This paper explores quantum computing's application in optimizing complex decision models for enterprise economic management.It analyzes enterprises'decision challenges,quantum computing trends,and their integ...This paper explores quantum computing's application in optimizing complex decision models for enterprise economic management.It analyzes enterprises'decision challenges,quantum computing trends,and their integration significance,highlighting quantum computing's advantages in handling multi-variable,high-dimensional problems.Applications in financial,operational,and strategic decisions are detailed,with a quantum-based framework integrating QAOA to boost efficiency/accuracy.Experiments show 60%shorter decision time and 15–20%higher accuracy versus traditional methods.Challenges like hardware limits,algorithm development,low awareness,and lacking standards are noted,with solutions like industry-academia collaboration and standard-setting proposed.Future research should deepen integration,expand scenarios,and strengthen interdisciplinary innovation.展开更多
With the rapid development of large AI models,large decision models have further broken through the limits of human cognition and promoted the innovation of decision-making paradigms in extensive fields such as medici...With the rapid development of large AI models,large decision models have further broken through the limits of human cognition and promoted the innovation of decision-making paradigms in extensive fields such as medicine and transportation.In this paper,we systematically expound on the intelligent decision-making technology and prospects driven by large AI models.Specifically,we first review the development of large AI models in recent years.Then,from the perspective of methods,we introduce important theories and technologies of large decision models,such as model architecture and model adaptation.Next,from the perspective of applications,we introduce the cutting-edge applications of large decision models in various fields,such as autonomous driving and knowledge decision-making.Finally,we discuss existing challenges,such as security issues,decision bias and hallucination phenomenon as well as future prospects,from both technology development and domain applications.We hope this review paper can help researchers understand the important progress of intelligent decision-making driven by large AI models.展开更多
This study focuses on the construction and application of intelligent financial decision-making models driven by generative artificial intelligence(AI).It analyzes the mechanisms by which generative AI empowers financ...This study focuses on the construction and application of intelligent financial decision-making models driven by generative artificial intelligence(AI).It analyzes the mechanisms by which generative AI empowers financial decision-making within a dual framework of dynamic knowledge evolution and risk control.The research reveals that generative AI,with its superior data processing,pattern recognition,and autonomous learning capabilities,can transcend the limitations of traditional decision-making models,facilitating a significant shift from causal inference to probabilistic creation in decision-making paradigms.By systematically constructing an intelligent financial decision-making model that includes data governance,core engine,and decision output layers,the study clarifies the functional roles and collaborative mechanisms of each layer.Additionally,it addresses key challenges in technology application,institutional adaptation,and organizational transformation by proposing systematic strategies for technical risk management,institutional innovation,and organizational capability enhancement,aiming to provide robust theoretical support and practical guidance for the intelligent transformation of corporate financial decision-making.展开更多
In order to solve the problems of potential incident rescue on expressway networks, the opportunity cost-based method is used to establish a resource dispatch decision model. The model aims to dispatch the rescue reso...In order to solve the problems of potential incident rescue on expressway networks, the opportunity cost-based method is used to establish a resource dispatch decision model. The model aims to dispatch the rescue resources from the regional road networks and to obtain the location of the rescue depots and the numbers of service vehicles assigned for the potential incidents. Due to the computational complexity of the decision model, a scene decomposition algorithm is proposed. The algorithm decomposes the dispatch problem from various kinds of resources to a single resource, and determines the original scene of rescue resources based on the rescue requirements and the resource matrix. Finally, a convenient optimal dispatch scheme is obtained by decomposing each original scene and simplifying the objective function. To illustrate the application of the decision model and the algorithm, a case of the expressway network is studied on areas around Nanjing city in China and the results show that the model used and the algorithm proposed are appropriate.展开更多
Gully erosion is a disruptive phenomenon which extensively affects the Iranian territory,especially in the Northern provinces.A number of studies have been recently undertaken to study this process and to predict it o...Gully erosion is a disruptive phenomenon which extensively affects the Iranian territory,especially in the Northern provinces.A number of studies have been recently undertaken to study this process and to predict it over space and ultimately,in a broader national effort,to limit its negative effects on local communities.We focused on the Bastam watershed where 9.3%of its surface is currently affected by gullying.Machine learning algorithms are currently under the magnifying glass across the geomorphological community for their high predictive ability.However,unlike the bivariate statistical models,their structure does not provide intuitive and quantifiable measures of environmental preconditioning factors.To cope with such weakness,we interpret preconditioning causes on the basis of a bivariate approach namely,Index of Entropy.And,we performed the susceptibility mapping procedure by testing three extensions of a decision tree model namely,Alternating Decision Tree(ADTree),Naive-Bayes tree(NBTree),and Logistic Model Tree(LMT).We dichotomized the gully information over space into gully presence/absence conditions,which we further explored in their calibration and validation stages.Being the presence/absence information and associated factors identical,the resulting differences are only due to the algorithmic structures of the three models we chose.Such differences are not significant in terms of performances;in fact,the three models produce outstanding predictive AUC measures(ADTree=0.922;NBTree=0.939;LMT=0.944).However,the associated mapping results depict very different patterns where only the LMT is associated with reasonable susceptibility patterns.This is a strong indication of what model combines best performance and mapping for any natural hazard-oriented application.展开更多
