tensorflow deep learning framework. Compared with the commonly used polynomial model, the proposed DNN model exhibits a faster convergence rate and improves the mean squared error by 13 dB. The results demonstrate that the proposed DNN model can accurately depict the input-output characteristics of nonlinear circuits in both training and validation data sets. 展开更多
关键词 Nonlinear Circuits deep neural networks Behavioral model Power Amplifier
在线阅读 下载PDF
HMM-Based Photo-Realistic Talking Face Synthesis Using Facial Expression Parameter Mapping with Deep Neural Networks
2
作者 Kazuki Sato Takashi Nose Akinori Ito 《Journal of Computer and Communications》 2017年第10期50-65,共16页
This paper proposes a technique for synthesizing a pixel-based photo-realistic talking face animation using two-step synthesis with HMMs and DNNs. We introduce facial expression parameters as an intermediate represent... This paper proposes a technique for synthesizing a pixel-based photo-realistic talking face animation using two-step synthesis with HMMs and DNNs. We introduce facial expression parameters as an intermediate representation that has a good correspondence with both of the input contexts and the output pixel data of face images. The sequences of the facial expression parameters are modeled using context-dependent HMMs with static and dynamic features. The mapping from the expression parameters to the target pixel images are trained using DNNs. We examine the required amount of the training data for HMMs and DNNs and compare the performance of the proposed technique with the conventional PCA-based technique through objective and subjective evaluation experiments. 展开更多
关键词 Visual-Speech SYNTHESIS TALKING Head Hidden MARKOV models (HMMs) deep neural networks (DNNs) FACIAL Expression Parameter
在线阅读 下载PDF
Review of Artificial Intelligence for Oil and Gas Exploration: Convolutional Neural Network Approaches and the U-Net 3D Model
3
作者 Weiyan Liu 《Open Journal of Geology》 CAS 2024年第4期578-593,共16页
Deep learning, especially through convolutional neural networks (CNN) such as the U-Net 3D model, has revolutionized fault identification from seismic data, representing a significant leap over traditional methods. Ou... Deep learning, especially through convolutional neural networks (CNN) such as the U-Net 3D model, has revolutionized fault identification from seismic data, representing a significant leap over traditional