[Objective]Accurate prediction of tomato growth height is crucial for optimizing production environments in smart farming.However,current prediction methods predominantly rely on empirical,mechanistic,or learning-base...[Objective]Accurate prediction of tomato growth height is crucial for optimizing production environments in smart farming.However,current prediction methods predominantly rely on empirical,mechanistic,or learning-based models that utilize either images data or environmental data.These methods fail to fully leverage multi-modal data to capture the diverse aspects of plant growth comprehensively.[Methods]To address this limitation,a two-stage phenotypic feature extraction(PFE)model based on deep learning algorithm of recurrent neural network(RNN)and long short-term memory(LSTM)was developed.The model integrated environment and plant information to provide a holistic understanding of the growth process,emploied phenotypic and temporal feature extractors to comprehensively capture both types of features,enabled a deeper understanding of the interaction between tomato plants and their environment,ultimately leading to highly accurate predictions of growth height.[Results and Discussions]The experimental results showed the model's ef‐fectiveness:When predicting the next two days based on the past five days,the PFE-based RNN and LSTM models achieved mean absolute percentage error(MAPE)of 0.81%and 0.40%,respectively,which were significantly lower than the 8.00%MAPE of the large language model(LLM)and 6.72%MAPE of the Transformer-based model.In longer-term predictions,the 10-day prediction for 4 days ahead and the 30-day prediction for 12 days ahead,the PFE-RNN model continued to outperform the other two baseline models,with MAPE of 2.66%and 14.05%,respectively.[Conclusions]The proposed method,which leverages phenotypic-temporal collaboration,shows great potential for intelligent,data-driven management of tomato cultivation,making it a promising approach for enhancing the efficiency and precision of smart tomato planting management.展开更多
Semantic communication,as a critical component of artificial intelligence(AI),has gained increasing attention in recent years due to its significant impact on various fields.In this paper,we focus on the applications ...Semantic communication,as a critical component of artificial intelligence(AI),has gained increasing attention in recent years due to its significant impact on various fields.In this paper,we focus on the applications of semantic feature extraction,a key step in the semantic communication,in several areas of artificial intelligence,including natural language processing,medical imaging,remote sensing,autonomous driving,and other image-related applications.Specifically,we discuss how semantic feature extraction can enhance the accuracy and efficiency of natural language processing tasks,such as text classification,sentiment analysis,and topic modeling.In the medical imaging field,we explore how semantic feature extraction can be used for disease diagnosis,drug development,and treatment planning.In addition,we investigate the applications of semantic feature extraction in remote sensing and autonomous driving,where it can facilitate object detection,scene understanding,and other tasks.By providing an overview of the applications of semantic feature extraction in various fields,this paper aims to provide insights into the potential of this technology to advance the development of artificial intelligence.展开更多
A potential concept that could be effective for multiple applications is a“cyber-physical system”(CPS).The Internet of Things(IoT)has evolved as a research area,presenting new challenges in obtaining valuable data t...A potential concept that could be effective for multiple applications is a“cyber-physical system”(CPS).The Internet of Things(IoT)has evolved as a research area,presenting new challenges in obtaining valuable data through environmental monitoring.The existing work solely focuses on classifying the audio system of CPS without utilizing feature extraction.This study employs a deep learning method,CNN-LSTM,and two-way feature extraction to classify audio systems within CPS.The primary objective of this system,which is built upon a convolutional neural network(CNN)with Long Short Term Memory(LSTM),is to analyze the vocalization patterns of two different species of anurans.It has been demonstrated that CNNs,when combined with mel-spectrograms for sound analysis,are suitable for classifying ambient noises.Initially,the data is augmented and preprocessed.Next,the mel spectrogram features are extracted through two-way feature extraction.First,Principal Component Analysis(PCA)is utilized for dimensionality reduction,followed by Transfer learning for audio feature extraction.Finally,the classification is performed using the CNN-LSTM process.This methodology can potentially be employed for categorizing various biological acoustic objects and analyzing biodiversity indexes in natural environments,resulting in high classification accuracy.The study highlights that this CNNLSTM approach enables cost-effective and resource-efficient monitoring of large natural regions.The dissemination of updated CNN-LSTM models across distant IoT nodes is facilitated flexibly and dynamically through the utilization of CPS.展开更多
Hematoxylin and Eosin(H&E)images,popularly used in the field of digital pathology,often pose challenges due to their limited color richness,hindering the differentiation of subtle cell features crucial for accurat...Hematoxylin and Eosin(H&E)images,popularly used in the field of digital pathology,often pose challenges due to their limited color richness,hindering the differentiation of subtle cell features crucial for accurate classification.Enhancing the visibility of these elusive cell features helps train robust deep-learning models.However,the selection and application of image processing techniques for such enhancement have not been systematically explored in the research community.To address this challenge,we introduce Salient Features Guided Augmentation(SFGA),an approach that strategically integrates machine learning and image processing.SFGA utilizes machine learning algorithms to identify crucial features within cell images,subsequently mapping these features to appropriate image processing techniques to enhance training images.By emphasizing salient features and aligning them with corresponding image processing methods,SFGA is designed to enhance the discriminating power of deep learning models in cell classification tasks.Our research undertakes a series of experiments,each exploring the performance of different datasets and data enhancement techniques in classifying cell types,highlighting the significance of data quality and enhancement in mitigating overfitting and distinguishing cell characteristics.Specifically,SFGA focuses on identifying tumor cells from tissue for extranodal extension detection,with the SFGA-enhanced dataset showing notable advantages in accuracy.We conducted a preliminary study of five experiments,among which the accuracy of the pleomorphism experiment improved significantly from 50.81%to 95.15%.The accuracy of the other four experiments also increased,with improvements ranging from 3 to 43 percentage points.Our preliminary study shows the possibilities to enhance the diagnostic accuracy of deep learning models and proposes a systematic approach that could enhance cancer diagnosis,contributing as a first step in using SFGA in medical image enhancement.展开更多
Photovoltaic(PV)boards are a perfect way to create eco-friendly power from daylight.The defects in the PV panels are caused by various conditions;such defective PV panels need continuous monitoring.The recent developm...Photovoltaic(PV)boards are a perfect way to create eco-friendly power from daylight.The defects in the PV panels are caused by various conditions;such defective PV panels need continuous monitoring.The recent development of PV panel monitoring systems provides a modest and viable approach to monitoring and managing the condition of the PV plants.In general,conventional procedures are used to identify the faulty modules earlier and to avoid declines in power generation.The existing deep learning architectures provide the required output to predict the faulty PV panels with less accuracy and a more time-consuming process.To increase the accuracy and to reduce the processing time,a new Convolutional Neural Network(CNN)architecture is required.Hence,in the present work,a new Real-time Multi Variant Deep learning Model(RMVDM)architecture is proposed,and it extracts the image features and classifies the defects in PV panels quickly with high accuracy.The defects that arise in the PV panels are identified by the CNN based RMVDM using RGB images.The biggest difference between CNN and its predecessors is that CNN automatically extracts the image features without any help from a person.The technique is quantitatively assessed and compared with existing faulty PV board identification approaches on the large real-time dataset.The results show that 98%of the accuracy and recall values in the fault detection and classification process.展开更多
