The hole transport material (HTM) plays an extremely important role to determine the power conversion efficiency (PCE) and the stability of perovskite solar cells (PSCs). Herein, we report an effective strategy to imp...The hole transport material (HTM) plays an extremely important role to determine the power conversion efficiency (PCE) and the stability of perovskite solar cells (PSCs). Herein, we report an effective strategy to improve the performance of HTMs by introducing −CF_(3) groups via the rational decorative mode. Upon direct attachment or nonconjugated alkoxyl bridging of −CF_(3) groups on the terminal diphenylamines, the resulting molecular HTMs, i.e., 2,7-BCzA4CF_(3) and 2,7-BCzA4OCCF_(3), show distinct properties. Compared with 2,7-BCzA4CF_(3), the nonconjugated alkoxyl bridging −CF_(3) group-based 2,7-BCzA4OCCF_(3) exhibits better thermal stability, hydrophobicity, and a dramatically upgraded hole mobility by 135.7-fold of magnitude to 1.71 × 10^(−4) cm^(2) V^(−1) S^(−1). The PSCs with 2,7-BCzA4OCCF_(3) as HTM exhibit an PCE of up to 20.53% and excellent long-term stability, maintaining 92.57% of their performance for 30 days in air with humidity of 30% without encapsulation. This work provides beneficial guidelines for the design of new HTMs for efficient and stable PSCs.展开更多
The therapeutic efficiency of active targeting nanoparticulate drug delivery systems(nano-DDS)is highly compromised by the plasma proteins adsorption on nanoparticles(NPs)surface,which significantly hinders cell membr...The therapeutic efficiency of active targeting nanoparticulate drug delivery systems(nano-DDS)is highly compromised by the plasma proteins adsorption on nanoparticles(NPs)surface,which significantly hinders cell membrane receptors to recognize the designed ligands,and provokes the off-target toxicity and rapid clearance of NPs in vivo.Herein,we report a novel dihydroartemisinin(DHA)-decorating nano-DDS that in situ specifically recruits endogenous apolipoprotein E(apoE)on the NPs surface.The apoE-anchored corona is able to prolong PLGA-PEG2000-DHA(PPD)NPs circulation capability in blood,facilitate NPs accumulating in tumor cells by the passive enhanced permeability and retention(EPR)effect and low-density lipoprotein receptor(LDLr)-mediated target transport,and ultimately improve the in vivo antitumor activity.Our findings demonstrate that the strategy of in situ regulated apoE-enriched corona ensures NPs an efficient LDLr-mediated tumor-homing chemotherapy.展开更多
Multi-walled carbon nanotubes (MWCNTs) have been successfully modified with TiO2 nanoparticles via wet chemical method. For this purpose tetra chloride titanium (TiCl4) was used as titanium source. MWCNTs were exposed...Multi-walled carbon nanotubes (MWCNTs) have been successfully modified with TiO2 nanoparticles via wet chemical method. For this purpose tetra chloride titanium (TiCl4) was used as titanium source. MWCNTs were exposed at different amount of TiCl4 (0.25 and 0.1 ml) and different soaking times. The modified MWCNTs have been characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). TEM results showed that the MWCNTs were fully decorated with TiO2 at short term immersion. Increasing soaking time caused to fill the MWCNTs with TiO2 nanoparticles. The results showed that the amount of precursor had a significant role on quantity of decoration. The decoration of outer surface of MWCNTs with TiO2 was more noticeable at large amount of TiCl4. XRD results revealed that the crystalline structure of TiO2 on the surface and inner of MWCNTs was rutile. The average size of TiO2 nanoparticles which modified MWCNTs were 20 nm.展开更多
In this study,the evidence-based design(EBD)of naturalized decoration in hematopoietic stem cell transplantation(HSCT)wards of Peking University First Hospital was explored to improve patients’psychological state and...In this study,the evidence-based design(EBD)of naturalized decoration in hematopoietic stem cell transplantation(HSCT)wards of Peking University First Hospital was explored to improve patients’psychological state and rehabilitation environment by introducing natural elements.Based on questionnaire surveys and literature research,the EBD method was adopted to propose a naturalized decoration scheme for HSCT wards,and a satisfaction evaluation was conducted after construction and use.The research results show that naturalized decoration can effectively enhance the satisfaction and comfort of patients and medical staff,verifying its positive effects in HSCT wards.展开更多
From decorative and furniture fabrics to wallpaper,flooring and carpets,to mattresses,bed linen and table linen,Heimtextil brings together a diverse product range for holistic interior design January 13-16,2026.Interi...From decorative and furniture fabrics to wallpaper,flooring and carpets,to mattresses,bed linen and table linen,Heimtextil brings together a diverse product range for holistic interior design January 13-16,2026.Interior designers and buyers from the hospitality and retail sectors find the latest textile and non-textile material innovations under one roof.Leading brands and promising newcomers have already announced their participation.The new hall layout creates targeted synergies for an efficient trade fair visit.展开更多