According to the requirements of the live-virtual-constructive(LVC)tactical confrontation(TC)on the virtual entity(VE)decision model of graded combat capability,diversified actions,real-time decision-making,and genera...According to the requirements of the live-virtual-constructive(LVC)tactical confrontation(TC)on the virtual entity(VE)decision model of graded combat capability,diversified actions,real-time decision-making,and generalization for the enemy,the confrontation process is modeled as a zero-sum stochastic game(ZSG).By introducing the theory of dynamic relative power potential field,the problem of reward sparsity in the model can be solved.By reward shaping,the problem of credit assignment between agents can be solved.Based on the idea of meta-learning,an extensible multi-agent deep reinforcement learning(EMADRL)framework and solving method is proposed to improve the effectiveness and efficiency of model solving.Experiments show that the model meets the requirements well and the algorithm learning efficiency is high.展开更多
As the gap between a shortage of organs and the im-mense demand for liver grafts persists, every available donor liver needs to be optimized for utility, urgency and equity. To overcome this challenge, decision modell...As the gap between a shortage of organs and the im-mense demand for liver grafts persists, every available donor liver needs to be optimized for utility, urgency and equity. To overcome this challenge, decision modelling might allow us to gather evidence from previous studies as well as compare the costs and consequences of alternative options. For public health policy and clinical intervention assessment, it is a potentially powerful tool. The most commonly used types of decision analytical models include decision trees, the Markov model, microsimulation, discrete event simulation and the system dynamic model. Analytic models could support decision makers in the field of liver transplantation when facing specifc problems by synthesizing evidence, comprising all relevant options, generalizing results to other contexts, extending the time horizon and exploring the uncertainty. For modeling studies of economic evaluation for transplantation, understanding the current nature of the disease is crucial, as well as the selection of appropriate modelling techniques. The quality and availability of data is another key element for the selection and development of decision analytical models. In addition, good practice guidelines should be complied, which is important for standardization and comparability between economic outputs.展开更多
In the process of performing a task,autonomous unmanned systems face the problem of scene changing,which requires the ability of real-time decision-making under dynamically changing scenes.Therefore,taking the unmanne...In the process of performing a task,autonomous unmanned systems face the problem of scene changing,which requires the ability of real-time decision-making under dynamically changing scenes.Therefore,taking the unmanned system coordinative region control operation as an example,this paper combines knowledge representation with probabilistic decisionmaking and proposes a role-based Bayesian decision model for autonomous unmanned systems that integrates scene cognition and individual preferences.Firstly,according to utility value decision theory,the role-based utility value decision model is proposed to realize task coordination according to the preference of the role that individual is assigned.Then,multi-entity Bayesian network is introduced for situation assessment,by which scenes and their uncertainty related to the operation are semantically described,so that the unmanned systems can conduct situation awareness in a set of scenes with uncertainty.Finally,the effectiveness of the proposed method is verified in a virtual task scenario.This research has important reference value for realizing scene cognition,improving cooperative decision-making ability under dynamic scenes,and achieving swarm level autonomy of unmanned systems.展开更多
A vague-set-based fuzzy multi-objective decision making model is developed for evaluating bidding plans in a bid- ding purchase process. A group of decision-makers (DMs) first independently assess bidding plans accord...A vague-set-based fuzzy multi-objective decision making model is developed for evaluating bidding plans in a bid- ding purchase process. A group of decision-makers (DMs) first independently assess bidding plans according to their experience and preferences, and these assessments may be expressed as linguistic terms, which are then converted to fuzzy numbers. The resulting decision matrices are then transformed to objective membership grade matrices. The lower bound of satisfaction and upper bound of dissatisfaction are used to determine each bidding plan’s supporting, opposing, and neutral objective sets, which together determine the vague value of a bidding plan. Finally, a score function is employed to rank all bidding plans. A new score function based on vague sets is introduced in the model and a novel method is presented for calculating the lower bound of sat- isfaction and upper bound of dissatisfaction. In a vague-set-based fuzzy multi-objective decision making model, different valua- tions for upper and lower bounds of satisfaction usually lead to distinct ranking results. Therefore, it is crucial to effectively contain DMs’ arbitrariness and subjectivity when these values are determined.展开更多