This paper proposes a novel open set recognition method,the Spatial Distribution Feature Extraction Network(SDFEN),to address the problem of electromagnetic signal recognition in an open environment.The spatial distri...This paper proposes a novel open set recognition method,the Spatial Distribution Feature Extraction Network(SDFEN),to address the problem of electromagnetic signal recognition in an open environment.The spatial distribution feature extraction layer in SDFEN replaces convolutional output neural networks with the spatial distribution features that focus more on inter-sample information by incorporating class center vectors.The designed hybrid loss function considers both intra-class distance and inter-class distance,thereby enhancing the similarity among samples of the same class and increasing the dissimilarity between samples of different classes during training.Consequently,this method allows unknown classes to occupy a larger space in the feature space.This reduces the possibility of overlap with known class samples and makes the boundaries between known and unknown samples more distinct.Additionally,the feature comparator threshold can be used to reject unknown samples.For signal open set recognition,seven methods,including the proposed method,are applied to two kinds of electromagnetic signal data:modulation signal and real-world emitter.The experimental results demonstrate that the proposed method outperforms the other six methods overall in a simulated open environment.Specifically,compared to the state-of-the-art Openmax method,the novel method achieves up to 8.87%and 5.25%higher micro-F-measures,respectively.展开更多
The prediction of particles less than 2.5 micrometers in diameter(PM2.5)in fog and haze has been paid more and more attention,but the prediction accuracy of the results is not ideal.Haze prediction algorithms based on...The prediction of particles less than 2.5 micrometers in diameter(PM2.5)in fog and haze has been paid more and more attention,but the prediction accuracy of the results is not ideal.Haze prediction algorithms based on traditional numerical and statistical prediction have poor effects on nonlinear data prediction of haze.In order to improve the effects of prediction,this paper proposes a haze feature extraction and pollution level identification pre-warning algorithm based on feature selection and integrated learning.Minimum Redundancy Maximum Relevance method is used to extract low-level features of haze,and deep confidence network is utilized to extract high-level features.eXtreme Gradient Boosting algorithm is adopted to fuse low-level and high-level features,as well as predict haze.Establish PM2.5 concentration pollution grade classification index,and grade the forecast data.The expert experience knowledge is utilized to assist the optimization of the pre-warning results.The experiment results show the presented algorithm can get better prediction effects than the results of Support Vector Machine(SVM)and Back Propagation(BP)widely used at present,the accuracy has greatly improved compared with SVM and BP.展开更多
Parkinson’s disease(PD)is a neurodegenerative disease in the central nervous system.Recently,more researches have been conducted in the determination of PD prediction which is really a challenging task.Due to the dis...Parkinson’s disease(PD)is a neurodegenerative disease in the central nervous system.Recently,more researches have been conducted in the determination of PD prediction which is really a challenging task.Due to the disorders in the central nervous system,the syndromes like off sleep,speech disorders,olfactory and autonomic dysfunction,sensory disorder symptoms will occur.The earliest diagnosing of PD is very challenging among the doctors community.There are techniques that are available in order to predict PD using symptoms and disorder measurement.It helps to save a million lives of future by early prediction.In this article,the early diagnosing of PD using machine learning techniques with feature selection is carried out.In the first stage,the data preprocessing is used for the preparation of Parkinson’s disease data.In the second stage,MFEA is used for extracting features.In the third stage,the feature selection is performed using multiple feature input with a principal component analysis(PCA)algorithm.Finally,a Darknet Convolutional Neural Network(DNetCNN)is used to classify the PD patients.The main advantage of using PCA-DNetCNN is that,it provides the best classification in the image dataset using YOLO.In addition to that,the results of various existing methods are compared and the proposed DNetCNN proves better accuracy,performance in detecting the PD at the initial stages.DNetCNN achieves 97.5%of accuracy in detecting PD as early.Besides,the other performance metrics are compared in the result evaluation and it is proved that the proposed model outperforms all the other existing models.展开更多
Machine learning tasks such as image classification need to select the features that can describe the image well.The image has individual features and common features,and they are interdependent.If only the individual ...Machine learning tasks such as image classification need to select the features that can describe the image well.The image has individual features and common features,and they are interdependent.If only the individual features of the image are emphasized,the neural network is prone to overfitting.If only the common features of images are emphasized,neural networks will not be able to adapt to diversified learning environments.In order to better integrate individual features and common features,based on skeleton and edge individual features extraction,this paper designed a mixed feature extraction method based on reso-nancefiltering,named resonance layer.Resonance layer is in front of the neural network input layer,using K3M algorithm to extract image skeleton,using the Canny algorithm to extract image border,using resonancefiltering to reconstruct training image byfiltering image noise,through the common features of the images in the training set and efficient expression of individual characteristics to improve the efficiency of feature extraction of neural network,so as to improve the accuracy of neural network prediction.Taking the fully connected neural net-work and LeNet-5 neural networks for example,the experiment on handwritten digits database shows that the proposed mixed feature extraction method can improve the accuracy of training whilefiltering out part of image noise data.展开更多
Deep Learning is a powerful technique that is widely applied to Image Recognition and Natural Language Processing tasks amongst many other tasks. In this work, we propose an efficient technique to utilize pre-trained ...Deep Learning is a powerful technique that is widely applied to Image Recognition and Natural Language Processing tasks amongst many other tasks. In this work, we propose an efficient technique to utilize pre-trained Convolutional Neural Network (CNN) architectures to extract powerful features from images for object recognition purposes. We have built on the existing concept of extending the learning from pre-trained CNNs to new databases through activations by proposing to consider multiple deep layers. We have exploited the progressive learning that happens at the various intermediate layers of the CNNs to construct Deep Multi-Layer (DM-L) based Feature Extraction vectors to achieve excellent object recognition performance. Two popular pre-trained CNN architecture models i.e. the VGG_16 and VGG_19 have been used in this work to extract the feature sets from 3 deep fully connected multiple layers namely “fc6”, “fc7” and “fc8” from inside the models for object recognition purposes. Using the Principal Component Analysis (PCA) technique, the Dimensionality of the DM-L feature vectors has been reduced to form powerful feature vectors that have been fed to an external Classifier Ensemble for classification instead of the Softmax based classification layers of the two original pre-trained CNN models. The proposed DM-L technique has been applied to the Benchmark Caltech-101 object recognition database. Conventional wisdom may suggest that feature extractions based on the deepest layer i.e. “fc8” compared to “fc6” will result in the best recognition performance but our results have proved it otherwise for the two considered models. Our experiments have revealed that for the two models under consideration, the “fc6” based feature vectors have achieved the best recognition performance. State-of-the-Art recognition performances of 91.17% and 91.35% have been achieved by utilizing the “fc6” based feature vectors for the VGG_16 and VGG_19 models respectively. The recognition performance has been achieved by considering 30 sample images per class whereas the proposed system is capable of achieving improved performance by considering all sample images per class. Our research shows that for feature extraction based on CNNs, multiple layers should be considered and then the best layer can be selected that maximizes the recognition performance.展开更多