CHINESE Cloisonneis the centuries-old handicraft of creating designs on copper bodies with colored-enamel placed within divisions made of copper wires,which are bent to follow the outline of decorative patterns.This f...CHINESE Cloisonneis the centuries-old handicraft of creating designs on copper bodies with colored-enamel placed within divisions made of copper wires,which are bent to follow the outline of decorative patterns.This form of art originated in the Arab world and was introduced to China during the late Yuan Dynasty(1271-1368),and since then it has become a favorite of the country’s emperors.展开更多
Na metal batteries(SMBs)have emerged as a fascinating choice for large-scale energy storage.However,dendrite formation on Na metal anode has been acknowledged to cause inferior cycling stability and safety issues.Here...Na metal batteries(SMBs)have emerged as a fascinating choice for large-scale energy storage.However,dendrite formation on Na metal anode has been acknowledged to cause inferior cycling stability and safety issues.Herein,we report the design of atomic indium-decorated graphene(In/G)to inhibit the growth of Na dendrites and substantially improve the stability of high-energy-density SMBs.Benefiting from the high-valence In-O-C configuration and evenly distributed sodiophilic sites,the In/G promotes uniform nucleation and in-plane growth of Na on the electrode surface,resulting in the intrinsic suppression of Na dendrites.Remarkably,the In/G@Na||Na batteries exhibit excellent long-term cyclability with 160 h at 8 mA cm^(-2)and ultralow overpotential of 110 mV at 10 mA cm^(-2).The Na_(3)V_(2)(PO_(4))_(3)||In/G@Na full batteries show exceptionally high reversible discharge capacity of 61 mAh g^(-1)at an ultrahigh rate of 40 C and extremely low capacity decay rate of only 0.021%per cycle over 300 cycles at 1 C.Therefore,this strategy provides a new direction for the development of next-generation high-energydensity SMBs.展开更多
This study systematically explores the refined strategies for construction management in building decoration and renovation projects,establishing a comprehensive management system that includes process control and qua...This study systematically explores the refined strategies for construction management in building decoration and renovation projects,establishing a comprehensive management system that includes process control and quality assurance.By integrating BIM technology with intelligent tool development,the study achieved an improvement in construction quality compliance to 98.7%,a reduction in project delay rate to 1.2%,and a comprehensive cost savings of 12.7%.The“3D Standards+Five-Dimensional Monitoring”method proposed in the study effectively addresses the unique challenges of decoration projects.A total of 128 quality control points and dynamic early warning mechanisms form a replicable management paradigm,providing technical support for the industry’s implementation of the“14th Five-Year Plan for the Construction Industry.”展开更多
The management of architectural decoration and renovation technology encompasses multiple aspects,including the implementation of design standards,process flow control,and material quality monitoring.Housing construct...The management of architectural decoration and renovation technology encompasses multiple aspects,including the implementation of design standards,process flow control,and material quality monitoring.Housing construction projects have specific requirements,such as cross-construction,finishing treatment,and finished product protection.The text also introduces BIM deepening design and modular installation techniques.It emphasizes the importance of material management,quality control,and the PDCA cycle,as well as various specialized inspections,smart site management,and mobile terminal applications.Intelligent management is seen as the future direction.展开更多