The primary objective of this work is to explore how drivers react to flashing green at signalized intersections. Through video taping and data procession based on photogrammetry, the operating speeds of vehicles befo...The primary objective of this work is to explore how drivers react to flashing green at signalized intersections. Through video taping and data procession based on photogrammetry, the operating speeds of vehicles before and after the moment when flashing green started was compared using paired-samples T-test. The critical distances between go and stop decisions was defined through cumulative percentage curve. The boundary of dilemma zone was determined by comparing stop distance and travel distance.Amber-running violation was analyzed on the basis of the travel time to the stop line. And finally, a logistic model for stop and go decisions was constructed. The results shows that the stopping ratios of the first vehicles of west-bound and east-bound approaches are 41.3% and 39.8%, respectively; the amber-light running violation ratios of two approaches are 31.6% and 25.4%, respectively;the operating speed growth ratios of first vehicles selecting to cross intersection after the moment when flashing green started are26.7% and 17.7%, respectively; and the critical distances are 48 m and 46 m, respectively, which are close to 44 m, the boundary of dilemma zone. The developed decision models demonstrate that the probability of go decision is higher when the distance from the stop line is shorter or operating speed is higher. This indicates that flashing green is an effective way to enhance intersection safety,but it should work together with a strict enforcement. In addition, traffic signs near critical distance and reasonable speed limitation are also beneficial to the safety of intersections.展开更多
An approach for modeling a human cognitive framework in time-stressed decision making is presented. The recognitive and metacognitive processes that represent the cognitive framework are modeled by the colored Petri n...An approach for modeling a human cognitive framework in time-stressed decision making is presented. The recognitive and metacognitive processes that represent the cognitive framework are modeled by the colored Petri nets (CPNs). A structural and behavioral analysis method is adopted to obtain the static and dynamic property used to verify the CPNs model of the cognitive framework. Finally, an example from the command and control radar recognition system is used to evaluate the feasibility and availability of the CPNs model adopted in practical systems.展开更多
Different from the organization structure of complex projects in Western countries, the Liang Zong hierarchical organization structure of complex projects in China has two different chains, the chief-engineer chain an...Different from the organization structure of complex projects in Western countries, the Liang Zong hierarchical organization structure of complex projects in China has two different chains, the chief-engineer chain and the general-director chain,to handle the trade-off between technical and management decisions. However, previous works on organization search have mainly focused on the single-chain hierarchical organization in which all decisions are regarded as homogeneous. The heterogeneity and the interdependency between technical decisions and management decisions have been neglected. A two-chain hierarchical organization structure mapped from a real complex project is constructed. Then, a discrete decision model for a Liang Zong two-chain hierarchical organization in an NK model framework is proposed. This model proves that this kind of organization structure can reduce the search space by a large amount and that the search process should reach a final stable state more quickly. For a more complicated decision mechanism, a multi-agent simulation based on the above NK model is used to explore the effect of the two-chain organization structure on the speed, stability, and performance of the search process. The results provide three insights into how, compared with the single-chain hierarchical organization, the two-chain organization can improve the search process: it can reduce the number of iterations efficiently; the search is more stable because the search space is a smoother hill-like fitness landscape; in general, the search performance can be improved.However, when the organization structure is very complicated, the performance of a two-chain organization is inferior to that of a single-chain organization. These findings about the efficiency of the unique Chinese-style organization structure can be used to guide organization design for complex projects.展开更多
From the mathematical point of view,the flexible inventory control model is proved in the practical problem application and the rationality of the capacity parameter selection and calculation.The purpose is to activel...From the mathematical point of view,the flexible inventory control model is proved in the practical problem application and the rationality of the capacity parameter selection and calculation.The purpose is to actively respond to demand fluctuations when there is a demand forecast error or a missing part of the demand information,and to avoid the risk of passive variable demand forecasting to set the immutable inventory capacity.At the same time,the game is controlled by the flexible and variable inventory control strategy and the customer’s willingness to demand.The paper mainly studies the influence of the setting of capacity parameters on the booking-limit decision and its benefits under the control of flexible space with variable total capacity.Through the two trends of capacity increase flexibility and capacity reduction flexibility in the flexible inventory control model,the mathematical performance and marginal utility methods are introduced to change the performance of the booking-limit control decision model under different scenarios.The correlation analysis between the capacity limit level and the return under the optimal Bookinglimit decision,and the above two flexibility parameters are obtained.展开更多
This paper presents and analyses the internal and external efficiencies of equipment maintenance, and presents that the objective of maintenance is the maximum external efficiency. It defines generalized reliability d...This paper presents and analyses the internal and external efficiencies of equipment maintenance, and presents that the objective of maintenance is the maximum external efficiency. It defines generalized reliability degree of equipment and deduces the correspondent calculating method. It overcomes the defect that traditional calculating method of reliability degree has, which only considers the factor of time not function, therefore we establish a market decision model of equipment maintenance based on it. This model can determine the marginal efficiency of maintenance investment and critical value of generalized reliability degree when it reaches break-even point. After combining the equipment maintenance with economical benefit of enterprise and marketing situation of products, an optimal maintenance strategy will be got. It provides a new method for scientific and rational decisions of equipment maintenance.展开更多