Nowadays, Iris recognition is a method of biometric verification of the person authentication process based on the human iris unique pattern, which is applied to control system for high level security. It is a popular...Nowadays, Iris recognition is a method of biometric verification of the person authentication process based on the human iris unique pattern, which is applied to control system for high level security. It is a popular system for recognizing humans and essential to understand it. The objective of this method is to assign a unique subject for each iris image for authentication of the person and provide an effective feature representation of the iris recognition with the image analysis. This paper proposed a new optimization and recognition process of iris features selection by using proposed Modified ADMM and Deep Learning Algorithm (MADLA). For improving the performance of the security with feature extraction, the proposed algorithm is designed and used to extract the strong features identification of iris of the person with less time, better accuracy, improving performance in access control and in security level. The evaluations of iris data are demonstrated the improvement of the recognition accuracy. In this proposed methodology, the recognition of the iris features has been improved and it incorporates into the iris recognition systems.展开更多
Diabetes or Diabetes Mellitus(DM)is the upset that happens due to high glucose level within the body.With the passage of time,this polygenic disease creates eye deficiency referred to as Diabetic Retinopathy(DR)which ...Diabetes or Diabetes Mellitus(DM)is the upset that happens due to high glucose level within the body.With the passage of time,this polygenic disease creates eye deficiency referred to as Diabetic Retinopathy(DR)which can cause a major loss of vision.The symptoms typically originate within the retinal space square in the form of enlarged veins,liquid dribble,exudates,haemorrhages and small scale aneurysms.In current therapeutic science,pictures are the key device for an exact finding of patients’illness.Meanwhile,an assessment of new medicinal symbolisms stays complex.Recently,Computer Vision(CV)with deep neural networks can train models with high accuracy.The thought behind this paper is to propose a computerized learning model to distinguish the key precursors of Dimensionality Reduction(DR).The proposed deep learning framework utilizes the strength of selected models(VGG and Inception V3)by fusing the extracated features.To select the most discriminant features from a pool of features,an entropy concept is employed before the classification step.The deep learning models are fit for measuring the highlights as veins,liquid dribble,exudates,haemorrhages and miniaturized scale aneurysms into various classes.The model will ascertain the loads,which give the seriousness level of the patient’s eye.The model will be useful to distinguish the correct class of seriousness of diabetic retinopathy pictures.展开更多
Considering that the algorithm accuracy of the traditional sparse representation models is not high under the influence of multiple complex environmental factors,this study focuses on the improvement of feature extrac...Considering that the algorithm accuracy of the traditional sparse representation models is not high under the influence of multiple complex environmental factors,this study focuses on the improvement of feature extraction and model construction.Firstly,the convolutional neural network(CNN)features of the face are extracted by the trained deep learning network.Next,the steady-state and dynamic classifiers for face recognition are constructed based on the CNN features and Haar features respectively,with two-stage sparse representation introduced in the process of constructing the steady-state classifier and the feature templates with high reliability are dynamically selected as alternative templates from the sparse representation template dictionary constructed using the CNN features.Finally,the results of face recognition are given based on the classification results of the steady-state classifier and the dynamic classifier together.Based on this,the feature weights of the steady-state classifier template are adjusted in real time and the dictionary set is dynamically updated to reduce the probability of irrelevant features entering the dictionary set.The average recognition accuracy of this method is 94.45%on the CMU PIE face database and 96.58%on the AR face database,which is significantly improved compared with that of the traditional face recognition methods.展开更多
Medical visual question answering(MedVQA)faces unique challenges due to the high precision required for images and the specialized nature of the questions.These challenges include insufficient feature extraction capab...Medical visual question answering(MedVQA)faces unique challenges due to the high precision required for images and the specialized nature of the questions.These challenges include insufficient feature extraction capabilities,a lack of textual priors,and incomplete information fusion and interaction.This paper proposes an enhanced bootstrapping language-image pre-training(BLIP)model for MedVQA based on multimodal feature augmentation and triple-path collaborative attention(FCA-BLIP)to address these issues.First,FCA-BLIP employs a unified bootstrap multimodal model architecture that integrates ResNet and bidirectional encoder representations from Transformer(BERT)models to enhance feature extraction capabilities.It enables a more precise analysis of the details in images and questions.Next,the pre-trained BLIP model is used to extract features from image-text sample pairs.The model can understand the semantic relationships and shared information between images and text.Finally,a novel attention structure is developed to fuse the multimodal feature vectors,thereby improving the alignment accuracy between modalities.Experimental results demonstrate that the proposed method performs well in clinical visual question-answering tasks.For the MedVQA task of staging diabetic macular edema in fundus imaging,the proposed method outperforms the existing major models in several performance metrics.展开更多
Background:Early and accurate diagnosis of cataracts,which ranks among the leading preventable causes of blindness,is critical to securing positive outcomes for patients.Recently,eye image analyses have used deep lear...Background:Early and accurate diagnosis of cataracts,which ranks among the leading preventable causes of blindness,is critical to securing positive outcomes for patients.Recently,eye image analyses have used deep learning(DL)approaches to automate cataract classification more precisely,leading to the development of the Multiscale Parallel Feature Aggregation Network with Attention Fusion(MPFAN-AF).Focused on improving a model’s performance,this approach applies multiscale feature extraction,parallel feature fusion,along with attention-based fusion to sharpen its focus on salient features,which are crucial in detecting cataracts.Methods:Coarse-level features are captured through the application of convolutional layers,and these features undergo refinement through layered kernels of varying sizes.Moreover,this method captures all the diverse representations of cataracts accurately by parallel feature aggregation.Utilizing the Cataract Eye Dataset available on Kaggle,containing 612 labelled images of eyes with and without cataracts proportionately(normal vs.pathological),this model was trained and tested.Results:Results using the proposed model reflect greater precision over traditional convolutional neural networks(CNNs)models,achieving a classification accuracy of 97.52%.Additionally,the model demonstrated exceptional performance in classification tasks.The ablation studies validated that all applications added value to the prediction process,particularly emphasizing the attention fusion module.Conclusion:The MPFAN-AF model demonstrates high efficiency together with interpretability because it shows promise as an integration solution for real-time mobile cataract detection screening systems.Standard performance indicators indicate that AI-based ophthalmology tools have a promising future for use in remote conditions that lack medical resources.展开更多
Recent advances in convolution neural network (CNN) have fostered the progress in object recognition and semantic segmentation, which in turn has improved the performance of hyperspectral image (HSI) classification. N...Recent advances in convolution neural network (CNN) have fostered the progress in object recognition and semantic segmentation, which in turn has improved the performance of hyperspectral image (HSI) classification. Nevertheless, the difficulty of high dimensional feature extraction and the shortage of small training samples seriously hinder the future development of HSI classification. In this paper, we propose a novel algorithm for HSI classification based on three-dimensional (3D) CNN and a feature pyramid network (FPN), called 3D-FPN. The framework contains a principle component analysis, a feature extraction structure and a logistic regression. Specifically, the FPN built with 3D convolutions not only retains the advantages of 3D convolution to fully extract the spectral-spatial feature maps, but also concentrates on more detailed information and performs multi-scale feature fusion. This method avoids the excessive complexity of the model and is suitable for small sample hyperspectral classification with varying categories and spatial resolutions. In order to test the performance of our proposed 3D-FPN method, rigorous experimental analysis was performed on three public hyperspectral data sets and hyperspectral data of GF-5 satellite. Quantitative and qualitative results indicated that our proposed method attained the best performance among other current state-of-the-art end-to-end deep learning-based methods.展开更多