Compositing a secondary phase in Ag_(2)Se can usually tune the electron and phonon scattering to improve the thermoelectric performance.However,the intrinsically high carrier concentration still limits the performance...Compositing a secondary phase in Ag_(2)Se can usually tune the electron and phonon scattering to improve the thermoelectric performance.However,the intrinsically high carrier concentration still limits the performance optimization.Here,we employ a modulation decoration strategy to simultaneously achieve submicron-scale constituents and compositional modification for synergistic optimization of thermoelectric properties.Amorphous nano Sb_(2)S_(3) has been decorated on the surface of Ag_(2)Se powders,and S was added into the Ag_(2)Se matrix through an ion exchange reaction accompanied by the formation of a crystal/amorphous mixed secondary phase of Sb_(2)(S,Se)_(3).The S doping reduced the excessive intrinsic carrier concentration,leading to modified electrical transport properties and significantly reduced electrical thermal conductivity.On the other hand,introducing the S dopants and the crystal/amorphous interfaces into the Ag_(2)Se matrix could increase the lattice anharmonicity,further contributing to the reduced thermal conductivity.Consequently,the Ag_(2)Se-0.4%Sb_(2)S_(3) sample obtains a high average zT value of>1 in the temperature range of 300–390 K.In addition,the maximum cooling temperature difference of over 85 K can be predicted in an Ag_(2)Se/Ag_(2)Se-0.4%Sb_(2)S_(3) segregated module at the hot side temperature of 350 K.展开更多
On the basis of investigation of status of houseplant decoration in modern commercial space,banks,hospitals,hotel hall,dining space,library and office in Suzhou City,the paper analyzed its characters,pointed out their...On the basis of investigation of status of houseplant decoration in modern commercial space,banks,hospitals,hotel hall,dining space,library and office in Suzhou City,the paper analyzed its characters,pointed out their shortcomings and put forward reasonable suggestions.展开更多
From the creation,materials,colors and technical artistic characteristics of exterior and exterior spatial decoration,the artistic value of ancient Huizhou folk houses were analyzed.
Anatase TiO2 nanocrystals and sub-microcrystals with truncated octahedral bipyramidal morphologies were prepared by direct calcination of TiOF2 precursors. The as-prepared TiO2 samples were thoroughly characterized by...Anatase TiO2 nanocrystals and sub-microcrystals with truncated octahedral bipyramidal morphologies were prepared by direct calcination of TiOF2 precursors. The as-prepared TiO2 samples were thoroughly characterized by X-ray diffraction, Raman spectroscopy, field-emission scanning electron microscopy, N2 adsorption-desorption isotherms, X-ray photoelectron spectroscopy, and UV-visible diffuse spectroscopy. It was found that the crystallinity, grain size, and {001}/{101} ratio of the samples can be increased by raising the calcination temperature from 500 to 800℃. The higher crystallinity and {001}/{101} facet ratio resulted in an increase in both aqueous and gas-phase photocatalytic activities, by inhibiting the recombination and separation of electrons and holes. After selecting two TiO2 samples with high crystallinity and {001}/{101} ratio, Au nanoparticles were decorated on their surfaces, and the photocatalytic activity of the resulting samples under visible light illumination was studied. It was found that the visible light-induced photocatalytic activity increased by 2.6 and 4.8 times, respectively, upon Au decoration of the samples prepared by calcination of TiOF2 at 700 and 800℃.展开更多
Lattice‐doping and surface decoration are prospective routes to improve the visible‐light photocatalytic ability of TiO2,but the two techniques are difficult to combine into one preparation process because they are ...Lattice‐doping and surface decoration are prospective routes to improve the visible‐light photocatalytic ability of TiO2,but the two techniques are difficult to combine into one preparation process because they are usually conducted under different conditions,which limits the efficiency of TiO2 modification.In this study,TiO2 was successfully modified by simultaneous lattice‐doping and surface decoration,and the visible‐light photocatalytic capacity was largely improved.Upon comparing the method reported here with previous ones,the most significant difference is that Fe(II)‐phenanthroline was first used as the co‐precursor of the introduced elements of C,N,and Fe.These three elements were simultaneously introduced to TiO2 at high levels by this co‐precursor method.The as‐synthesized photocatalysts were systemically investigated and analyzed by several characterization methods such as XRD,FT‐IR,XPS,Raman spectroscopy,EPR,UV‐Vis DRS,photoluminescence spectra,photocurrent,electrochemical impedance spectra,TEM,and HRTEM.The photocatalytic degradation of 4‐NP under visible‐light irradiation was used to evaluate the photocatalytic activity of the photocatalysts.Based on the experimental data,a probable mechanism for the photocatalytic degradation by the photocatalysts is proposed.This is a novel method of using one source to simultaneously introduce metal and non‐metal elements to TiO2 at high levels,which may provide a new way to prepare highly effective TiO2 photocatalysts.展开更多
基金This work was financially supported by the National Natural Science Foundation of China(62074095)the Fundamental Research Funds for the Central Universities(GK202002001).
