Wastewater electrolysis cells(WECs)for decentralized wastewater treatment/reuse coupled with H_(2) production can reduce the carbon footprint associated with transportation of water,waste,and energy carrier.This study...Wastewater electrolysis cells(WECs)for decentralized wastewater treatment/reuse coupled with H_(2) production can reduce the carbon footprint associated with transportation of water,waste,and energy carrier.This study reports Ir-doped NiFe_(2)O_(4)(NFI,~5 at%Ir)spinel layer with TiO_(2) overlayer(NFI/TiO_(2)),as a scalable heterojunction anode for direct electrolysis of wastewater with circumneutral pH in a single-compartment cell.In dilute(0.1 M)NaCl solutions,the NFI/TiO_(2) marks superior activity and selectivity for chlorine evolution reaction,outperforming the benchmark IrO_(2).Robust operation in near-neutral pH was confirmed.Electroanalyses including operando X-ray absorption spectroscopy unveiled crucial roles of TiO_(2) which serves both as the primary site for Cl−chemisorption and a protective layer for NFI as an ohmic contact.Galvanostatic electrolysis of NH4+-laden synthetic wastewater demonstrated that NFI/TiO_(2)not only achieves quasi-stoichiometric NH_(4)^(+)-to-N_(2)conversion,but also enhances H_(2)generation efficiency with minimal competing reactions such as reduction of dissolved oxygen and reactive chlorine.The scaled-up WEC with NFI/TiO_(2)was demonstrated for electrolysis of toilet wastewater.展开更多
Energy access remains a critical challenge in rural South Sudan,with communities heavily relying on expensive and unfriendly environmental energy sources such as diesel generators and biomass.This study addresses the ...Energy access remains a critical challenge in rural South Sudan,with communities heavily relying on expensive and unfriendly environmental energy sources such as diesel generators and biomass.This study addresses the predicament by evaluating the feasibility of renewable energy-based decentralized electrification in the selected village ofDoleibHill,UpperNile,South Sudan.Using a demand assessment and theMulti-Tier Framework(MTF)approach,it categorizes households,public facilities,private sector,Non-GovernmentalOrganizations(NGOs)and business energy needs and designs an optimized hybrid energy system incorporating solar Photovoltaic(PV),wind turbines,batteries,and a generator.The proposed system,simulated in Hybrid Optimization Model Electric Renewable(HOMER)Pro,demonstrates strong economic viability,with a present worth of$292,145,an annual worth of$22,854,a return on investment(ROI)of 36.5%,and an internal rate of return(IRR)of 42.1%.The simple payback period is 2.31 years,and the discounted payback period is 2.62 years.The system achieves a levelized cost of energy(LCOE)of$0.276/kWh and significantly reduces dependence on diesel,producing 798,800 kWh annually fromwind energy.This research provides a replicable model for cost-effective,sustainable rural electrification,offering valuable insights for policymakers and energy planners seeking to expand electricity access in off-grid communities.展开更多
Federated Graph Learning (FGL) enables model training without requiring each client to share local graph data, effectively breaking data silos by aggregating the training parameters from each terminal while safeguardi...Federated Graph Learning (FGL) enables model training without requiring each client to share local graph data, effectively breaking data silos by aggregating the training parameters from each terminal while safeguarding data privacy. Traditional FGL relies on a centralized server for model aggregation;however, this central server presents challenges such as a single point of failure and high communication overhead. Additionally, efficiently training a robust personalized local model for each client remains a significant objective in federated graph learning. To address these issues, we propose a decentralized Federated Graph Learning framework with efficient communication, termed Decentralized Federated Graph Learning via Surrogate Model (SD_FGL). In SD_FGL, each client is required to maintain two models: a private model and a surrogate model. The surrogate model is publicly shared and can exchange and update information directly with any client, eliminating the need for a central server and reducing communication overhead. The private model is independently trained by each client, allowing it to calculate similarity with other clients based on local data as well as information shared through the surrogate model. This enables the private model to better adjust its training strategy and selectively update its parameters. Additionally, local differential privacy is incorporated into the surrogate model training process to enhance privacy protection. Testing on three real-world graph datasets demonstrates that the proposed framework improves accuracy while achieving decentralized Federated Graph Learning with lower communication overhead and stronger privacy safeguards.展开更多