Among all the plagues threatening cocoa cultivation in general, and particularly in West Africa, the swollen shoot viral disease is currently the most dangerous. The greatest challenge in the fight to eradicate this p...Among all the plagues threatening cocoa cultivation in general, and particularly in West Africa, the swollen shoot viral disease is currently the most dangerous. The greatest challenge in the fight to eradicate this pandemic remains its early detection. Traditional methods of swollen shoot detection are mostly based on visual observations, leading to late detection and/or diagnostic errors. The use of machine learning algorithms is now an alternative for effective plant disease detection. It is therefore crucial to provide efficient solutions to farmers’ cooperatives. In our study, we built a database of healthy and diseased cocoa leaves. We then explored the power of feature extractors based on convolutional neural networks such as VGG 19, Inception V3, DenseNet 201, and a custom CNN, combining their strengths with the XGBOOST classifier. The results of our experiments showed that this fusion of methods with XGBOOST yielded highly promising scores, outperforming the results of algorithms using the sigmoid function. These results were further consolidated by the use of evaluation metrics such as accuracy, mean squared error, F score, recall, and Matthews’s correlation coefficient. The proposed approach, combining state of the art feature extractors and the XGBOOST classifier, offers an efficient and reliable solution for the early detection of swollen shoot. Its implementation could significantly assist West African cocoa farmers in combating this devastating disease and preserving their crops.展开更多
Brain cancer detection and classification is done utilizing distinct medical imaging modalities like computed tomography(CT),or magnetic resonance imaging(MRI).An automated brain cancer classification using computer a...Brain cancer detection and classification is done utilizing distinct medical imaging modalities like computed tomography(CT),or magnetic resonance imaging(MRI).An automated brain cancer classification using computer aided diagnosis(CAD)models can be designed to assist radiologists.With the recent advancement in computer vision(CV)and deep learning(DL)models,it is possible to automatically detect the tumor from images using a computer-aided design.This study focuses on the design of automated Henry Gas Solubility Optimization with Fusion of Handcrafted and Deep Features(HGSO-FHDF)technique for brain cancer classification.The proposed HGSO-FHDF technique aims for detecting and classifying different stages of brain tumors.The proposed HGSO-FHDF technique involves Gabor filtering(GF)technique for removing the noise and enhancing the quality of MRI images.In addition,Tsallis entropy based image segmentation approach is applied to determine injured brain regions in the MRI image.Moreover,a fusion of handcrafted with deep features using Residual Network(ResNet)is utilized as feature extractors.Finally,HGSO algorithm with kernel extreme learning machine(KELM)model was utilized for identifying the presence of brain tumors.For examining the enhanced brain tumor classification performance,a comprehensive set of simulations take place on the BRATS 2015 dataset.展开更多
Background—Human Gait Recognition(HGR)is an approach based on biometric and is being widely used for surveillance.HGR is adopted by researchers for the past several decades.Several factors are there that affect the s...Background—Human Gait Recognition(HGR)is an approach based on biometric and is being widely used for surveillance.HGR is adopted by researchers for the past several decades.Several factors are there that affect the system performance such as the walking variation due to clothes,a person carrying some luggage,variations in the view angle.Proposed—In this work,a new method is introduced to overcome different problems of HGR.A hybrid method is proposed or efficient HGR using deep learning and selection of best features.Four major steps are involved in this work-preprocessing of the video frames,manipulation of the pre-trained CNN model VGG-16 for the computation of the features,removing redundant features extracted from the CNN model,and classification.In the reduction of irrelevant features Principal Score and Kurtosis based approach is proposed named PSbK.After that,the features of PSbK are fused in one materix.Finally,this fused vector is fed to the One against All Multi Support Vector Machine(OAMSVM)classifier for the final results.Results—The system is evaluated by utilizing the CASIA B database and six angles 00◦,18◦,36◦,54◦,72◦,and 90◦are used and attained the accuracy of 95.80%,96.0%,95.90%,96.20%,95.60%,and 95.50%,respectively.Conclusion—The comparison with recent methods show the proposed method work better.展开更多
Individual identification of dairy cows is the prerequisite for automatic analysis and intelligent perception of dairy cows'behavior.At present,individual identification of dairy cows based on deep convolutional n...Individual identification of dairy cows is the prerequisite for automatic analysis and intelligent perception of dairy cows'behavior.At present,individual identification of dairy cows based on deep convolutional neural network had the disadvantages in prolonged training at the additions of new cows samples.Therefore,a cow individual identification framework was proposed based on deep feature extraction and matching,and the individual identification of dairy cows based on this framework could avoid repeated training.Firstly,the trained convolutional neural network model was used as the feature extractor;secondly,the feature extraction was used to extract features and stored the features into the template feature library to complete the enrollment;finally,the identifies of dairy cows were identified.Based on this framework,when new cows joined the herd,enrollment could be completed quickly.In order to evaluate the application performance of this method in closed-set and open-set individual identification of dairy cows,back images of 524 cows were collected,among which the back images of 150 cows were selected as the training data to train feature extractor.The data of the remaining 374 cows were used to generate the template data set and the data to be identified.The experiment results showed that in the closed-set individual identification of dairy cows,the highest identification accuracy of top-1 was 99.73%,the highest identification accuracy from top-2 to top-5 was 100%,and the identification time of a single cow was 0.601 s,this method was verified to be effective.In the open-set individual identification of dairy cows,the recall was 90.38%,and the accuracy was 89.46%.When false accept rate(FAR)=0.05,true accept rate(TAR)=84.07%,this method was verified that the application had certain research value in open-set individual identification of dairy cows,which provided a certain idea for the application of individual identification in the field of intelligent animal husbandry.展开更多
文摘[Objective]Accurate prediction of tomato growth height is crucial for optimizing production environments in smart farming.However,current prediction methods predominantly rely on empirical,mechanistic,or learning-based models that utilize either images data or environmental data.These methods fail to fully leverage multi-modal data to capture the diverse aspects of plant growth comprehensively.[Methods]To address this limitation,a two-stage phenotypic feature extraction(PFE)model based on deep learning algorithm of recurrent neural network(RNN)and long short-term memory(LSTM)was developed.The model integrated environment and plant information to provide a holistic understanding of the growth process,emploied phenotypic and temporal feature extractors to comprehensively capture both types of features,enabled a deeper understanding of the interaction between tomato plants and their environment,ultimately leading to highly accurate predictions of growth height.[Results and Discussions]The experimental results showed the model's ef‐fectiveness:When predicting the next two days based on the past five days,the PFE-based RNN and LSTM models achieved mean absolute percentage error(MAPE)of 0.81%and 0.40%,respectively,which were significantly lower than the 8.00%MAPE of the large language model(LLM)and 6.72%MAPE of the Transformer-based model.In longer-term predictions,the 10-day prediction for 4 days ahead and the 30-day prediction for 12 days ahead,the PFE-RNN model continued to outperform the other two baseline models,with MAPE of 2.66%and 14.05%,respectively.[Conclusions]The proposed method,which leverages phenotypic-temporal collaboration,shows great potential for intelligent,data-driven management of tomato cultivation,making it a promising approach for enhancing the efficiency and precision of smart tomato planting management.