Considering the dynamic character of repeated games and Markov process, this paper presented a novel dynamic decision model for symmetric repeated games. In this model, players' actions were mapped to a Markov decisi...Considering the dynamic character of repeated games and Markov process, this paper presented a novel dynamic decision model for symmetric repeated games. In this model, players' actions were mapped to a Markov decision process with payoffs, and the Boltzmann distribution was intousluced. Our dynamic model is different from others' , we used this dynamic model to study the iterated prisoner' s dilemma, and the results show that this decision model can successfully be used in symmetric repeated games and has an ability of adaptive learning.展开更多
With the expansion of the office building area,the energy consumption of office buildings is growing.High⁃performance building design contributes to energy saving and the development of green buildings.However,there i...With the expansion of the office building area,the energy consumption of office buildings is growing.High⁃performance building design contributes to energy saving and the development of green buildings.However,there is a lack of high⁃performance building tools and the workflow is often time⁃consuming.The building performance simulation,multiple objective optimizations,and the decision support model are the new approaches of high⁃performance building design.This paper proposes a newly developed decision support model,a high⁃performance building decision model named HPBuildingDSM,which integrates the building performance simulation,building performance multiple objective optimizations,building performance sampling,and parameter sensitivity analysis to design high⁃performance office buildings.In this research,the HPBuildingDSM was operated to search for the desirable office building design results with low⁃energy and high⁃quality daylighting performances.The simulated results had better daylighting performance and lower energy consumption,whose UDI100-2000 was 37.94%and annual energy consumption performance was 76.28 kWh/(m2·a),indicating a better building performance than the optimized results in the previous case study.展开更多
The North China Plain and the agricultural region are crossed by the Shanxi-Beijing natural gas pipeline.Resi-dents in the area use rototillers for planting and harvesting;however,the depth of the rototillers into the...The North China Plain and the agricultural region are crossed by the Shanxi-Beijing natural gas pipeline.Resi-dents in the area use rototillers for planting and harvesting;however,the depth of the rototillers into the ground is greater than the depth of the pipeline,posing a significant threat to the safe operation of the pipeline.Therefore,it is of great significance to study the dynamic response of rotary tillers impacting pipelines to ensure the safe opera-tion of pipelines.This article focuses on the Shanxi-Beijing natural gas pipeline,utilizingfinite element simulation software to establish afinite element model for the interaction among the machinery,pipeline,and soil,and ana-lyzing the dynamic response of the pipeline.At the same time,a decision tree model is introduced to classify the damage of pipelines under different working conditions,and the boundary value and importance of each influen-cing factor on pipeline damage are derived.Considering the actual conditions in the hemp yam planting area,targeted management measures have been proposed to ensure the operational safety of the Shanxi-Beijing natural gas pipeline in this region.展开更多
Decision making to mitigate the effects of natural hazards is a complex undertaking fraught with uncertainty. Models to describe risks associated with natural hazards have proliferated in recent years. Concurrently, t...Decision making to mitigate the effects of natural hazards is a complex undertaking fraught with uncertainty. Models to describe risks associated with natural hazards have proliferated in recent years. Concurrently, there is a growing body of work focused on developing best practices for natural hazard modeling and to create structured evaluation criteria for complex environmental models. However, to our knowledge there has been less focus on the conditions where decision makers can confidently rely on results from these models. In this review we propose a preliminary set of conditions necessary for the appropriate application of modeled results to natural hazard decision making and provide relevant examples within US wildfire management programs.展开更多
This study aimed to develop a clinical Decision Support Model (DSM) which is software that provides physicians and other healthcare stakeholders with patient-specific assessments and recommendation in aiding clinical ...This study aimed to develop a clinical Decision Support Model (DSM) which is software that provides physicians and other healthcare stakeholders with patient-specific assessments and recommendation in aiding clinical decision-making while discharging Breast cancer patient since the diagnostics and discharge problem is often overwhelming for a clinician to process at the point of care or in urgent situations. The model incorporates Breast cancer patient-specific data that are well-structured having been attained from a prestudy’s administered questionnaires and current evidence-based guidelines. Obtained dataset of the prestudy’s questionnaires is processed via data mining techniques to generate an optimal clinical decision tree classifier model which serves physicians in enhancing their decision-making process while discharging a breast cancer patient on basic cognitive processes involved in medical thinking hence new, better-formed, and superior outcomes. The model also improves the quality of assessments by constructing predictive discharging models from code attributes enabling timely detection of deterioration in the quality of health of a breast cancer patient upon discharge. The outcome of implementing this study is a decision support model that bridges the gap occasioned by less informed clinical Breast cancer discharge that is based merely on experts’ opinions which is insufficiently reinforced for better treatment outcomes. The reinforced discharge decision for better treatment outcomes is through timely deployment of the decision support model to work hand in hand with the expertise in deriving an integrative discharge decision and has been an agreed strategy to eliminate the foreseeable deteriorating quality of health for a discharged breast cancer patients and surging rates of mortality blamed on mistrusted discharge decisions. In this paper, we will discuss breast cancer clinical knowledge, data mining techniques, the classifying model accuracy, and the Python web-based decision support model that predicts avoidable re-hospitalization of a breast cancer patient through an informed clinical discharging support model.展开更多