Inspired by the collective behaviors observed in bird flocks and fish schools,this paper proposes a novel Decentralized Model Predictive Flocking Control(DMPFC)framework to enable UAV swarms to autonomously track pred...Inspired by the collective behaviors observed in bird flocks and fish schools,this paper proposes a novel Decentralized Model Predictive Flocking Control(DMPFC)framework to enable UAV swarms to autonomously track predefined reference trajectories while avoiding collisions and maintaining a stable quasi[Math Processing Error]-lattice formation.Unlike traditional approaches that rely on switching between predefined swarm formations,this framework utilizes identical local interaction rules for each UAV,allowing them to dynamically adjust their control inputs based on the motion states of neighboring UAVs,external environmental factors,and the desired reference trajectory,thereby enabling the swarm to adapt its formation dynamically.Through iterative state updates,the UAVs achieve consensus,allowing the swarm to follow the reference trajectory while self-organizing into a cohesive and stable group structure.To enhance computational efficiency,the framework integrates a closed-form solution for the optimization process,enabling real-time implementation even on computationally constrained micro-quadrotors.Theoretical analysis demonstrates that the proposed method ensures swarm consensus,maintains desired inter-agent distances,and stabilizes the swarm formation.Extensive simulations and real-world experiments validate the approach’s effectiveness and practicality,demonstrating that the proposed method achieves velocity consensus within approximately 200 ms and forms a stable quasi[Math Processing Error]-lattice structure nearly ten times faster than traditional models,with trajectory tracking errors on the order of millimeters.This underscores its potential for robust and efficient UAV swarm coordination in complex scenarios.展开更多
In this paper, we study the decentralized federated learning problem, which involves the collaborative training of a global model among multiple devices while ensuring data privacy.In classical federated learning, the...In this paper, we study the decentralized federated learning problem, which involves the collaborative training of a global model among multiple devices while ensuring data privacy.In classical federated learning, the communication channel between the devices poses a potential risk of compromising private information. To reduce the risk of adversary eavesdropping in the communication channel, we propose TRADE(transmit difference weight) concept. This concept replaces the decentralized federated learning algorithm's transmitted weight parameters with differential weight parameters, enhancing the privacy data against eavesdropping. Subsequently, by integrating the TRADE concept with the primal-dual stochastic gradient descent(SGD)algorithm, we propose a decentralized TRADE primal-dual SGD algorithm. We demonstrate that our proposed algorithm's convergence properties are the same as those of the primal-dual SGD algorithm while providing enhanced privacy protection. We validate the algorithm's performance on fault diagnosis task using the Case Western Reserve University dataset, and image classification tasks using the CIFAR-10 and CIFAR-100 datasets,revealing model accuracy comparable to centralized federated learning. Additionally, the experiments confirm the algorithm's privacy protection capability.展开更多
Intensely using online social networks(OSNs)makes users concerned about privacy of data.Given the centralized nature of these platforms,and since each platform has a particular storage mechanism,authentication,and acc...Intensely using online social networks(OSNs)makes users concerned about privacy of data.Given the centralized nature of these platforms,and since each platform has a particular storage mechanism,authentication,and access control,their users do not have the control and the right over their data.Therefore,users cannot easily switch between similar platforms or transfer data from one platform to another.These issues imply,among other things,a threat to privacy since such users depend on the interests of the service provider responsible for administering OSNs.As a strategy for the decentralization of the OSNs and,consequently,as a solution to the privacy problems in these environments,the so-called decentralized online social networks(DOSNs)have emerged.Unlike OSNs,DOSNs are decentralized content management platforms because they do not use centralized service providers.Although DOSNs address some of the privacy issues encountered in OSNs,DOSNs also pose significant challenges to consider,for example,access control to user profile information with high granularity.This work proposes developing an ontological model and a service to support privacy in DOSNs.The model describes the main concepts of privacy access control in DOSNs and their relationships.In addition,the service will consume the model to apply access control according to the policies represented in the model.Our model was evaluated in two phases to verify its compliance with the proposed domain.Finally,we evaluated our service with a performance evaluation,and the results were satisfactory concerning the response time of access control requests.展开更多
Traditional Internet of Things(IoT)architectures that rely on centralized servers for data management and decision-making are vulnerable to security threats and privacy leakage.To address this issue,blockchain has bee...Traditional Internet of Things(IoT)architectures that rely on centralized servers for data management and decision-making are vulnerable to security threats and privacy leakage.To address this issue,blockchain has been advocated for decentralized data management in a tamper-resistance,traceable,and transparent manner.However,a major issue that hinders the integration of blockchain and IoT lies in that,it is rather challenging for resource-constrained IoT devices to perform computation-intensive blockchain consensuses such as Proof-of-Work(PoW).Furthermore,the incentive mechanism of PoW pushes lightweight IoT nodes to aggregate their computing power to increase the possibility of successful block generation.Nevertheless,this eventually leads to the formation of computing power alliances,and significantly compromises the decentralization and