文摘Semantic communication,as a critical component of artificial intelligence(AI),has gained increasing attention in recent years due to its significant impact on various fields.In this paper,we focus on the applications of semantic feature extraction,a key step in the semantic communication,in several areas of artificial intelligence,including natural language processing,medical imaging,remote sensing,autonomous driving,and other image-related applications.Specifically,we discuss how semantic feature extraction can enhance the accuracy and efficiency of natural language processing tasks,such as text classification,sentiment analysis,and topic modeling.In the medical imaging field,we explore how semantic feature extraction can be used for disease diagnosis,drug development,and treatment planning.In addition,we investigate the applications of semantic feature extraction in remote sensing and autonomous driving,where it can facilitate object detection,scene understanding,and other tasks.By providing an overview of the applications of semantic feature extraction in various fields,this paper aims to provide insights into the potential of this technology to advance the development of artificial intelligence.
基金Funded by Institutional Fund Projects under Grant No.IFPIP:236-611-1442 by Ministry of Education and King Abdulaziz University,Jeddah,Saudi Arabia(A.O.A.).
文摘A potential concept that could be effective for multiple applications is a“cyber-physical system”(CPS).The Internet of Things(IoT)has evolved as a research area,presenting new challenges in obtaining valuable data through environmental monitoring.The existing work solely focuses on classifying the audio system of CPS without utilizing feature extraction.This study employs a deep learning method,CNN-LSTM,and two-way feature extraction to classify audio systems within CPS.The primary objective of this system,which is built upon a convolutional neural network(CNN)with Long Short Term Memory(LSTM),is to analyze the vocalization patterns of two different species of anurans.It has been demonstrated that CNNs,when combined with mel-spectrograms for sound analysis,are suitable for classifying ambient noises.Initially,the data is augmented and preprocessed.Next,the mel spectrogram features are extracted through two-way feature extraction.First,Principal Component Analysis(PCA)is utilized for dimensionality reduction,followed by Transfer learning for audio feature extraction.Finally,the classification is performed using the CNN-LSTM process.This methodology can potentially be employed for categorizing various biological acoustic objects and analyzing biodiversity indexes in natural environments,resulting in high classification accuracy.The study highlights that this CNNLSTM approach enables cost-effective and resource-efficient monitoring of large natural regions.The dissemination of updated CNN-LSTM models across distant IoT nodes is facilitated flexibly and dynamically through the utilization of CPS.
基金supported by grants fromthe North China University of Technology Research Start-Up Fund(11005136024XN147-14)and(110051360024XN151-97)Guangzhou Development Zone Science and Technology Project(2023GH02)+4 种基金the National Key R&D Program of China(2021YFE0201100 and 2022YFA1103401 to Juntao Gao)National Natural Science Foundation of China(981890991 to Juntao Gao)Beijing Municipal Natural Science Foundation(Z200021 to Juntao Gao)CAS Interdisciplinary Innovation Team(JCTD-2020-04 to Juntao Gao)0032/2022/A,by Macao FDCT,and MYRG2022-00271-FST.
文摘Hematoxylin and Eosin(H&E)images,popularly used in the field of digital pathology,often pose challenges due to their limited color richness,hindering the differentiation of subtle cell features crucial for accurate classification.Enhancing the visibility of these elusive cell features helps train robust deep-learning models.However,the selection and application of image processing techniques for such enhancement have not been systematically explored in the research community.To address this challenge,we introduce Salient Features Guided Augmentation(SFGA),an approach that strategically integrates machine learning and image processing.SFGA utilizes machine learning algorithms to identify crucial features within cell images,subsequently mapping these features to appropriate image processing techniques to enhance training images.By emphasizing salient features and aligning them with corresponding image processing methods,SFGA is designed to enhance the discriminating power of deep learning models in cell classification tasks.Our research undertakes a series of experiments,each exploring the performance of different datasets and data enhancement techniques in classifying cell types,highlighting the significance of data quality and enhancement in mitigating overfitting and distinguishing cell characteristics.Specifically,SFGA focuses on identifying tumor cells from tissue for extranodal extension detection,with the SFGA-enhanced dataset showing notable advantages in accuracy.We conducted a preliminary study of five experiments,among which the accuracy of the pleomorphism experiment improved significantly from 50.81%to 95.15%.The accuracy of the other four experiments also increased,with improvements ranging from 3 to 43 percentage points.Our preliminary study shows the possibilities to enhance the diagnostic accuracy of deep learning models and proposes a systematic approach that could enhance cancer diagnosis,contributing as a first step in using SFGA in medical image enhancement.
