One of the pathways to attain NET ZERO is CO_(2)injection into deep saline aquifers(DSAs),which alters the saturation and pore pressure of the reservoir rocks,hence the effective stress,sʹ.This,in turn,would change th...One of the pathways to attain NET ZERO is CO_(2)injection into deep saline aquifers(DSAs),which alters the saturation and pore pressure of the reservoir rocks,hence the effective stress,sʹ.This,in turn,would change their geomechanical(i.e.peak deviatoric stress,elastic modulus,Poisson's ratio)and petrophysical(porosity and permeability)properties.Such a situation might trigger geo-hazards,like induced seismicity,ground deformation,caprock failure.Hence,reducing the risk of such hazards necessitates quantifying the spatial and temporal changes in sʹ,under specific CO_(2)and/or brine saturation,designated as S_(CO2)and S_(b),respectively,and resultant pore pressure.With this in view,a conceptual model depicting the reservoir,demarcated by five zones based on variations in saturation,pore-pressure,temperature,etc.,and the corresponding effective stress equations have been proposed based on the available literature.Furthermore,a critical review of literature has been carried out to decipher the limitations and contradictions associated with the findings from(i)laboratory studies to estimate S_(CO2)employing pwave velocity and electrical resistivity,(ii)analytical and numerical approaches for estimating the variation of pore-pressure in the reservoir rocks,and(iii)laboratory studies on variation in geomechanical and petrophysical properties under the conditions representative of the above-mentioned zones of the conceptual model.The authors consider that extensive experiments should be conducted on the rocks from different sources and tested under various conditions of the CO_(2)injection to validate the proposed model for the execution of risk-free CO_(2)storage in DSAs.展开更多
This paper presents an analytical procedure for massive water-sealing barriers(MWSBs)that are made of partially overlapped jet-grouting columns used for deep excavations,in which two crucial factors of the permeabilit...This paper presents an analytical procedure for massive water-sealing barriers(MWSBs)that are made of partially overlapped jet-grouting columns used for deep excavations,in which two crucial factors of the permeability and strength of jet-grouted materials are considered.Subsequently,a calculation example is analyzed and discussed.Results show that“tension failure”mechanism is a major concern for the structural failure during a design of MWSBs.The maximum allowable seepage discharge is a crucial index for the design of MWSBs,which has a significant influence on determining the design parameters of MWSBs.Compared with the design procedure for MWSBs that is proposed in this paper,the design parameters of MWSBs determined by the stability equilibrium and seepage stability equilibrium approaches are conservative due to the fact that it fails to consider the permeability or strength of jet-grouted materials that makes a contribution to the structural safety.Based on the proposed design method,the ranges of both the thickness and depth of MWSBs for a case history of subway excavation in Fuzhou,China were determined.Finally,field pumping test results showed that the water-tightness performance of MWSBs performed at site was quite well.展开更多
Carbon Capture and Storage(CCS)is one of the effective means to deal with global warming,and saline aquifer storage is considered to be the most promising storage method.Junggar Basin,located in the northern part of X...Carbon Capture and Storage(CCS)is one of the effective means to deal with global warming,and saline aquifer storage is considered to be the most promising storage method.Junggar Basin,located in the northern part of Xinjiang and with a large distribution area of saline aquifer,is an effective carbon storage site.Based on well logging data and 2D seismic data,a 3D heterogeneous geological model of the Cretaceous Donggou Formation reservoir near D7 well was constructed,and dynamic simulations under two scenarios of single-well injection and multi-well injection were carried out to explore the storage potential and CO2 storage mechanism of deep saline aquifer with real geological conditions in this study.The results show that within 100 km^(2)of the saline aquifer of Donggou Formation in the vicinity of D7 well,the theoretical static CO_(2)storage is 71.967×106 tons(P50)①,and the maximum dynamic CO_(2)storage is 145.295×106 tons(Case2).The heterogeneity of saline aquifer has a great influence on the spatial distribution of CO_(2)in the reservoir.The multi-well injection scenario is conducive to the efficient utilization of reservoir space and safer for storage.Based on the results from theoretical static calculation and the dynamic simulation,the effective coefficient of CO_(2)storage in deep saline aquifer in the eastern part of Xinjiang is recommended to be 4.9%.This study can be applied to the engineering practice of CO_(2)sequestration in the deep saline aquifer in Xinjiang.展开更多