security of BlockChain-aided IoT(BC-IoT)networks.To cope with these issues,we propose a lightweight consensus protocol for BC-IoT,called Proof-of-Trusted-Work(PoTW).The goal of the proposed consensus is to disincentivize the centralization of computing power and encourage the independent participation of lightweight IoT nodes in blockchain consensus.First,we put forth an on-chain reputation evaluation rule and a reputation chain for PoTW to enable the verifiability and traceability of nodes’reputations based on their contributions of computing power to the blockchain consensus,and we incorporate the multi-level block generation difficulty as a rewards for nodes to accumulate reputations.Second,we model the block generation process of PoTW and analyze the block throughput using the continuous time Markov chain.Additionally,we define and optimize the relative throughput gain to quantify and maximize the capability of PoTW that suppresses the computing power centralization(i.e.,centralization suppression).Furthermore,we investigate the impact of the computing power of the computing power alliance and the levels of block generation difficulty on the centralization suppression capability of PoTW.Finally,simulation results demonstrate the consistency of the analytical results in terms of block throughput.In particular,the results show that PoTW effectively reduces the block generation proportion of the computing power alliance compared with PoW,while simultaneously improving that of individual lightweight nodes.This indicates that PoTW is capable of suppressing the centralization of computing power to a certain degree.Moreover,as the levels of block generation difficulty in PoTW increase,its centralization suppression capability strengthens.展开更多
Recent advancements in decentralized finance(DeFi)have resulted in a rapid increase in the use of Automated Market Makers(AMMs)for creating decentralized exchanges(DEXs).In this paper,we organize these developments by...Recent advancements in decentralized finance(DeFi)have resulted in a rapid increase in the use of Automated Market Makers(AMMs)for creating decentralized exchanges(DEXs).In this paper,we organize these developments by treating an AMM as a neoclassical black-box characterized by the conversion of inputs(tokens)to outputs(prices).The conversion is governed by the technology of the AMM summarized by an‘exchange function’.Various types of AMMs are examined,including:Constant Product Market Makers;Constant Mean Market Makers;Constant Sum Market Makers;Hybrid Function Market Makers;and,Dynamic Automated Market Makers.The paper also looks at the impact of introducing concentrated liquidity in an AMM.Overall,the framework presented here provides an intuitive geometric representation of how an AMM operates,and a clear delineation of the similarities and differences across the various types of AMMs.展开更多
This paper addresses the problem of global practical stabilization of discrete-time switched affine systems via statedependent switching rules.Several attempts have been made to solve this problem via different types ...This paper addresses the problem of global practical stabilization of discrete-time switched affine systems via statedependent switching rules.Several attempts have been made to solve this problem via different types of a common quadratic Lyapunov function and an ellipsoid.These classical results require either the quadratic Lyapunov function or the employed ellipsoid to be of the centralized type.In some cases,the ellipsoids are defined dependently as the level sets of a decentralized Lyapunov function.In this paper,we extend the existing results by the simultaneous use of a general decentralized Lyapunov function and a decentralized ellipsoid parameterized independently.The proposed conditions provide less conservative results than existing works in the sense of the ultimate invariant set of attraction size.Two different approaches are proposed to extract the ultimate invariant set of attraction with a minimum size,i.e.,a purely numerical method and a numerical-analytical one.In the former,both invariant and attractiveness conditions are imposed to extract the final set of matrix inequalities.The latter is established on a principle that the attractiveness of a set implies its invariance.Thus,the stability conditions are derived based on only the attractiveness property as a set of matrix inequalities with a smaller dimension.Illustrative examples are presented to prove the satisfactory operation of the proposed stabilization methods.展开更多
The control method of highly redundant robot manipulators is introduced. A decentralized autonomous control scheme is used to guide the movement of robot manipulators so that the work done by manipulators is minimized...The control method of highly redundant robot manipulators is introduced. A decentralized autonomous control scheme is used to guide the movement of robot manipulators so that the work done by manipulators is minimized. The method of computing pseudoinverse which needs too many complicated calculation can be avoided. Then the calculation and control of robots are simplified. At the same time system robustness/fault tolerance is achieved.展开更多
A new decentralized adaptive control scheme is presented for linear time invariant systems with first order interconnections. The proposed control scheme with “proportional plus integral” terms is used to improve ...A new decentralized adaptive control scheme is presented for linear time invariant systems with first order interconnections. The proposed control scheme with “proportional plus integral” terms is used to improve the convergence rate and the ultimate bound of the tracking error. It is important to note that the adaptive scheme uses lower adaptive gains and smaller control inputs to avoid input saturation and oscillatory behavior. Simulation results are illustrated for controlling a dual inverted pendulum and a multivariable turbofan engine using the proposed adaptive scheme. These simulations validate out conclusions.展开更多