文摘Photovoltaic(PV)boards are a perfect way to create eco-friendly power from daylight.The defects in the PV panels are caused by various conditions;such defective PV panels need continuous monitoring.The recent development of PV panel monitoring systems provides a modest and viable approach to monitoring and managing the condition of the PV plants.In general,conventional procedures are used to identify the faulty modules earlier and to avoid declines in power generation.The existing deep learning architectures provide the required output to predict the faulty PV panels with less accuracy and a more time-consuming process.To increase the accuracy and to reduce the processing time,a new Convolutional Neural Network(CNN)architecture is required.Hence,in the present work,a new Real-time Multi Variant Deep learning Model(RMVDM)architecture is proposed,and it extracts the image features and classifies the defects in PV panels quickly with high accuracy.The defects that arise in the PV panels are identified by the CNN based RMVDM using RGB images.The biggest difference between CNN and its predecessors is that CNN automatically extracts the image features without any help from a person.The technique is quantitatively assessed and compared with existing faulty PV board identification approaches on the large real-time dataset.The results show that 98%of the accuracy and recall values in the fault detection and classification process.
文摘This paper proposes a novel open set recognition method,the Spatial Distribution Feature Extraction Network(SDFEN),to address the problem of electromagnetic signal recognition in an open environment.The spatial distribution feature extraction layer in SDFEN replaces convolutional output neural networks with the spatial distribution features that focus more on inter-sample information by incorporating class center vectors.The designed hybrid loss function considers both intra-class distance and inter-class distance,thereby enhancing the similarity among samples of the same class and increasing the dissimilarity between samples of different classes during training.Consequently,this method allows unknown classes to occupy a larger space in the feature space.This reduces the possibility of overlap with known class samples and makes the boundaries between known and unknown samples more distinct.Additionally,the feature comparator threshold can be used to reject unknown samples.For signal open set recognition,seven methods,including the proposed method,are applied to two kinds of electromagnetic signal data:modulation signal and real-world emitter.The experimental results demonstrate that the proposed method outperforms the other six methods overall in a simulated open environment.Specifically,compared to the state-of-the-art Openmax method,the novel method achieves up to 8.87%and 5.25%higher micro-F-measures,respectively.
基金The work was financially supported by National Natural Science Fund of China,specific grant numbers were 61371143 and 61662033initials of authors who received the grants were respectively Z.YM,H.L,and the URLs to sponsors’websites was http://www.nsfc.gov.cn/.This paper was supported by National Natural Science Fund of China(Grant Nos.61371143,61662033).
文摘The prediction of particles less than 2.5 micrometers in diameter(PM2.5)in fog and haze has been paid more and more attention,but the prediction accuracy of the results is not ideal.Haze prediction algorithms based on traditional numerical and statistical prediction have poor effects on nonlinear data prediction of haze.In order to improve the effects of prediction,this paper proposes a haze feature extraction and pollution level identification pre-warning algorithm based on feature selection and integrated learning.Minimum Redundancy Maximum Relevance method is used to extract low-level features of haze,and deep confidence network is utilized to extract high-level features.eXtreme Gradient Boosting algorithm is adopted to fuse low-level and high-level features,as well as predict haze.Establish PM2.5 concentration pollution grade classification index,and grade the forecast data.The expert experience knowledge is utilized to assist the optimization of the pre-warning results.The experiment results show the presented algorithm can get better prediction effects than the results of Support Vector Machine(SVM)and Back Propagation(BP)widely used at present,the accuracy has greatly improved compared with SVM and BP.
文摘Parkinson’s disease(PD)is a neurodegenerative disease in the central nervous system.Recently,more researches have been conducted in the determination of PD prediction which is really a challenging task.Due to the disorders in the central nervous system,the syndromes like off sleep,speech disorders,olfactory and autonomic dysfunction,sensory disorder symptoms will occur.The earliest diagnosing of PD is very challenging among the doctors community.There are techniques that are available in order to predict PD using symptoms and disorder measurement.It helps to save a million lives of future by early prediction.In this article,the early diagnosing of PD using machine learning techniques with feature selection is carried out.In the first stage,the data preprocessing is used for the preparation of Parkinson’s disease data.In the second stage,MFEA is used for extracting features.In the third stage,the feature selection is performed using multiple feature input with a principal component analysis(PCA)algorithm.Finally,a Darknet Convolutional Neural Network(DNetCNN)is used to classify the PD patients.The main advantage of using PCA-DNetCNN is that,it provides the best classification in the image dataset using YOLO.In addition to that,the results of various existing methods are compared and the proposed DNetCNN proves better accuracy,performance in detecting the PD at the initial stages.DNetCNN achieves 97.5%of accuracy in detecting PD as early.Besides,the other performance metrics are compared in the result evaluation and it is proved that the proposed model outperforms all the other existing models.
基金supported by National Natural Science Foundation of China(Youth program,No.82004499,Youwei Ding,https://www.nsfc.gov.cn/)Project of Natural Science Research of the Universities of Jiangsu Province(No.20KJB520030,Yihua Song,http://jyt.jiangsu.gov.cn/)the Qing Lan Project of Jiangsu Province(Xia Zhang,http://jyt.jiangsu.gov.cn/).
文摘Machine learning tasks such as image classification need to select the features that can describe the image well.The image has individual features and common features,and they are interdependent.If only the individual features of the image are emphasized,the neural network is prone to overfitting.If only the common features of images are emphasized,neural networks will not be able to adapt to diversified learning environments.In order to better integrate individual features and common features,based on skeleton and edge individual features extraction,this paper designed a mixed feature extraction method based on reso-nancefiltering,named resonance layer.Resonance layer is in front of the neural network input layer,using K3M algorithm to extract image skeleton,using the Canny algorithm to extract image border,using resonancefiltering to reconstruct training image byfiltering image noise,through the common features of the images in the training set and efficient expression of individual characteristics to improve the efficiency of feature extraction of neural network,so as to improve the accuracy of neural network prediction.Taking the fully connected neural net-work and LeNet-5 neural networks for example,the experiment on handwritten digits database shows that the proposed mixed feature extraction method can improve the accuracy of training whilefiltering out part of image noise data.
文摘Deep Learning is a powerful technique that is widely applied to Image Recognition and Natural Language Processing tasks amongst many other tasks. In this work, we propose an efficient technique to utilize pre-trained Convolutional Neural Network (CNN) architectures to extract powerful features from images for object recognition purposes. We have built on the existing concept of extending the learning from pre-trained CNNs to new databases through activations by proposing to consider multiple deep layers. We have exploited the progressive learning that happens at the various intermediate layers of the CNNs to construct Deep Multi-Layer (DM-L) based Feature Extraction vectors to achieve excellent object recognition performance. Two popular pre-trained CNN architecture models i.e. the VGG_16 and VGG_19 have been used in this work to extract the feature sets from 3 deep fully connected multiple layers namely “fc6”, “fc7” and “fc8” from inside the models for object recognition purposes. Using the Principal Component Analysis (PCA) technique, the Dimensionality of the DM-L feature vectors has been reduced to form powerful feature vectors that have been fed to an external Classifier Ensemble for classification instead of the Softmax based classification layers of the two original pre-trained CNN models. The proposed DM-L technique has been applied to the Benchmark Caltech-101 object recognition database. Conventional wisdom may suggest that feature extractions based on the deepest layer i.e. “fc8” compared to “fc6” will result in the best recognition performance but our results have proved it otherwise for the two considered models. Our experiments have revealed that for the two models under consideration, the “fc6” based feature vectors have achieved the best recognition performance. State-of-the-Art recognition performances of 91.17% and 91.35% have been achieved by utilizing the “fc6” based feature vectors for the VGG_16 and VGG_19 models respectively. The recognition performance has been achieved by considering 30 sample images per class whereas the proposed system is capable of achieving improved performance by considering all sample images per class. Our research shows that for feature extraction based on CNNs, multiple layers should be considered and then the best layer can be selected that maximizes the recognition performance.