文摘The hole transport material (HTM) plays an extremely important role to determine the power conversion efficiency (PCE) and the stability of perovskite solar cells (PSCs). Herein, we report an effective strategy to improve the performance of HTMs by introducing −CF_(3) groups via the rational decorative mode. Upon direct attachment or nonconjugated alkoxyl bridging of −CF_(3) groups on the terminal diphenylamines, the resulting molecular HTMs, i.e., 2,7-BCzA4CF_(3) and 2,7-BCzA4OCCF_(3), show distinct properties. Compared with 2,7-BCzA4CF_(3), the nonconjugated alkoxyl bridging −CF_(3) group-based 2,7-BCzA4OCCF_(3) exhibits better thermal stability, hydrophobicity, and a dramatically upgraded hole mobility by 135.7-fold of magnitude to 1.71 × 10^(−4) cm^(2) V^(−1) S^(−1). The PSCs with 2,7-BCzA4OCCF_(3) as HTM exhibit an PCE of up to 20.53% and excellent long-term stability, maintaining 92.57% of their performance for 30 days in air with humidity of 30% without encapsulation. This work provides beneficial guidelines for the design of new HTMs for efficient and stable PSCs.
基金Supported by Anhui University of Chinese Medicine Foundation(No.2019zrzd13)the Key Project of Anhui Province Department of Education(No.KJ2019A0471)+1 种基金the Key Project of Liaoning Province Department of Education(No.2017LZD03)the National Nature Science Foundation of China(Nos.81473164,81703451,81873019 and 81873351,U1608283).
文摘The therapeutic efficiency of active targeting nanoparticulate drug delivery systems(nano-DDS)is highly compromised by the plasma proteins adsorption on nanoparticles(NPs)surface,which significantly hinders cell membrane receptors to recognize the designed ligands,and provokes the off-target toxicity and rapid clearance of NPs in vivo.Herein,we report a novel dihydroartemisinin(DHA)-decorating nano-DDS that in situ specifically recruits endogenous apolipoprotein E(apoE)on the NPs surface.The apoE-anchored corona is able to prolong PLGA-PEG2000-DHA(PPD)NPs circulation capability in blood,facilitate NPs accumulating in tumor cells by the passive enhanced permeability and retention(EPR)effect and low-density lipoprotein receptor(LDLr)-mediated target transport,and ultimately improve the in vivo antitumor activity.Our findings demonstrate that the strategy of in situ regulated apoE-enriched corona ensures NPs an efficient LDLr-mediated tumor-homing chemotherapy.
文摘Multi-walled carbon nanotubes (MWCNTs) have been successfully modified with TiO2 nanoparticles via wet chemical method. For this purpose tetra chloride titanium (TiCl4) was used as titanium source. MWCNTs were exposed at different amount of TiCl4 (0.25 and 0.1 ml) and different soaking times. The modified MWCNTs have been characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). TEM results showed that the MWCNTs were fully decorated with TiO2 at short term immersion. Increasing soaking time caused to fill the MWCNTs with TiO2 nanoparticles. The results showed that the amount of precursor had a significant role on quantity of decoration. The decoration of outer surface of MWCNTs with TiO2 was more noticeable at large amount of TiCl4. XRD results revealed that the crystalline structure of TiO2 on the surface and inner of MWCNTs was rutile. The average size of TiO2 nanoparticles which modified MWCNTs were 20 nm.
基金Sponsored by the National Natural Science Foundation of China:Visual Perception Based Natural Intervention for Patients in HSCT Wards(52278045)Innovation and Entrepreneurship Training Programme for Students in 2024(10805136024XN139-91).
文摘In this study,the evidence-based design(EBD)of naturalized decoration in hematopoietic stem cell transplantation(HSCT)wards of Peking University First Hospital was explored to improve patients’psychological state and rehabilitation environment by introducing natural elements.Based on questionnaire surveys and literature research,the EBD method was adopted to propose a naturalized decoration scheme for HSCT wards,and a satisfaction evaluation was conducted after construction and use.The research results show that naturalized decoration can effectively enhance the satisfaction and comfort of patients and medical staff,verifying its positive effects in HSCT wards.