Swarm Intelligence (SI) is a collective behavior that emerges from interaction between individuals in a group. Typical SI includes fish schooling, ant foraging, bird migration, and so on. A great deal of models have b...Swarm Intelligence (SI) is a collective behavior that emerges from interaction between individuals in a group. Typical SI includes fish schooling, ant foraging, bird migration, and so on. A great deal of models have been introduced to characterize the mechanism of SI. This article reviews several typical models and classifies them into four categories: self-driven particle models, with Boids model as the primary example;pheromone communication models, including the ant colony pheromone model which serves as the foundation for ant colony optimization;leadership decision models, utilizing the hierarchical dynamics model of pigeon flock as a prime instance;empirical research models, which employ the topological rule model of starling flock as a classic model. On this basis, each type of model is elaborated upon in terms of its typical model overview, applications, and model evaluation. More specifically, multi-agent swarm control, path optimization and obstacle avoidance, formation and consensus control, trajectory tracking in the dense crowd and social networks analysis are surveyed in the application of each category, respectively. Furthermore, the more precise and effective modeling techniques for leadership decision and empirical research models are described. Limitations and potential directions for further exploration in the study of SI are presented.展开更多
文摘This paper explores quantum computing's application in optimizing complex decision models for enterprise economic management.It analyzes enterprises'decision challenges,quantum computing trends,and their integration significance,highlighting quantum computing's advantages in handling multi-variable,high-dimensional problems.Applications in financial,operational,and strategic decisions are detailed,with a quantum-based framework integrating QAOA to boost efficiency/accuracy.Experiments show 60%shorter decision time and 15–20%higher accuracy versus traditional methods.Challenges like hardware limits,algorithm development,low awareness,and lacking standards are noted,with solutions like industry-academia collaboration and standard-setting proposed.Future research should deepen integration,expand scenarios,and strengthen interdisciplinary innovation.
基金supported by the National Natural Science Foundation of China(Grant 62293545)Shenzhen Science and Technology Program(Grant ZDSYS20220323112000001).
文摘With the rapid development of large AI models,large decision models have further broken through the limits of human cognition and promoted the innovation of decision-making paradigms in extensive fields such as medicine and transportation.In this paper,we systematically expound on the intelligent decision-making technology and prospects driven by large AI models.Specifically,we first review the development of large AI models in recent years.Then,from the perspective of methods,we introduce important theories and technologies of large decision models,such as model architecture and model adaptation.Next,from the perspective of applications,we introduce the cutting-edge applications of large decision models in various fields,such as autonomous driving and knowledge decision-making.Finally,we discuss existing challenges,such as security issues,decision bias and hallucination phenomenon as well as future prospects,from both technology development and domain applications.We hope this review paper can help researchers understand the important progress of intelligent decision-making driven by large AI models.
文摘This study focuses on the construction and application of intelligent financial decision-making models driven by generative artificial intelligence(AI).It analyzes the mechanisms by which generative AI empowers financial decision-making within a dual framework of dynamic knowledge evolution and risk control.The research reveals that generative AI,with its superior data processing,pattern recognition,and autonomous learning capabilities,can transcend the limitations of traditional decision-making models,facilitating a significant shift from causal inference to probabilistic creation in decision-making paradigms.By systematically constructing an intelligent financial decision-making model that includes data governance,core engine,and decision output layers,the study clarifies the functional roles and collaborative mechanisms of each layer.Additionally,it addresses key challenges in technology application,institutional adaptation,and organizational transformation by proposing systematic strategies for technical risk management,institutional innovation,and organizational capability enhancement,aiming to provide robust theoretical support and practical guidance for the intelligent transformation of corporate financial decision-making.
基金The National Natural Science Foundation of China (No.50422283)the Science and Technology Key Plan Project of Henan Province (No.072102360060)
文摘In order to solve the problems of potential incident rescue on expressway networks, the opportunity cost-based method is used to establish a resource dispatch decision model. The model aims to dispatch the rescue resources from the regional road networks and to obtain the location of the rescue depots and the numbers of service vehicles assigned for the potential incidents. Due to the computational complexity of the decision model, a scene decomposition algorithm is proposed. The algorithm decomposes the dispatch problem from various kinds of resources to a single resource, and determines the original scene of rescue resources based on the rescue requirements and the resource matrix. Finally, a convenient optimal dispatch scheme is obtained by decomposing each original scene and simplifying the objective function. To illustrate the application of the decision model and the algorithm, a case of the expressway network is studied on areas around Nanjing city in China and the results show that the model used and the algorithm proposed are appropriate.