文摘Nowadays, Iris recognition is a method of biometric verification of the person authentication process based on the human iris unique pattern, which is applied to control system for high level security. It is a popular system for recognizing humans and essential to understand it. The objective of this method is to assign a unique subject for each iris image for authentication of the person and provide an effective feature representation of the iris recognition with the image analysis. This paper proposed a new optimization and recognition process of iris features selection by using proposed Modified ADMM and Deep Learning Algorithm (MADLA). For improving the performance of the security with feature extraction, the proposed algorithm is designed and used to extract the strong features identification of iris of the person with less time, better accuracy, improving performance in access control and in security level. The evaluations of iris data are demonstrated the improvement of the recognition accuracy. In this proposed methodology, the recognition of the iris features has been improved and it incorporates into the iris recognition systems.
基金This work was supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.NRF-2021R1A2C1010362)and the Soonchunhyang University Research Fund.
文摘Diabetes or Diabetes Mellitus(DM)is the upset that happens due to high glucose level within the body.With the passage of time,this polygenic disease creates eye deficiency referred to as Diabetic Retinopathy(DR)which can cause a major loss of vision.The symptoms typically originate within the retinal space square in the form of enlarged veins,liquid dribble,exudates,haemorrhages and small scale aneurysms.In current therapeutic science,pictures are the key device for an exact finding of patients’illness.Meanwhile,an assessment of new medicinal symbolisms stays complex.Recently,Computer Vision(CV)with deep neural networks can train models with high accuracy.The thought behind this paper is to propose a computerized learning model to distinguish the key precursors of Dimensionality Reduction(DR).The proposed deep learning framework utilizes the strength of selected models(VGG and Inception V3)by fusing the extracated features.To select the most discriminant features from a pool of features,an entropy concept is employed before the classification step.The deep learning models are fit for measuring the highlights as veins,liquid dribble,exudates,haemorrhages and miniaturized scale aneurysms into various classes.The model will ascertain the loads,which give the seriousness level of the patient’s eye.The model will be useful to distinguish the correct class of seriousness of diabetic retinopathy pictures.
基金the financial support from Natural Science Foundation of Gansu Province(Nos.22JR5RA217,22JR5RA216)Lanzhou Science and Technology Program(No.2022-2-111)+1 种基金Lanzhou University of Arts and Sciences School Innovation Fund Project(No.XJ2022000103)Lanzhou College of Arts and Sciences 2023 Talent Cultivation Quality Improvement Project(No.2023-ZL-jxzz-03)。
文摘Considering that the algorithm accuracy of the traditional sparse representation models is not high under the influence of multiple complex environmental factors,this study focuses on the improvement of feature extraction and model construction.Firstly,the convolutional neural network(CNN)features of the face are extracted by the trained deep learning network.Next,the steady-state and dynamic classifiers for face recognition are constructed based on the CNN features and Haar features respectively,with two-stage sparse representation introduced in the process of constructing the steady-state classifier and the feature templates with high reliability are dynamically selected as alternative templates from the sparse representation template dictionary constructed using the CNN features.Finally,the results of face recognition are given based on the classification results of the steady-state classifier and the dynamic classifier together.Based on this,the feature weights of the steady-state classifier template are adjusted in real time and the dictionary set is dynamically updated to reduce the probability of irrelevant features entering the dictionary set.The average recognition accuracy of this method is 94.45%on the CMU PIE face database and 96.58%on the AR face database,which is significantly improved compared with that of the traditional face recognition methods.
基金Supported by the Program for Liaoning Excellent Talents in University(No.LR15045)the Liaoning Provincial Science and Technology Department Applied Basic Research Plan(No.101300243).
文摘Medical visual question answering(MedVQA)faces unique challenges due to the high precision required for images and the specialized nature of the questions.These challenges include insufficient feature extraction capabilities,a lack of textual priors,and incomplete information fusion and interaction.This paper proposes an enhanced bootstrapping language-image pre-training(BLIP)model for MedVQA based on multimodal feature augmentation and triple-path collaborative attention(FCA-BLIP)to address these issues.First,FCA-BLIP employs a unified bootstrap multimodal model architecture that integrates ResNet and bidirectional encoder representations from Transformer(BERT)models to enhance feature extraction capabilities.It enables a more precise analysis of the details in images and questions.Next,the pre-trained BLIP model is used to extract features from image-text sample pairs.The model can understand the semantic relationships and shared information between images and text.Finally,a novel attention structure is developed to fuse the multimodal feature vectors,thereby improving the alignment accuracy between modalities.Experimental results demonstrate that the proposed method performs well in clinical visual question-answering tasks.For the MedVQA task of staging diabetic macular edema in fundus imaging,the proposed method outperforms the existing major models in several performance metrics.
文摘Background:Early and accurate diagnosis of cataracts,which ranks among the leading preventable causes of blindness,is critical to securing positive outcomes for patients.Recently,eye image analyses have used deep learning(DL)approaches to automate cataract classification more precisely,leading to the development of the Multiscale Parallel Feature Aggregation Network with Attention Fusion(MPFAN-AF).Focused on improving a model’s performance,this approach applies multiscale feature extraction,parallel feature fusion,along with attention-based fusion to sharpen its focus on salient features,which are crucial in detecting cataracts.Methods:Coarse-level features are captured through the application of convolutional layers,and these features undergo refinement through layered kernels of varying sizes.Moreover,this method captures all the diverse representations of cataracts accurately by parallel feature aggregation.Utilizing the Cataract Eye Dataset available on Kaggle,containing 612 labelled images of eyes with and without cataracts proportionately(normal vs.pathological),this model was trained and tested.Results:Results using the proposed model reflect greater precision over traditional convolutional neural networks(CNNs)models,achieving a classification accuracy of 97.52%.Additionally,the model demonstrated exceptional performance in classification tasks.The ablation studies validated that all applications added value to the prediction process,particularly emphasizing the attention fusion module.Conclusion:The MPFAN-AF model demonstrates high efficiency together with interpretability because it shows promise as an integration solution for real-time mobile cataract detection screening systems.Standard performance indicators indicate that AI-based ophthalmology tools have a promising future for use in remote conditions that lack medical resources.