methods. Our review traces the evolution of CNN, emphasizing the adaptation and capabilities of the U-Net 3D model in automating seismic fault delineation with unprecedented accuracy. We find: 1) The transition from basic neural networks to sophisticated CNN has enabled remarkable advancements in image recognition, which are directly applicable to analyzing seismic data. The U-Net 3D model, with its innovative architecture, exemplifies this progress by providing a method for detailed and accurate fault detection with reduced manual interpretation bias. 2) The U-Net 3D model has demonstrated its superiority over traditional fault identification methods in several key areas: it has enhanced interpretation accuracy, increased operational efficiency, and reduced the subjectivity of manual methods. 3) Despite these achievements, challenges such as the need for effective data preprocessing, acquisition of high-quality annotated datasets, and achieving model generalization across different geological conditions remain. Future research should therefore focus on developing more complex network architectures and innovative training strategies to refine fault identification performance further. Our findings confirm the transformative potential of deep learning, particularly CNN like the U-Net 3D model, in geosciences, advocating for its broader integration to revolutionize geological exploration and seismic analysis. 展开更多
关键词 deep Learning Convolutional neural networks (CNN) Seismic Fault Identification U-Net 3D model Geological Exploration
在线阅读 下载PDF
Brain Encoding and Decoding in fMRI with Bidirectional Deep Generative Models 被引量:2
4
作者 Changde Du Jinpeng Li +1 位作者 Lijie Huang Huiguang He 《Engineering》 SCIE EI 2019年第5期948-953,共6页
Brain encoding and decoding via functional magnetic resonance imaging(fMRI)are two important aspects of visual perception neuroscience.Although previous researchers have made significant advances in brain encoding and... Brain encoding and decoding via functional magnetic resonance imaging(fMRI)are two important aspects of visual perception neuroscience.Although previous researchers have made significant advances in brain encoding and decoding models,existing methods still require improvement using advanced machine learning techniques.For example,traditional methods usually build the encoding and decoding models separately,and are prone to overfitting on a small