文摘From decorative and furniture fabrics to wallpaper,flooring and carpets,to mattresses,bed linen and table linen,Heimtextil brings together a diverse product range for holistic interior design January 13-16,2026.Interior designers and buyers from the hospitality and retail sectors find the latest textile and non-textile material innovations under one roof.Leading brands and promising newcomers have already announced their participation.The new hall layout creates targeted synergies for an efficient trade fair visit.
文摘CHINESE Cloisonneis the centuries-old handicraft of creating designs on copper bodies with colored-enamel placed within divisions made of copper wires,which are bent to follow the outline of decorative patterns.This form of art originated in the Arab world and was introduced to China during the late Yuan Dynasty(1271-1368),and since then it has become a favorite of the country’s emperors.
基金financially supported by the National Natural Science Foundation of China(Grants 22125903,51925207,22439003)the National Key R&D Program of China(Grant 2022YFA1504100,2023YFB4005204)+2 种基金the State Key Laboratory of Catalysis(No:2024SKL-A-001,2024SKL-B-003)the Energy Revolution S&T Program of Yulin Innovation Institute of Clean Energy(Grant E412010508,E411070316,E411100705)DICP(DICP I202324,DICP I202471)。
文摘Na metal batteries(SMBs)have emerged as a fascinating choice for large-scale energy storage.However,dendrite formation on Na metal anode has been acknowledged to cause inferior cycling stability and safety issues.Herein,we report the design of atomic indium-decorated graphene(In/G)to inhibit the growth of Na dendrites and substantially improve the stability of high-energy-density SMBs.Benefiting from the high-valence In-O-C configuration and evenly distributed sodiophilic sites,the In/G promotes uniform nucleation and in-plane growth of Na on the electrode surface,resulting in the intrinsic suppression of Na dendrites.Remarkably,the In/G@Na||Na batteries exhibit excellent long-term cyclability with 160 h at 8 mA cm^(-2)and ultralow overpotential of 110 mV at 10 mA cm^(-2).The Na_(3)V_(2)(PO_(4))_(3)||In/G@Na full batteries show exceptionally high reversible discharge capacity of 61 mAh g^(-1)at an ultrahigh rate of 40 C and extremely low capacity decay rate of only 0.021%per cycle over 300 cycles at 1 C.Therefore,this strategy provides a new direction for the development of next-generation high-energydensity SMBs.
文摘This study systematically explores the refined strategies for construction management in building decoration and renovation projects,establishing a comprehensive management system that includes process control and quality assurance.By integrating BIM technology with intelligent tool development,the study achieved an improvement in construction quality compliance to 98.7%,a reduction in project delay rate to 1.2%,and a comprehensive cost savings of 12.7%.The“3D Standards+Five-Dimensional Monitoring”method proposed in the study effectively addresses the unique challenges of decoration projects.A total of 128 quality control points and dynamic early warning mechanisms form a replicable management paradigm,providing technical support for the industry’s implementation of the“14th Five-Year Plan for the Construction Industry.”
文摘The management of architectural decoration and renovation technology encompasses multiple aspects,including the implementation of design standards,process flow control,and material quality monitoring.Housing construction projects have specific requirements,such as cross-construction,finishing treatment,and finished product protection.The text also introduces BIM deepening design and modular installation techniques.It emphasizes the importance of material management,quality control,and the PDCA cycle,as well as various specialized inspections,smart site management,and mobile terminal applications.Intelligent management is seen as the future direction.
基金financially supported by the National Natural Science Foundation of China(Nos.52472105,52272246,and 12074015)the Sichuan Science and Technology Program(Nos.2024YFHZ0309 and 2023NSFSC1596)the State Key Laboratory for Mechanical Behavior of Materials(No.20232509).
文摘Compositing a secondary phase in Ag_(2)Se can usually tune the electron and phonon scattering to improve the thermoelectric performance.However,the intrinsically high carrier concentration still limits the performance optimization.Here,we employ a modulation decoration strategy to simultaneously achieve submicron-scale constituents and compositional modification for synergistic optimization of thermoelectric properties.Amorphous nano Sb_(2)S_(3) has been decorated on the surface of Ag_(2)Se powders,and S was added into the Ag_(2)Se matrix through an ion exchange reaction accompanied by the formation of a crystal/amorphous mixed secondary phase of Sb_(2)(S,Se)_(3).The S doping reduced the excessive intrinsic carrier concentration,leading to modified electrical transport properties and significantly reduced electrical thermal conductivity.On the other hand,introducing the S dopants and the crystal/amorphous interfaces into the Ag_(2)Se matrix could increase the lattice anharmonicity,further contributing to the reduced thermal conductivity.Consequently,the Ag_(2)Se-0.4%Sb_(2)S_(3) sample obtains a high average zT value of>1 in the temperature range of 300–390 K.In addition,the maximum cooling temperature difference of over 85 K can be predicted in an Ag_(2)Se/Ag_(2)Se-0.4%Sb_(2)S_(3) segregated module at the hot side temperature of 350 K.