基金the National Natural Science Foundation of China(No.51975374)。
文摘Recent advances in convolution neural network (CNN) have fostered the progress in object recognition and semantic segmentation, which in turn has improved the performance of hyperspectral image (HSI) classification. Nevertheless, the difficulty of high dimensional feature extraction and the shortage of small training samples seriously hinder the future development of HSI classification. In this paper, we propose a novel algorithm for HSI classification based on three-dimensional (3D) CNN and a feature pyramid network (FPN), called 3D-FPN. The framework contains a principle component analysis, a feature extraction structure and a logistic regression. Specifically, the FPN built with 3D convolutions not only retains the advantages of 3D convolution to fully extract the spectral-spatial feature maps, but also concentrates on more detailed information and performs multi-scale feature fusion. This method avoids the excessive complexity of the model and is suitable for small sample hyperspectral classification with varying categories and spatial resolutions. In order to test the performance of our proposed 3D-FPN method, rigorous experimental analysis was performed on three public hyperspectral data sets and hyperspectral data of GF-5 satellite. Quantitative and qualitative results indicated that our proposed method attained the best performance among other current state-of-the-art end-to-end deep learning-based methods.
文摘Among all the plagues threatening cocoa cultivation in general, and particularly in West Africa, the swollen shoot viral disease is currently the most dangerous. The greatest challenge in the fight to eradicate this pandemic remains its early detection. Traditional methods of swollen shoot detection are mostly based on visual observations, leading to late detection and/or diagnostic errors. The use of machine learning algorithms is now an alternative for effective plant disease detection. It is therefore crucial to provide efficient solutions to farmers’ cooperatives. In our study, we built a database of healthy and diseased cocoa leaves. We then explored the power of feature extractors based on convolutional neural networks such as VGG 19, Inception V3, DenseNet 201, and a custom CNN, combining their strengths with the XGBOOST classifier. The results of our experiments showed that this fusion of methods with XGBOOST yielded highly promising scores, outperforming the results of algorithms using the sigmoid function. These results were further consolidated by the use of evaluation metrics such as accuracy, mean squared error, F score, recall, and Matthews’s correlation coefficient. The proposed approach, combining state of the art feature extractors and the XGBOOST classifier, offers an efficient and reliable solution for the early detection of swollen shoot. Its implementation could significantly assist West African cocoa farmers in combating this devastating disease and preserving their crops.
基金This research work was funded by Institutional fund projects under grant no.(IFPHI-180-612-2020)Therefore,the authors gratefully acknowledge technical and financial support from the Ministry of Education and King Abdulaziz University,DSR,Jeddah,Saudi Arabia.
文摘Brain cancer detection and classification is done utilizing distinct medical imaging modalities like computed tomography(CT),or magnetic resonance imaging(MRI).An automated brain cancer classification using computer aided diagnosis(CAD)models can be designed to assist radiologists.With the recent advancement in computer vision(CV)and deep learning(DL)models,it is possible to automatically detect the tumor from images using a computer-aided design.This study focuses on the design of automated Henry Gas Solubility Optimization with Fusion of Handcrafted and Deep Features(HGSO-FHDF)technique for brain cancer classification.The proposed HGSO-FHDF technique aims for detecting and classifying different stages of brain tumors.The proposed HGSO-FHDF technique involves Gabor filtering(GF)technique for removing the noise and enhancing the quality of MRI images.In addition,Tsallis entropy based image segmentation approach is applied to determine injured brain regions in the MRI image.Moreover,a fusion of handcrafted with deep features using Residual Network(ResNet)is utilized as feature extractors.Finally,HGSO algorithm with kernel extreme learning machine(KELM)model was utilized for identifying the presence of brain tumors.For examining the enhanced brain tumor classification performance,a comprehensive set of simulations take place on the BRATS 2015 dataset.
基金This study was supported by the grants of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute(KHIDI),funded by the Ministry of Health&Welfare(HI18C1216)and the Soonchunhyang University Research Fund.
文摘Background—Human Gait Recognition(HGR)is an approach based on biometric and is being widely used for surveillance.HGR is adopted by researchers for the past several decades.Several factors are there that affect the system performance such as the walking variation due to clothes,a person carrying some luggage,variations in the view angle.Proposed—In this work,a new method is introduced to overcome different problems of HGR.A hybrid method is proposed or efficient HGR using deep learning and selection of best features.Four major steps are involved in this work-preprocessing of the video frames,manipulation of the pre-trained CNN model VGG-16 for the computation of the features,removing redundant features extracted from the CNN model,and classification.In the reduction of irrelevant features Principal Score and Kurtosis based approach is proposed named PSbK.After that,the features of PSbK are fused in one materix.Finally,this fused vector is fed to the One against All Multi Support Vector Machine(OAMSVM)classifier for the final results.Results—The system is evaluated by utilizing the CASIA B database and six angles 00◦,18◦,36◦,54◦,72◦,and 90◦are used and attained the accuracy of 95.80%,96.0%,95.90%,96.20%,95.60%,and 95.50%,respectively.Conclusion—The comparison with recent methods show the proposed method work better.
基金Supported by the National Key Research and Development Program of China(2019YFE0125600)China Agriculture Research System(CARS-36)。
文摘Individual identification of dairy cows is the prerequisite for automatic analysis and intelligent perception of dairy cows'behavior.At present,individual identification of dairy cows based on deep convolutional neural network had the disadvantages in prolonged training at the additions of new cows samples.Therefore,a cow individual identification framework was proposed based on deep feature extraction and matching,and the individual identification of dairy cows based on this framework could avoid repeated training.Firstly,the trained convolutional neural network model was used as the feature extractor;secondly,the feature extraction was used to extract features and stored the features into the template feature library to complete the enrollment;finally,the identifies of dairy cows were identified.Based on this framework,when new cows joined the herd,enrollment could be completed quickly.In order to evaluate the application performance of this method in closed-set and open-set individual identification of dairy cows,back images of 524 cows were collected,among which the back images of 150 cows were selected as the training data to train feature extractor.The data of the remaining 374 cows were used to generate the template data set and the data to be identified.The experiment results showed that in the closed-set individual identification of dairy cows,the highest identification accuracy of top-1 was 99.73%,the highest identification accuracy from top-2 to top-5 was 100%,and the identification time of a single cow was 0.601 s,this method was verified to be effective.In the open-set individual identification of dairy cows,the recall was 90.38%,and the accuracy was 89.46%.When false accept rate(FAR)=0.05,true accept rate(TAR)=84.07%,this method was verified that the application had certain research value in open-set individual identification of dairy cows,which provided a certain idea for the application of individual identification in the field of intelligent animal husbandry.