dataset.In fact,effectively unifying the encoding and decoding procedures may allow for more accurate predictions.In this paper,we first review the existing encoding and decoding methods and discuss the potential advantages of a“bidirectional”modeling strategy.Next,we show that there are correspondences between deep neural networks and human visual streams in terms of the architecture and computational rules.Furthermore,deep generative models(e.g.,variational autoencoders(VAEs)and generative adversarial networks(GANs))have produced promising results in studies on brain encoding and decoding.Finally,we propose that the dual learning method,which was originally designed for machine translation tasks,could help to improve the performance of encoding and decoding models by leveraging large-scale unpaired data. 展开更多
关键词 BRAIN encoding and DECODING Functional magnetic resonance imaging deep neural networks deep GENERATIVE models Dual learning
在线阅读 下载PDF
Vehicle Detection Based on Visual Saliency and Deep Sparse Convolution Hierarchical Model 被引量:4
5
作者 CAI Yingfeng WANG Hai +2 位作者 CHEN Xiaobo GAO Li CHEN Long 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第4期765-772,共8页
Traditional vehicle detection algorithms use traverse search based vehicle candidate generation and hand crafted based classifier training for vehicle candidate verification.These types of methods generally have high ... Traditional vehicle detection algorithms use traverse search based vehicle candidate generation and hand crafted based classifier training for vehicle candidate verification.These types of methods generally have high processing times and low vehicle detection performance.To address this issue,a visual saliency and deep sparse convolution hierarchical model based vehicle detection algorithm is proposed.A visual saliency calculation is firstly used to generate a small vehicle candidate area.The vehicle candidate sub images are then loaded into a sparse deep convolution hierarchical model with an SVM-based classifier to perform the final detection.The experimental results demonstrate that the proposed method is with 94.81% correct rate and 0.78% false detection rate on the existing datasets and the real road pictures captured by our group,which outperforms the existing state-of-the-art algorithms.More importantly,high discriminative multi-scale features are generated by deep sparse convolution network which has broad application prospects in target recognition in the field of intelligent vehicle. 展开更多