文摘Gully erosion is a disruptive phenomenon which extensively affects the Iranian territory,especially in the Northern provinces.A number of studies have been recently undertaken to study this process and to predict it over space and ultimately,in a broader national effort,to limit its negative effects on local communities.We focused on the Bastam watershed where 9.3%of its surface is currently affected by gullying.Machine learning algorithms are currently under the magnifying glass across the geomorphological community for their high predictive ability.However,unlike the bivariate statistical models,their structure does not provide intuitive and quantifiable measures of environmental preconditioning factors.To cope with such weakness,we interpret preconditioning causes on the basis of a bivariate approach namely,Index of Entropy.And,we performed the susceptibility mapping procedure by testing three extensions of a decision tree model namely,Alternating Decision Tree(ADTree),Naive-Bayes tree(NBTree),and Logistic Model Tree(LMT).We dichotomized the gully information over space into gully presence/absence conditions,which we further explored in their calibration and validation stages.Being the presence/absence information and associated factors identical,the resulting differences are only due to the algorithmic structures of the three models we chose.Such differences are not significant in terms of performances;in fact,the three models produce outstanding predictive AUC measures(ADTree=0.922;NBTree=0.939;LMT=0.944).However,the associated mapping results depict very different patterns where only the LMT is associated with reasonable susceptibility patterns.This is a strong indication of what model combines best performance and mapping for any natural hazard-oriented application.
基金supported by the Military Scentific Research Project(41405030302,41401020301).
文摘According to the requirements of the live-virtual-constructive(LVC)tactical confrontation(TC)on the virtual entity(VE)decision model of graded combat capability,diversified actions,real-time decision-making,and generalization for the enemy,the confrontation process is modeled as a zero-sum stochastic game(ZSG).By introducing the theory of dynamic relative power potential field,the problem of reward sparsity in the model can be solved.By reward shaping,the problem of credit assignment between agents can be solved.Based on the idea of meta-learning,an extensible multi-agent deep reinforcement learning(EMADRL)framework and solving method is proposed to improve the effectiveness and efficiency of model solving.Experiments show that the model meets the requirements well and the algorithm learning efficiency is high.
基金Supported by a grant from the German Federal Ministry of Education and Research,No.01EO1302
文摘As the gap between a shortage of organs and the im-mense demand for liver grafts persists, every available donor liver needs to be optimized for utility, urgency and equity. To overcome this challenge, decision modelling might allow us to gather evidence from previous studies as well as compare the costs and consequences of alternative options. For public health policy and clinical intervention assessment, it is a potentially powerful tool. The most commonly used types of decision analytical models include decision trees, the Markov model, microsimulation, discrete event simulation and the system dynamic model. Analytic models could support decision makers in the field of liver transplantation when facing specifc problems by synthesizing evidence, comprising all relevant options, generalizing results to other contexts, extending the time horizon and exploring the uncertainty. For modeling studies of economic evaluation for transplantation, understanding the current nature of the disease is crucial, as well as the selection of appropriate modelling techniques. The quality and availability of data is another key element for the selection and development of decision analytical models. In addition, good practice guidelines should be complied, which is important for standardization and comparability between economic outputs.
基金the Military Science Postgraduate Project of PLA(JY2020B006).
文摘In the process of performing a task,autonomous unmanned systems face the problem of scene changing,which requires the ability of real-time decision-making under dynamically changing scenes.Therefore,taking the unmanned system coordinative region control operation as an example,this paper combines knowledge representation with probabilistic decisionmaking and proposes a role-based Bayesian decision model for autonomous unmanned systems that integrates scene cognition and individual preferences.Firstly,according to utility value decision theory,the role-based utility value decision model is proposed to realize task coordination according to the preference of the role that individual is assigned.Then,multi-entity Bayesian network is introduced for situation assessment,by which scenes and their uncertainty related to the operation are semantically described,so that the unmanned systems can conduct situation awareness in a set of scenes with uncertainty.Finally,the effectiveness of the proposed method is verified in a virtual task scenario.This research has important reference value for realizing scene cognition,improving cooperative decision-making ability under dynamic scenes,and achieving swarm level autonomy of unmanned systems.
基金Project (No. K81077) supported by the Department of Automation, Xiamen University, China
文摘A vague-set-based fuzzy multi-objective decision making model is developed for evaluating bidding plans in a bid- ding purchase process. A group of decision-makers (DMs) first independently assess bidding plans according to their experience and preferences, and these assessments may be expressed as linguistic terms, which are then converted to fuzzy numbers. The resulting decision matrices are then transformed to objective membership grade matrices. The lower bound of satisfaction and upper bound of dissatisfaction are used to determine each bidding plan’s supporting, opposing, and neutral objective sets, which together determine the vague value of a bidding plan. Finally, a score function is employed to rank all bidding plans. A new score function based on vague sets is introduced in the model and a novel method is presented for calculating the lower bound of sat- isfaction and upper bound of dissatisfaction. In a vague-set-based fuzzy multi-objective decision making model, different valua- tions for upper and lower bounds of satisfaction usually lead to distinct ranking results. Therefore, it is crucial to effectively contain DMs’ arbitrariness and subjectivity when these values are determined.