文摘On the basis of investigation of status of houseplant decoration in modern commercial space,banks,hospitals,hotel hall,dining space,library and office in Suzhou City,the paper analyzed its characters,pointed out their shortcomings and put forward reasonable suggestions.
文摘From the creation,materials,colors and technical artistic characteristics of exterior and exterior spatial decoration,the artistic value of ancient Huizhou folk houses were analyzed.
基金supported by the National Natural Science Foundation of China(51772230,51461135004)the Hubei Foreign Science and Technology Cooperation Project(2017AHB059)the Japan Society for the Promotion of Science(JSPS)for an Invitational Fellowship for Foreign Researchers(L16531)~~
文摘Anatase TiO2 nanocrystals and sub-microcrystals with truncated octahedral bipyramidal morphologies were prepared by direct calcination of TiOF2 precursors. The as-prepared TiO2 samples were thoroughly characterized by X-ray diffraction, Raman spectroscopy, field-emission scanning electron microscopy, N2 adsorption-desorption isotherms, X-ray photoelectron spectroscopy, and UV-visible diffuse spectroscopy. It was found that the crystallinity, grain size, and {001}/{101} ratio of the samples can be increased by raising the calcination temperature from 500 to 800℃. The higher crystallinity and {001}/{101} facet ratio resulted in an increase in both aqueous and gas-phase photocatalytic activities, by inhibiting the recombination and separation of electrons and holes. After selecting two TiO2 samples with high crystallinity and {001}/{101} ratio, Au nanoparticles were decorated on their surfaces, and the photocatalytic activity of the resulting samples under visible light illumination was studied. It was found that the visible light-induced photocatalytic activity increased by 2.6 and 4.8 times, respectively, upon Au decoration of the samples prepared by calcination of TiOF2 at 700 and 800℃.
基金supported by the National Natural Science Foundation of China(51368044,51568051,51668046)the National Science Fund for Excellent Young Scholars(51422807)+6 种基金the Science and Technology Supporting Program of Jiangxi Province(20151BBG70018)the Natural Science Foundation of Jiangxi Province for Distinguished Young Scholars(20162BCB23041)the Science Foundation for Young Scientists of Jiangxi Province-Key Project(20171ACB21034)the Science and Technology Project of Jiangxi Provincial Education Department(GJJ160700)the Natural Science Foundation of Jiangxi Province(20161BAB216102)the Jiangxi Province Educational Reform Project(JXJG-16-8-7)the Nanchang Hangkong University Educational Reform Project(JY1604,JY1605,KCPY-1511)~~
文摘Lattice‐doping and surface decoration are prospective routes to improve the visible‐light photocatalytic ability of TiO2,but the two techniques are difficult to combine into one preparation process because they are usually conducted under different conditions,which limits the efficiency of TiO2 modification.In this study,TiO2 was successfully modified by simultaneous lattice‐doping and surface decoration,and the visible‐light photocatalytic capacity was largely improved.Upon comparing the method reported here with previous ones,the most significant difference is that Fe(II)‐phenanthroline was first used as the co‐precursor of the introduced elements of C,N,and Fe.These three elements were simultaneously introduced to TiO2 at high levels by this co‐precursor method.The as‐synthesized photocatalysts were systemically investigated and analyzed by several characterization methods such as XRD,FT‐IR,XPS,Raman spectroscopy,EPR,UV‐Vis DRS,photoluminescence spectra,photocurrent,electrochemical impedance spectra,TEM,and HRTEM.The photocatalytic degradation of 4‐NP under visible‐light irradiation was used to evaluate the photocatalytic activity of the photocatalysts.Based on the experimental data,a probable mechanism for the photocatalytic degradation by the photocatalysts is proposed.This is a novel method of using one source to simultaneously introduce metal and non‐metal elements to TiO2 at high levels,which may provide a new way to prepare highly effective TiO2 photocatalysts.