关键词 vehicle detection visual saliency deep model convolution neural network
在线阅读 下载PDF
基于改进YOLO v3模型与Deep-SORT算法的道路车辆检测方法 被引量:33
6
作者 马永杰 马芸婷 +1 位作者 程时升 马义德 《交通运输工程学报》 EI CSCD 北大核心 2021年第2期222-231,共10页
针对道路车辆实时检测遮挡严重与小目标车辆漏检率高的问题,提出了基于改进YOLO v3模型和Deep-SORT算法的车辆检测方法;为提高模型对道路车辆的检测能力,采用K-meansSymbolk@pSymbolk@p聚类算法对目标候选框进行聚类分析,选择合适的... 针对道路车辆实时检测遮挡严重与小目标车辆漏检率高的问题,提出了基于改进YOLO v3模型和Deep-SORT算法的车辆检测方法;为提高模型对道路车辆的检测能力,采用K-meansSymbolk@pSymbolk@p聚类算法对目标候选框进行聚类分析,选择合适的Anchor box数量,并在网络浅层增加了特征提取层,可提取到更精细的车辆特征;为加强网络对远近不同目标的鲁棒性,在保留原YOLO v3模型输出层的同时,增加了一层输出层,将52像素×52像素输出特征图经过上采样后得到104像素×104像素特征图,并将其与浅层同尺寸特征图进行拼接,实现车辆目标的检测;为了降低目标遮挡对检测效果的影响,提高对视频上下帧之间关联信息的关注度,将改进YOLO v3模型和Deep-SORT算法相结合,以此来弥补两者之间的不足。试验结果表明:改进YOLO v3模型有效地提高了车辆检测的性能,与在网络浅层增加特征提取层的模型相比,平均精度提高了1.4%,与增加一层输出层的模型相比,平均精确度提高了0.8%,说明改进YOLO v3模型提取的特征表达能力更强,增强了网络对小目标的检测能力;改进YOLO v3模型在引入Deep-SORT算法后,查准率和召回率分别达到90.16%和91.34%,相比改进YOLO v3模型,查准率和召回率分别提高了1.48%和4.20%,同时保证了检测速度,对于不同大小目标的检测具有良好的鲁棒性。 展开更多
关键词 交通图像识别 卷积神经网络 车辆检测 YOLO v3模型 deep-SORT算法 K-means++聚类算法
原文传递
融合SOM功能聚类与DeepFM质量预测的API服务推荐方法 被引量:25
7
作者 曹步清 肖巧翔 +1 位作者 张祥平 刘建勋 《计算机学报》 EI CSCD 北大核心 2019年第6期1367-1383,共17页
由于越来越多的企业和组织纷纷将自己的业务、数据或资源封装成服务,并通过API的形式发布到互联网上,API服务的数量呈现倍增趋势.在此背景下,如何从这样一个大规模的API服务集合中,快速有效地找到满足开发者用户Mashup需求的API服务,已... 由于越来越多的企业和组织纷纷将自己的业务、数据或资源封装成服务,并通过API的形式发布到互联网上,API服务的数量呈现倍增趋势.在此背景下,如何从这样一个大规模的API服务集合中,快速有效地找到满足开发者用户Mashup需求的API服务,已成为一个挑战性问题.为此,本文聚焦于“推荐合适的API服务以构建高质量Mashup应用”问题,以面向服务内容的功能聚类为基础,结合基于多维服务质量的评分预测,提出一种融合SOM功能聚类与DeepFM质量预测的API服务推荐方法,用于创建高质量的Mashup应用.该方法首先采用Wikipedia 作为外部语料库扩充API服务文档的内容并利用HDP模型建模其主题分布.通过WikiExtractor抽取出Wikipedia中的语料数据,并利用Word2vec工具训练该语料数据获得其词向量模型.利用训练好的Wikipedia词向量模型对API服务描述文档进行扩充.针对扩充后的API服务文档,使用HDP主题建模技术,挖掘出其隐含的主题信息,自动确定最优主题个数,以准确地度量API服务文档之间的语义相似度.然后,采用SOM神经网络进行面向主题的API服务聚类.在HDP主题建模之后,对获得的“API服务文档-主题”向量采用SOM神经网络聚类算法进行主题聚类,通过自组织过程,将众多的API服务划分到不同的功能类簇中,每一个功能类中包含多个具有相似功能的API服务.接下来,针对API服务类簇中所有具有相似功能的API服务,利用DeepFM模型建模和挖掘其多维QoS属性之间的复杂交互关系,预测并排序API服务的质量得分.DeepFM模型自动地提取出QoS数据中(包括流行度、共现次数等)的有效的特征组合关系(包括高阶特征和低阶特征组合关系),预测并排序每一个API服务相对于目标Mashup应用的质量得分,推荐得分靠前的 N 个API服务给开发者用户.最后,在真实Web服务数据集上进行了实验比较与分析,实验结果表明:本文方法在准确率、召回率、纯度、熵、DCG、HMD等性能方面都要整体优于其它六种方法.相比于TF-IDF、LDA-K-CF、LDA-K-FM、HDP-K-CF、HDP-K-FM、HDP-S - FM,本文方法的准确率指标分别提升了196.2%、49%、33.8%、31.2%、12.3%、10.3%,DCG值分别提升了161.8%、26.4%、18.6%、16.2%、6.73%、4.5%. 展开更多
关键词 API推荐 Mashup应用 HDP主题模型 SOM神经网络 深度因子分解机