Global warming,driven by human-induced disruptions to the natural carbon dioxide(CO_(2))cycle,is a pressing concern.To mitigate this,carbon capture and storage has emerged as a key strategy that enables the continued ...Global warming,driven by human-induced disruptions to the natural carbon dioxide(CO_(2))cycle,is a pressing concern.To mitigate this,carbon capture and storage has emerged as a key strategy that enables the continued use of fossil fuels while transitioning to cleaner energy sources.Deep saline aquifers are of particular interest due to their substantial CO_(2) storage potential,often located near fossil fuel reservoirs.In this study,a deep saline aquifer model with a saline water production well was constructed to develop the optimization workflow.Due to the time-consuming nature of each realization of the numerical simulation,we introduce a sur-rogate aquifer model derived from extracted data.The novelty of our work lies in the pioneering of simultaneous optimization using machine learning within an integrated framework.Unlike previous studies,which typically focused on single-parameter optimiza-tion,our research addresses this gap by performing multi-objective optimization for CO_(2) storage and breakthrough time in deep sa-line aquifers using a data-driven model.Our methodology encompasses preprocessing and feature selection,identifying eight pivotal parameters.Evaluation metrics include root mean square error(RMSE),mean absolute percentage error(MAPE)and R^(2).In predicting CO_(2) storage values,RMSE,MAPE and R^(2)in test data were 2.07%,1.52% and 0.99,respectively,while in blind data,they were 2.5%,2.05% and 0.99.For the CO_(2) breakthrough time,RMSE,MAPE and R^(2) in the test data were 2.1%,1.77% and 0.93,while in the blind data they were 2.8%,2.23% and 0.92,respectively.In addressing the substantial computational demands and time-consuming nature of coup-ling a numerical simulator with an optimization algorithm,we have adopted a strategy in which the trained artificial neural network is seamlessly integrated with a multi-objective genetic algorithm.Within this framework,we conducted 5000 comprehensive experi-ments to rigorously validate the development of the Pareto front,highlighting the depth of our computational approach.The findings of the study promise insights into the interplay between CO_(2) breakthrough time and storage in aquifer-based carbon capture and storage processes within an integrated framework based on data-driven coupled multi-objective optimization.展开更多
基金The authors would like to acknowledge the grant of fellowship(DST/TMD/EWO/2K21/ACT/2021/02(G))under Project SHARP,received from the Department of Science and Technology,Government of India.
文摘One of the pathways to attain NET ZERO is CO_(2)injection into deep saline aquifers(DSAs),which alters the saturation and pore pressure of the reservoir rocks,hence the effective stress,sʹ.This,in turn,would change their geomechanical(i.e.peak deviatoric stress,elastic modulus,Poisson's ratio)and petrophysical(porosity and permeability)properties.Such a situation might trigger geo-hazards,like induced seismicity,ground deformation,caprock failure.Hence,reducing the risk of such hazards necessitates quantifying the spatial and temporal changes in sʹ,under specific CO_(2)and/or brine saturation,designated as S_(CO2)and S_(b),respectively,and resultant pore pressure.With this in view,a conceptual model depicting the reservoir,demarcated by five zones based on variations in saturation,pore-pressure,temperature,etc.,and the corresponding effective stress equations have been proposed based on the available literature.Furthermore,a critical review of literature has been carried out to decipher the limitations and contradictions associated with the findings from(i)laboratory studies to estimate S_(CO2)employing pwave velocity and electrical resistivity,(ii)analytical and numerical approaches for estimating the variation of pore-pressure in the reservoir rocks,and(iii)laboratory studies on variation in geomechanical and petrophysical properties under the conditions representative of the above-mentioned zones of the conceptual model.The authors consider that extensive experiments should be conducted on the rocks from different sources and tested under various conditions of the CO_(2)injection to validate the proposed model for the execution of risk-free CO_(2)storage in DSAs.