基金Project(51208451)supported by the National Natural Science Foundation of ChinaProject(10KJB580004)supported by the Natural Science Foundation for Colleges and Universities of Jiangsu Province,ChinaProject supported by the New Century Talents Project of Yangzhou University,China
文摘The primary objective of this work is to explore how drivers react to flashing green at signalized intersections. Through video taping and data procession based on photogrammetry, the operating speeds of vehicles before and after the moment when flashing green started was compared using paired-samples T-test. The critical distances between go and stop decisions was defined through cumulative percentage curve. The boundary of dilemma zone was determined by comparing stop distance and travel distance.Amber-running violation was analyzed on the basis of the travel time to the stop line. And finally, a logistic model for stop and go decisions was constructed. The results shows that the stopping ratios of the first vehicles of west-bound and east-bound approaches are 41.3% and 39.8%, respectively; the amber-light running violation ratios of two approaches are 31.6% and 25.4%, respectively;the operating speed growth ratios of first vehicles selecting to cross intersection after the moment when flashing green started are26.7% and 17.7%, respectively; and the critical distances are 48 m and 46 m, respectively, which are close to 44 m, the boundary of dilemma zone. The developed decision models demonstrate that the probability of go decision is higher when the distance from the stop line is shorter or operating speed is higher. This indicates that flashing green is an effective way to enhance intersection safety,but it should work together with a strict enforcement. In addition, traffic signs near critical distance and reasonable speed limitation are also beneficial to the safety of intersections.
基金supported by the National Natural Science Foundation of China(60874068).
文摘An approach for modeling a human cognitive framework in time-stressed decision making is presented. The recognitive and metacognitive processes that represent the cognitive framework are modeled by the colored Petri nets (CPNs). A structural and behavioral analysis method is adopted to obtain the static and dynamic property used to verify the CPNs model of the cognitive framework. Finally, an example from the command and control radar recognition system is used to evaluate the feasibility and availability of the CPNs model adopted in practical systems.
基金supported by the National Natural Science Foundation of China(7157105771390522)the Key Lab for Public Engineering Audit of Jiangsu Province,Nanjing Audit University(GGSS2016-08)
文摘Different from the organization structure of complex projects in Western countries, the Liang Zong hierarchical organization structure of complex projects in China has two different chains, the chief-engineer chain and the general-director chain,to handle the trade-off between technical and management decisions. However, previous works on organization search have mainly focused on the single-chain hierarchical organization in which all decisions are regarded as homogeneous. The heterogeneity and the interdependency between technical decisions and management decisions have been neglected. A two-chain hierarchical organization structure mapped from a real complex project is constructed. Then, a discrete decision model for a Liang Zong two-chain hierarchical organization in an NK model framework is proposed. This model proves that this kind of organization structure can reduce the search space by a large amount and that the search process should reach a final stable state more quickly. For a more complicated decision mechanism, a multi-agent simulation based on the above NK model is used to explore the effect of the two-chain organization structure on the speed, stability, and performance of the search process. The results provide three insights into how, compared with the single-chain hierarchical organization, the two-chain organization can improve the search process: it can reduce the number of iterations efficiently; the search is more stable because the search space is a smoother hill-like fitness landscape; in general, the search performance can be improved.However, when the organization structure is very complicated, the performance of a two-chain organization is inferior to that of a single-chain organization. These findings about the efficiency of the unique Chinese-style organization structure can be used to guide organization design for complex projects.
文摘From the mathematical point of view,the flexible inventory control model is proved in the practical problem application and the rationality of the capacity parameter selection and calculation.The purpose is to actively respond to demand fluctuations when there is a demand forecast error or a missing part of the demand information,and to avoid the risk of passive variable demand forecasting to set the immutable inventory capacity.At the same time,the game is controlled by the flexible and variable inventory control strategy and the customer’s willingness to demand.The paper mainly studies the influence of the setting of capacity parameters on the booking-limit decision and its benefits under the control of flexible space with variable total capacity.Through the two trends of capacity increase flexibility and capacity reduction flexibility in the flexible inventory control model,the mathematical performance and marginal utility methods are introduced to change the performance of the booking-limit control decision model under different scenarios.The correlation analysis between the capacity limit level and the return under the optimal Bookinglimit decision,and the above two flexibility parameters are obtained.
文摘This paper presents and analyses the internal and external efficiencies of equipment maintenance, and presents that the objective of maintenance is the maximum external efficiency. It defines generalized reliability degree of equipment and deduces the correspondent calculating method. It overcomes the defect that traditional calculating method of reliability degree has, which only considers the factor of time not function, therefore we establish a market decision model of equipment maintenance based on it. This model can determine the marginal efficiency of maintenance investment and critical value of generalized reliability degree when it reaches break-even point. After combining the equipment maintenance with economical benefit of enterprise and marketing situation of products, an optimal maintenance strategy will be got. It provides a new method for scientific and rational decisions of equipment maintenance.
基金We also acknowledge the support by the National Natural Science Foundation of China (Grant No. 60574071).
文摘Considering the dynamic character of repeated games and Markov process, this paper presented a novel dynamic decision model for symmetric repeated games. In this model, players' actions were mapped to a Markov decision process with payoffs, and the Boltzmann distribution was intousluced. Our dynamic model is different from others' , we used this dynamic model to study the iterated prisoner' s dilemma, and the results show that this decision model can successfully be used in symmetric repeated games and has an ability of adaptive learning.