在线阅读 下载PDF
基于Deep-IndRNN的DGA域名检测方法 被引量:2
8
作者 刘伯成 王浩宇 +3 位作者 李向军 肖聚鑫 肖楚霁 孔珂 《南昌大学学报(理科版)》 CAS 北大核心 2020年第6期598-609,共12页
恶意服务常利用域名生成算法(DGA)逃避域名检测,针对DGA域名隐蔽性强、现有检测方法检测速度较慢、实用性不强等问题,采用深度学习技术,提出了一种基于Deep-IndRNN的DGA域名检测方法。方法运用词袋模型(BoW)将域名向量化,然后通过Deep-I... 恶意服务常利用域名生成算法(DGA)逃避域名检测,针对DGA域名隐蔽性强、现有检测方法检测速度较慢、实用性不强等问题,采用深度学习技术,提出了一种基于Deep-IndRNN的DGA域名检测方法。方法运用词袋模型(BoW)将域名向量化,然后通过Deep-IndRNN提取域名字符间特征,并使用Sigmoid函数对域名分类检测。其主要特点在于:通过将Deep-IndRNN的多序列输入拼接为单向量输入,以单步处理代替循环处理,同时结合Deep-IndRNN能保存更长时间记忆的特点,可有效释放深度学习时占用的GPU、CPU等系统资源,且在保证高准确率和精确度的前提下提高训练、检测速度。实验结果表明,基于Deep-IndRNN的DGA域名检测方法在检测任务中具有较高的准确率和精确度,相比于DNN、CNN、LSTM、BiLSTM、CNN-LSTM-Concat等同类检测方法,能显著提高训练、检测速度,是有效可行的。 展开更多
关键词 域名生成算法 深度学习 独立循环神经网络 SIGMOID函数 词袋模型
在线阅读 下载PDF
基于DeepFM模型的广告推荐系统研究 被引量:6
9
作者 郁豹 李振华 +1 位作者 张凯 胡安翔 《计算机应用与软件》 北大核心 2019年第7期307-310,316,共5页
随着移动设备普及,移动互联网行业进入了高速发展阶段,信息量和用户量急剧增长,如何在有限的资源下准确地分析用户行为,提升广告效果并保障用户体验显得尤为重要。提出一种由深度神经网络(Deep neural network)和因子分解机(Factorizati... 随着移动设备普及,移动互联网行业进入了高速发展阶段,信息量和用户量急剧增长,如何在有限的资源下准确地分析用户行为,提升广告效果并保障用户体验显得尤为重要。提出一种由深度神经网络(Deep neural network)和因子分解机(Factorization machine)组成的模型——DeepFM模型来实现社交广告的个性化推荐,其中因子分解机部分主要是提取一阶二阶特征,深度神经网络部分主要提取高阶特征。最终通过研究发现,DeepFM模型比逻辑回归模型(LR模型)及因子分解机(FM模型)的效果都要好。 展开更多
关键词 deepFM模型 特征提取 广告推荐 深度神经网络 因子分解机
在线阅读 下载PDF
An Image Segmentation Algorithm Based on a Local Region Conditional Random Field Model 被引量:1
10
作者 Xiao Jiang Haibin Yu Shuaishuai Lv 《International Journal of Communications, Network and System Sciences》 2020年第9期139-159,共21页
To reduce the computation cost of a combined probabilistic graphical model and a deep neural network in semantic segmentation, the local region condition random field (LRCRF) model is investigated which selectively ap... To reduce the computation cost of a combined probabilistic graphical model and a deep neural network in semantic segmentation, the local region condition random field (LRCRF) model is investigated which selectively applies the condition random field (CRF) to the most active region in the image. The full convolutional network structure is optimized with the ResNet-18 structure and dilated convolution to expand the receptive field. The tracking networks are also improved based on SiameseFC by considering the frame relations in consecutive-frame traffic scene maps. Moreover, the segmentation results of the greyscale input data sets are more stable and effective than using the RGB images for deep neural network feature extraction. The experimental results show that the proposed method takes advantage of the image features directly and achieves good real-time performance and high segmentation accuracy. 展开更多
