期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Landslide displacement prediction based on optimized empirical mode decomposition and deep bidirectional long short-term memory network 被引量:5
1
作者 ZHANG Ming-yue HAN Yang +1 位作者 YANG Ping WANG Cong-ling 《Journal of Mountain Science》 SCIE CSCD 2023年第3期637-656,共20页
There are two technical challenges in predicting slope deformation.The first one is the random displacement,which could not be decomposed and predicted by numerically resolving the observed accumulated displacement an... There are two technical challenges in predicting slope deformation.The first one is the random displacement,which could not be decomposed and predicted by numerically resolving the observed accumulated displacement and time series of a landslide.The second one is the dynamic evolution of a landslide,which could not be feasibly simulated simply by traditional prediction models.In this paper,a dynamic model of displacement prediction is introduced for composite landslides based on a combination of empirical mode decomposition with soft screening stop criteria(SSSC-EMD)and deep bidirectional long short-term memory(DBi-LSTM)neural network.In the proposed model,the time series analysis and SSSC-EMD are used to decompose the observed accumulated displacements of a slope into three components,viz.trend displacement,periodic displacement,and random displacement.Then,by analyzing the evolution pattern of a landslide and its key factors triggering landslides,appropriate influencing factors are selected for each displacement component,and DBi-LSTM neural network to carry out multi-datadriven dynamic prediction for each displacement component.An accumulated displacement prediction has been obtained by a summation of each component.For accuracy verification and engineering practicability of the model,field observations from two known landslides in China,the Xintan landslide and the Bazimen landslide were collected for comparison and evaluation.The case study verified that the model proposed in this paper can better characterize the"stepwise"deformation characteristics of a slope.As compared with long short-term memory(LSTM)neural network,support vector machine(SVM),and autoregressive integrated moving average(ARIMA)model,DBi-LSTM neural network has higher accuracy in predicting the periodic displacement of slope deformation,with the mean absolute percentage error reduced by 3.063%,14.913%,and 13.960%respectively,and the root mean square error reduced by 1.951 mm,8.954 mm and 7.790 mm respectively.Conclusively,this model not only has high prediction accuracy but also is more stable,which can provide new insight for practical landslide prevention and control engineering. 展开更多
关键词 Landslide displacement Empirical mode decomposition Soft screening stop criteria deep bidirectional long short-term memory neural network Xintan landslide Bazimen landslide
原文传递
Metasurfaces designed by a bidirectional deep neural network and iterative algorithm for generating quantitative field distributions 被引量:14
2
作者 Yang Zhu Xiaofei Zang +3 位作者 Haoxiang Chi Yiwen Zhou Yiming Zhu Songlin Zhuang 《Light: Advanced Manufacturing》 2023年第2期28-38,共11页
Metasurfaces,which are the two-dimensional counterparts of metamaterials,have demonstrated unprecedented capabilities to manipulate the wavefront of electromagnetic waves in a single flat device.Despite various advanc... Metasurfaces,which are the two-dimensional counterparts of metamaterials,have demonstrated unprecedented capabilities to manipulate the wavefront of electromagnetic waves in a single flat device.Despite various advances in this field,the unique functionalities achieved by metasurfaces have come at the cost of the structural complexity,resulting in a time-consuming parameter sweep for the conventional metasurface design.Although artificial neural networks provide a flexible platform for significantly improving the design process,the current metasurface designs are restricted to generating qualitative field distributions.In this study,we demonstrate that by combining a tandem neural network and an iterative algorithm,the previous restriction of the design of metasurfaces can be overcome with quantitative field distributions.As proof-of-principle examples,metalenses predicted via the designed network architecture that possess multiple focal points with identical/orthogonal polarisation states,as well as accurate intensity ratios(quantitative field distributions),were numerically calculated and experimentally demonstrated.The unique and robust approach for the metasurface design will enable the acceleration of the development of devices with high-accuracy functionalities,which can be applied in imaging,detecting,and sensing. 展开更多
关键词 Metasurfaces bidirectional deep neural network Iterative algorithm Focal points VORTEX
原文传递
Customizable multifunctional metasurface absorber based on bidirectional deep neural networks covering the quasi-entire terahertz band
3
作者 Zhipeng Ding Wei Su +5 位作者 Lipeng’an Ye Yuanhang Zhou Wenlong Li Riaz Ali Bin Tang Hongbing Yao 《Chinese Optics Letters》 SCIE EI CAS CSCD 2024年第6期182-190,共9页
In this work, we propose a novel approach that combines a bidirectional deep neural network(BDNN) with a multifunctional metasurface absorber(MMA) for inverse design, which can effectively address the challenge of on-... In this work, we propose a novel approach that combines a bidirectional deep neural network(BDNN) with a multifunctional metasurface absorber(MMA) for inverse design, which can effectively address the challenge of on-demand customization for absorbers. The inverse design of absorption peak frequencies can be achieved from 0.5 to 10 terahertz(THz), covering the quasi-entire THz band. Based on this, the BDNN is extended to broadband absorption, and the inverse design yields an MMA at the desired frequency. This work provides a broadly applicable approach to the custom design of multifunctional devices that can facilitate the evaluation and design of metasurfaces in electromagnetic absorption. 展开更多
关键词 TERAHERTZ inverse design bidirectional deep neural network metasurface
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部