文摘With the expansion of the office building area,the energy consumption of office buildings is growing.High⁃performance building design contributes to energy saving and the development of green buildings.However,there is a lack of high⁃performance building tools and the workflow is often time⁃consuming.The building performance simulation,multiple objective optimizations,and the decision support model are the new approaches of high⁃performance building design.This paper proposes a newly developed decision support model,a high⁃performance building decision model named HPBuildingDSM,which integrates the building performance simulation,building performance multiple objective optimizations,building performance sampling,and parameter sensitivity analysis to design high⁃performance office buildings.In this research,the HPBuildingDSM was operated to search for the desirable office building design results with low⁃energy and high⁃quality daylighting performances.The simulated results had better daylighting performance and lower energy consumption,whose UDI100-2000 was 37.94%and annual energy consumption performance was 76.28 kWh/(m2·a),indicating a better building performance than the optimized results in the previous case study.
文摘The North China Plain and the agricultural region are crossed by the Shanxi-Beijing natural gas pipeline.Resi-dents in the area use rototillers for planting and harvesting;however,the depth of the rototillers into the ground is greater than the depth of the pipeline,posing a significant threat to the safe operation of the pipeline.Therefore,it is of great significance to study the dynamic response of rotary tillers impacting pipelines to ensure the safe opera-tion of pipelines.This article focuses on the Shanxi-Beijing natural gas pipeline,utilizingfinite element simulation software to establish afinite element model for the interaction among the machinery,pipeline,and soil,and ana-lyzing the dynamic response of the pipeline.At the same time,a decision tree model is introduced to classify the damage of pipelines under different working conditions,and the boundary value and importance of each influen-cing factor on pipeline damage are derived.Considering the actual conditions in the hemp yam planting area,targeted management measures have been proposed to ensure the operational safety of the Shanxi-Beijing natural gas pipeline in this region.
文摘Decision making to mitigate the effects of natural hazards is a complex undertaking fraught with uncertainty. Models to describe risks associated with natural hazards have proliferated in recent years. Concurrently, there is a growing body of work focused on developing best practices for natural hazard modeling and to create structured evaluation criteria for complex environmental models. However, to our knowledge there has been less focus on the conditions where decision makers can confidently rely on results from these models. In this review we propose a preliminary set of conditions necessary for the appropriate application of modeled results to natural hazard decision making and provide relevant examples within US wildfire management programs.
文摘This study aimed to develop a clinical Decision Support Model (DSM) which is software that provides physicians and other healthcare stakeholders with patient-specific assessments and recommendation in aiding clinical decision-making while discharging Breast cancer patient since the diagnostics and discharge problem is often overwhelming for a clinician to process at the point of care or in urgent situations. The model incorporates Breast cancer patient-specific data that are well-structured having been attained from a prestudy’s administered questionnaires and current evidence-based guidelines. Obtained dataset of the prestudy’s questionnaires is processed via data mining techniques to generate an optimal clinical decision tree classifier model which serves physicians in enhancing their decision-making process while discharging a breast cancer patient on basic cognitive processes involved in medical thinking hence new, better-formed, and superior outcomes. The model also improves the quality of assessments by constructing predictive discharging models from code attributes enabling timely detection of deterioration in the quality of health of a breast cancer patient upon discharge. The outcome of implementing this study is a decision support model that bridges the gap occasioned by less informed clinical Breast cancer discharge that is based merely on experts’ opinions which is insufficiently reinforced for better treatment outcomes. The reinforced discharge decision for better treatment outcomes is through timely deployment of the decision support model to work hand in hand with the expertise in deriving an integrative discharge decision and has been an agreed strategy to eliminate the foreseeable deteriorating quality of health for a discharged breast cancer patients and surging rates of mortality blamed on mistrusted discharge decisions. In this paper, we will discuss breast cancer clinical knowledge, data mining techniques, the classifying model accuracy, and the Python web-based decision support model that predicts avoidable re-hospitalization of a breast cancer patient through an informed clinical discharging support model.
基金co-supported by the National Natural Science Foundation of China(No.61873017)the Academic Excellence Foundation of Beihang University for PhD Students,China.
文摘Swarm Intelligence (SI) is a collective behavior that emerges from interaction between individuals in a group. Typical SI includes fish schooling, ant foraging, bird migration, and so on. A great deal of models have been introduced to characterize the mechanism of SI. This article reviews several typical models and classifies them into four categories: self-driven particle models, with Boids model as the primary example;pheromone communication models, including the ant colony pheromone model which serves as the foundation for ant colony optimization;leadership decision models, utilizing the hierarchical dynamics model of pigeon flock as a prime instance;empirical research models, which employ the topological rule model of starling flock as a classic model. On this basis, each type of model is elaborated upon in terms of its typical model overview, applications, and model evaluation. More specifically, multi-agent swarm control, path optimization and obstacle avoidance, formation and consensus control, trajectory tracking in the dense crowd and social networks analysis are surveyed in the application of each category, respectively. Furthermore, the more precise and effective modeling techniques for leadership decision and empirical research models are described. Limitations and potential directions for further exploration in the study of SI are presented.