关键词 Image Segmentation Local Region Condition Random Field model deep neural network Consecutive Shooting Traffic Scene
在线阅读 下载PDF
Classification of Blood Species Using Fluorescence Spectroscopy Combined with Deep Learning Method
11
作者 Jianhong Gan Linhua Zhou +4 位作者 Jian Cui Boqi Man Xiaoning Jia Sanzhi Shi Linna Liu 《Journal of Applied Mathematics and Physics》 2019年第10期2324-2332,共9页
In this work, a deep belief neural network model (DBN) was developed to classify doves, chickens, mice and sheep blood samples, which have many similarities in composition causing their spectra to look almost identica... In this work, a deep belief neural network model (DBN) was developed to classify doves, chickens, mice and sheep blood samples, which have many similarities in composition causing their spectra to look almost identical by visual comparison alone. The DBN model was formulated for the feature extraction from the pretreated fluorescence spectroscopy. Then, cross-validation results showed that the application of deep learning method made it possible to classify the blood fluorescence spectroscopy in a more precise way than previous methods. Especially, the classification accuracy of whole blood with 1% of concentration was up to 97.5%. 展开更多
关键词 neural network model deep Learning CLASSIFICATION BLOOD SPECIES FLUORESCENCE SPECTROSCOPY
在线阅读 下载PDF
基于流动单元智能划分的湖泊-三角洲致密砂岩储层渗透率测井评价 被引量:1
12
作者 赵天沛 赵勇 +4 位作者 谭茂金 李久娣 李博 王安龙 叶俊琦 《石油物探》 北大核心 2025年第2期388-396,共9页
在湖泊-三角洲沉积体系中,致密砂岩储层孔隙结构复杂且孔隙类型多样、渗透率低,此类储层的测井解释与评价面临挑战。渗透率是储层评价和产能预测的关键参数,传统的渗透率测井解释方法精度低,不能满足生产要求。针对这一难题,分析了影响... 在湖泊-三角洲沉积体系中,致密砂岩储层孔隙结构复杂且孔隙类型多样、渗透率低,此类储层的测井解释与评价面临挑战。渗透率是储层评价和产能预测的关键参数,传统的渗透率测井解释方法精度低,不能满足生产要求。针对这一难题,分析了影响储层渗透性的微观因素(孔隙结构)和宏观因素(流动单元),而且孔隙结构与流动单元密切相关,提出了岩石类型与流动单元指数(FZI)大小分类构建渗透率模型的方法。首先,分析岩心实验结果,确定岩石类型,计算岩心流动单元指数并利用累计频率法进行类型细分,针对每种类型构建相应的渗透率模型。然后,选取敏感测井实验构建标签,利用深度神经网络构建最佳模型,预测储层流动单元指数。最后,将孔隙度测井和流动单元指数代入相应的分类模型,计算出渗透率。将该方法应用于XH凹陷HG组低孔、低渗储层的渗透率预测进行应用,渗透率预测对数误差约为0.18,比利用深度神经网络直接预测渗透率的效果好。新的储层渗透率评价方法包括基于数据驱动的机器学习方法和基于机理或知识驱动的物理模型构建,体现了数模双驱智能思想,显著提高了致密砂岩储层渗透率测井评价精度,为其他湖泊-三角洲沉积体系储层渗透率预测提供了重要借鉴。 展开更多
关键词 湖泊-三角洲沉积 致密砂岩储层 流动单元指数 深度神经网络 数模双驱智能 渗透率评价
在线阅读 下载PDF
基于神经网络的深部磷矿岩体可爆性分级模型研究 被引量:1
13
作者 柴修伟 李成镇 +3 位作者 盛益明 徐玉萍 徐亮 金胜利 《爆破》 北大核心 2025年第1期71-80,共10页