基金Projects(52090084, 51938008) supported by the National Natural Science Foundation of ChinaProject(2021T140474)supported by the China Postdoctoral Science Foundation。
文摘This paper presents an analytical procedure for massive water-sealing barriers(MWSBs)that are made of partially overlapped jet-grouting columns used for deep excavations,in which two crucial factors of the permeability and strength of jet-grouted materials are considered.Subsequently,a calculation example is analyzed and discussed.Results show that“tension failure”mechanism is a major concern for the structural failure during a design of MWSBs.The maximum allowable seepage discharge is a crucial index for the design of MWSBs,which has a significant influence on determining the design parameters of MWSBs.Compared with the design procedure for MWSBs that is proposed in this paper,the design parameters of MWSBs determined by the stability equilibrium and seepage stability equilibrium approaches are conservative due to the fact that it fails to consider the permeability or strength of jet-grouted materials that makes a contribution to the structural safety.Based on the proposed design method,the ranges of both the thickness and depth of MWSBs for a case history of subway excavation in Fuzhou,China were determined.Finally,field pumping test results showed that the water-tightness performance of MWSBs performed at site was quite well.
基金This work was supported by the National Natural Science Foundation of China(NSFC,Grant No.41702284,41602272)National key R&D program of China(Grant No.2019YFE0100100)+2 种基金the Na-tural Science Foundation of Hubei Province,China(Grant No.2019CFB451)and the Open Fund of Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources(Grant No.2020zy003)This work was also par-tially supported by the China Australia Geological Storage of CO_(2)project(CAGS),and the China Geo-logical Survey project(Grant No.DD20160307).
文摘Carbon Capture and Storage(CCS)is one of the effective means to deal with global warming,and saline aquifer storage is considered to be the most promising storage method.Junggar Basin,located in the northern part of Xinjiang and with a large distribution area of saline aquifer,is an effective carbon storage site.Based on well logging data and 2D seismic data,a 3D heterogeneous geological model of the Cretaceous Donggou Formation reservoir near D7 well was constructed,and dynamic simulations under two scenarios of single-well injection and multi-well injection were carried out to explore the storage potential and CO2 storage mechanism of deep saline aquifer with real geological conditions in this study.The results show that within 100 km^(2)of the saline aquifer of Donggou Formation in the vicinity of D7 well,the theoretical static CO_(2)storage is 71.967×106 tons(P50)①,and the maximum dynamic CO_(2)storage is 145.295×106 tons(Case2).The heterogeneity of saline aquifer has a great influence on the spatial distribution of CO_(2)in the reservoir.The multi-well injection scenario is conducive to the efficient utilization of reservoir space and safer for storage.Based on the results from theoretical static calculation and the dynamic simulation,the effective coefficient of CO_(2)storage in deep saline aquifer in the eastern part of Xinjiang is recommended to be 4.9%.This study can be applied to the engineering practice of CO_(2)sequestration in the deep saline aquifer in Xinjiang.
文摘Global warming,driven by human-induced disruptions to the natural carbon dioxide(CO_(2))cycle,is a pressing concern.To mitigate this,carbon capture and storage has emerged as a key strategy that enables the continued use of fossil fuels while transitioning to cleaner energy sources.Deep saline aquifers are of particular interest due to their substantial CO_(2) storage potential,often located near fossil fuel reservoirs.In this study,a deep saline aquifer model with a saline water production well was constructed to develop the optimization workflow.Due to the time-consuming nature of each realization of the numerical simulation,we introduce a sur-rogate aquifer model derived from extracted data.The novelty of our work lies in the pioneering of simultaneous optimization using machine learning within an integrated framework.Unlike previous studies,which typically focused on single-parameter optimiza-tion,our research addresses this gap by performing multi-objective optimization for CO_(2) storage and breakthrough time in deep sa-line aquifers using a data-driven model.Our methodology encompasses preprocessing and feature selection,identifying eight pivotal parameters.Evaluation metrics include root mean square error(RMSE),mean absolute percentage error(MAPE)and R^(2).In predicting CO_(2) storage values,RMSE,MAPE and R^(2)in test data were 2.07%,1.52% and 0.99,respectively,while in blind data,they were 2.5%,2.05% and 0.99.For the CO_(2) breakthrough time,RMSE,MAPE and R^(2) in the test data were 2.1%,1.77% and 0.93,while in the blind data they were 2.8%,2.23% and 0.92,respectively.In addressing the substantial computational demands and time-consuming nature of coup-ling a numerical simulator with an optimization algorithm,we have adopted a strategy in which the trained artificial neural network is seamlessly integrated with a multi-objective genetic algorithm.Within this framework,we conducted 5000 comprehensive experi-ments to rigorously validate the development of the Pareto front,highlighting the depth of our computational approach.The findings of the study promise insights into the interplay between CO_(2) breakthrough time and storage in aquifer-based carbon capture and storage processes within an integrated framework based on data-driven coupled multi-objective optimization.