目前钻爆法仍是深部磷矿开拓掘进和回采的最高效方法。而磷矿钻爆法施工掘进水平长年维持在70~80 m/月,严重制约了掘进效率,因此对深部磷矿工作面开展矿岩体可爆性分级工作至关重要。以湖北宜昌某地下磷矿为研究背景,在现场进行了岩体... 目前钻爆法仍是深部磷矿开拓掘进和回采的最高效方法。而磷矿钻爆法施工掘进水平长年维持在70~80 m/月,严重制约了掘进效率,因此对深部磷矿工作面开展矿岩体可爆性分级工作至关重要。以湖北宜昌某地下磷矿为研究背景,在现场进行了岩体的纵波波速测试,开展了岩石密度、单轴抗压强度和抗拉强度等物理力学性质的测量,得到了白云质条带磷块岩、致密条带磷块岩、泥质条带磷块岩和含碳泥质白云岩4种岩石的密度、单轴抗压强度、抗拉强度和岩体完整性系数4项参数。通过调用Matlab神经网络工具箱,将岩石密度、单轴抗压强度、抗拉强度、岩体完整性系数作为输入,以可爆性等级作为输出,采用随机函数法产生大量的训练样本,构建了基于BP神经网络的可爆性评价模型,实现了深部磷矿岩体可爆性分级。分级结果为白云质条带磷块岩和泥质条带磷块岩为中等可爆,致密条带磷块岩和含碳泥质白云岩为难爆。根据分级结果,可对采场爆破参数进行优化,增强爆破效果,降低炸药单耗及矿石大块率,提高深部磷矿开采的安全性及经济效益。 展开更多
关键词 深部磷矿 岩体可爆性分级 随机函数 神经网络模型
在线阅读 下载PDF
融合CNN和WDF模型的电商企业商品销量预测研究
14
作者 袁瑞萍 魏辉 +1 位作者 傅之家 李俊韬 《计算机工程与应用》 北大核心 2025年第2期335-343,共9页
为了适应电商企业商品销量数据规模大、维度高、非线性等特征,并提高销量预测的准确性,创新性地提出一种卷积神经网络融合加权深度森林(CNN-WDF)的销量预测方法。利用卷积神经网络(CNN)处理高维数据的优势对电商企业商品销量数据进行特... 为了适应电商企业商品销量数据规模大、维度高、非线性等特征,并提高销量预测的准确性,创新性地提出一种卷积神经网络融合加权深度森林(CNN-WDF)的销量预测方法。利用卷积神经网络(CNN)处理高维数据的优势对电商企业商品销量数据进行特征提取,降低冗余度和模型训练复杂度。提出一种改进的加权深度森林模型(WDF)进行商品销量预测。该模型依据各个子树的预测准确率计算每一级森林中该子树的权重以提高整体预测准确性,且相对于传统深度网络模型具有超参数少、可解释性强等优点。利用京东商品销量数据进行实验验证,结果表明:CNN-WDF融合模型在不同规模京东销售数据集上,预测准确率均显著高于其他对比模型,且随着数据集规模的扩大,预测准确率提高更加明显。 展开更多
关键词 商品销量预测 深度学习 融合模型 卷积神经网络 加权深度森林
在线阅读 下载PDF
基于深度学习的动植物新品种精准推荐方法
15
作者 顾静秋 郭旺 +2 位作者 朱华吉 郝鹏 吴华瑞 《中国农业大学学报》 北大核心 2025年第7期218-229,共12页
针对我国动植物新品种资源信息服务存在的信息不对称、更新不及时、新品种资源难以落地等问题。提出一种结合深度神经网络和注意力机制的两步推荐算法。该算法首先基于动植物品种资源全文数据,构建动植物品种词汇库,搭建Siamese BERT(Bi... 针对我国动植物新品种资源信息服务存在的信息不对称、更新不及时、新品种资源难以落地等问题。提出一种结合深度神经网络和注意力机制的两步推荐算法。该算法首先基于动植物品种资源全文数据,构建动植物品种词汇库,搭建Siamese BERT(Bidirectional Encoder Representations from Transformers)网络,通过BERT获取文本上下文关联语义特征,运用双向最大匹配算法获取品种词典特征向量,融合语义及词典特征,通过相似度计算训练回归模型,实现动植物新品种与历史品种相似判断。接下来融合用户静态属性特征、用户行为特征、动植物品种资源特征等品种推荐影响因子,综合分析农业领域用户的行业差异、习惯差异,提出面向动植物品种推荐的用户特征及品种特征表征方式,基于CNN(Convolutional Neural Network)构建用户兴趣网络模型,并引入注意力机制来实现用户与品种的精准匹配推荐。在互联网实时监控新品种资源,实现全自动化的动植物新品种自动推荐。性能测试与效果验证结果表明,该算法在准确率和F1值评价指标上分别达到84.1%和0.832,相比基于协同过滤、矩阵分解等传统推荐算法,能更精准实现动植物新品种的推荐。 展开更多
关键词 动植物品种资源 推荐 深度神经网络 两步推荐 兴趣模型
原文传递
基于深度学习的矿井瓦斯爆炸源强度和位置反演方法
16
作者 尚晓吉 杨忠原 +2 位作者 张志镇 杨维好 翟成 《采矿与安全工程学报》 北大核心 2025年第5期1204-1213,共10页
针对矿井瓦斯爆炸源反演问题,分别构建了一维循环神经网络(RNN)和二维卷积神经网络(CNN)深度学习模型,对不同测点位置及超压数据下的爆炸源强度和位置进行反演研究。通过分析瓦斯爆炸超压随距离的衰减规律,利用一维RNN模型处理时间序列... 针对矿井瓦斯爆炸源反演问题,分别构建了一维循环神经网络(RNN)和二维卷积神经网络(CNN)深度学习模型,对不同测点位置及超压数据下的爆炸源强度和位置进行反演研究。通过分析瓦斯爆炸超压随距离的衰减规律,利用一维RNN模型处理时间序列数据的优势,实现了瓦斯爆炸源强度和位置的反演。将研究扩展到二维空间,进一步设计了可同步处理测点位置与最大超压数据的二维CNN模型,针对已有瓦斯爆炸数据进行了反演。研究结果表明:所构建的深度学习模型在测试工况上表现出显著的反演准确性,测试工况的均方误差值为0.0003,决定系数(R2)值为0.8831,误差显著低于基线模型,且反演结果与真实工况结果高度一致。研究成果为巷道瓦斯爆炸事故预防与控制提供了有效的技术支撑。 展开更多
关键词 爆炸源反演 深度学习 冲击波超压 神经网络模型 瓦斯爆炸
原文传递
端到端机器学习代理模型构建及其在爆轰驱动问题中的应用
17
作者 柏劲松 刘洋 +1 位作者 陈翰 钟敏 《爆炸与冲击》 北大核心 2025年第5期19-30,共12页
人工智能/机器学习方法能够发现数据中隐藏的物理规律,构建状态参数与动态结果之间端到端的代理模型,可高效解决强耦合、非线性、多物理等复杂工程问题。在高度非线性的爆炸与冲击动力学领域,选择了一个经典的爆轰驱动问题作为研究对象... 人工智能/机器学习方法能够发现数据中隐藏的物理规律,构建状态参数与动态结果之间端到端的代理模型,可高效解决强耦合、非线性、多物理等复杂工程问题。在高度非线性的爆炸与冲击动力学领域,选择了一个经典的爆轰驱动问题作为研究对象,以数值模拟结果作为机器学习代理模型的训练数据,将正向模拟与逆向设计有机结合起来,基于深度神经网络技术,构建了特征位置速度剖面、材料动态变形与工程因素之间端到端的代理模型,给出了代理模型的计算精确度,验证了代理模型从速度剖面反演工程因素的能力。结果表明:端到端代理模型具有较高的预测能力,其预测的速度剖面与工程因素估计的相对误差均小于1%,可用于高度非线性的爆炸与冲击动力学问题的快速设计、高精度预测和敏捷迭代。 展开更多
关键词 计算爆炸力学 爆轰驱动 人工智能 机器学习 端到端代理模型 深度神经网络
在线阅读 下载PDF
基于深度学习的车辆轨迹预测研究综述
18
作者 刘凯 汪佳琴 李汉涛 《郑州大学学报(工学版)》 北大核心 2025年第5期77-89,共13页
车辆轨迹预测(VTP)是交通技术领域中的重要研究对象。传统VTP方法需要大量特征工程,且难以实时适应复杂变化的环境。深度学习(DL)通过多层神经网络实现高效数据表达,克服了传统方法的局限性。对基于DL的VTP方法进行了综述,探讨了其在VT... 车辆轨迹预测(VTP)是交通技术领域中的重要研究对象。传统VTP方法需要大量特征工程,且难以实时适应复杂变化的环境。深度学习(DL)通过多层神经网络实现高效数据表达,克服了传统方法的局限性。对基于DL的VTP方法进行了综述,探讨了其在VTP中的应用及性能表现。首先,回顾了传统VTP方法和基于DL的VTP方法,介绍了VTP主要考虑的问题和问题的表述;其次,分析并比较了各类VTP方案,包括输入数据、输出结果和预测方法;再次,介绍了常用的评估指标,比较了这些VTP方案的实验结果,分析了VTP的应用,并展示了DL在VTP中表现出的优异性能;最后,展望了VTP未来在数据集、建模和计算效率方面的研究方向,指出车辆交互协同建模、模型的泛化以及多模态融合将是未来的挑战和研究方向。 展开更多
关键词 车辆轨迹预测 深度学习 序列网络 图神经网络 生成模型 网格方法
在线阅读 下载PDF
融合项目评分不确定度的多属性深度神经协同推荐模型
19
作者 李昌兵 王霞 邓江洲 《重庆理工大学学报(自然科学)》 北大核心 2025年第1期75-82,共8页
现有大多数深度学习推荐模型只使用用户的单一评分信息进行模型训练,忽视了用户在项目不同属性上的偏好行为,这在一定程度上影响推荐准确性。为此,提出一种融合项目评分不确定度的多属性深度神经协同推荐模型来学习用户在项目各属性上... 现有大多数深度学习推荐模型只使用用户的单一评分信息进行模型训练,忽视了用户在项目不同属性上的偏好行为,这在一定程度上影响推荐准确性。为此,提出一种融合项目评分不确定度的多属性深度神经协同推荐模型来学习用户在项目各属性上的评分行为,高效捕捉用户的多维度偏好特征。为使模型能充分考虑用户对项目各属性的评分分布一致性,引入项目评分不确定度来提取项目的个性化属性特征,并将其作为多属性评分的权重因子来修正模型的初始预测结果。利用修正后的多属性评分来预测用户偏好,证明所提模型能为用户提供更为准确的推荐。在2个真实数据集上的实验结果表明:相较于次优对比方法,所提模型在评估指标F 1和NDCG方面分别最高增长4.3%和3.9%,模型的推荐能力强,能提高推荐质量。 展开更多
关键词 项目评分不确定度 多属性推荐模型 深度神经网络 协同过滤
在线阅读 下载PDF
深度学习在气象数据挖掘中的应用
20
作者 田伟 秦子航 +2 位作者 乔建权 吴云龙 林陈 《中国科技论文》 2025年第4期277-286,共10页
在全球气候变化加剧和极端天气事件频发的背景下,气象数据的规模和技术复杂性显著增加,传统气象数据挖掘方法,如决策树、聚类分析等,在处理小规模数据时表现良好,但在应对大规模、多维度、非线性的气象数据时存在局限性。近年来,凭借在... 在全球气候变化加剧和极端天气事件频发的背景下,气象数据的规模和技术复杂性显著增加,传统气象数据挖掘方法,如决策树、聚类分析等,在处理小规模数据时表现良好,但在应对大规模、多维度、非线性的气象数据时存在局限性。近年来,凭借在图像识别和自然语言处理等领域的强大特征提取和非线性建模能力,深度学习逐渐被应用于气象数据挖掘。综述了气象数据类型、深度学习模型及其在气象数据挖掘中的具体任务,分别对比了深度学习与数值天气预报(numerical weather prediction,NWP)、深度学习与传统气象数据挖掘方法的优劣,并探讨了AI气象大模型的应用。最后,对未来研究方向进行了展望,强调了深度学习在气象数据挖掘中的潜力和挑战。 展开更多
关键词 气象数据 数据挖掘 深度学习 气象大模型 神经网络 综述
在线阅读 下载PDF
上一页 1 2 50 下一页 到第
使用帮助 返回顶部