The low removal efficiency of total nitrogen (TN) is one of the main disadvantages of traditional single stage subsurface infiltration system, which combines an anaerobic tank and a soil filter field. In this study,...The low removal efficiency of total nitrogen (TN) is one of the main disadvantages of traditional single stage subsurface infiltration system, which combines an anaerobic tank and a soil filter field. In this study, a full-scale, two-stage anaerobic tank and soil trench system was designed and operated to evaluate the feasibility and performances in treating sewage from a school campus for over a one-year monitoring period. The raw sewage was prepared and fed into the first anaerobic tank and second tank by 60% and 40%, respectively. This novel process could decrease chemical oxygen demand with the dichromate method by 89%-96%, suspended solids by 91%-97%, and total phosphorus by 91%-97%. The denitrification was satisfactory in the second stage soil trench, so the removals of TN as well as ammonia nitrogen (NH4^+-N) reached 68%-75% and 96% 99%, respectively. It appeared that the removal efficiency of TN in this two-stage anaerobic tank and soil trench system was more effective than that in the single stage soil infiltration system. The effluent met the discharge standard for the sewage treatment plant (GB18918-2002) of China.展开更多
This paper addresses the co-design problem of decentralized dynamic event-triggered communication and active suspension control for an in-wheel motor driven electric vehicle equipped with a dynamic damper. The main ob...This paper addresses the co-design problem of decentralized dynamic event-triggered communication and active suspension control for an in-wheel motor driven electric vehicle equipped with a dynamic damper. The main objective is to simultaneously improve the desired suspension performance caused by various road disturbances and alleviate the network resource utilization for the concerned in-vehicle networked suspension system. First, a T-S fuzzy active suspension model of an electric vehicle under dynamic damping is established. Second,a novel decentralized dynamic event-triggered communication mechanism is developed to regulate each sensor's data transmissions such that sampled data packets on each sensor are scheduled in an independent manner. In contrast to the traditional static triggering mechanisms, a key feature of the proposed mechanism is that the threshold parameter in the event trigger is adjusted adaptively over time to reduce the network resources occupancy. Third, co-design criteria for the desired event-triggered fuzzy controller and dynamic triggering mechanisms are derived. Finally, comprehensive comparative simulation studies of a 3-degrees-of-freedom quarter suspension model are provided under both bump road disturbance and ISO-2631 classified random road disturbance to validate the effectiveness of the proposed co-design approach. It is shown that ride comfort can be greatly improved in either road disturbance case and the suspension deflection, dynamic tyre load and actuator control input are all kept below the prescribed maximum allowable limits, while simultaneously maintaining desirable communication efficiency.展开更多
This paper deals with the problem of cooperative attitude tracking with time-varying communication delays as well as the delays between inter-synchronization control parts and self-tracking control parts in the spacec...This paper deals with the problem of cooperative attitude tracking with time-varying communication delays as well as the delays between inter-synchronization control parts and self-tracking control parts in the spacecraft formation flying. First, we present the attitude synchronization tracking control algorithms and analyze the sufficient delay-dependent stability condition with the choice of a Lyapunov function when the angular velocity can be measured. More specifically, a class of linear filters is developed to derive an output feedback control law without having direct information of the angular velocity, which is significant for practical applications with low-cost configurations of spacecraft. Using a well-chosen Lyapunov-Krasovskii function, it is proven that the presented control law can make the spacecraft formation attitude tracking system synchronous and achieve ex- ponential stability, in the face of model uncertainties, as well as non-uniform time-varying delays in communication links and different control parts. Finally, simulation results are presented to demonstrate the effectiveness of the proposed control schemes.展开更多
With the concepts of Industry 4.0 and smart manufacturing gaining popularity,there is a growing notion that conventional manufacturing will witness a transition toward a new paradigm,targeting innovation,automation,be...With the concepts of Industry 4.0 and smart manufacturing gaining popularity,there is a growing notion that conventional manufacturing will witness a transition toward a new paradigm,targeting innovation,automation,better response to customer needs,and intelligent systems.Within this context,this review focuses on the concept of cyber–physical production system(CPPS)and presents a holistic perspective on the role of the CPPS in three key and essential drivers of this transformation:data-driven manufacturing,decentralized manufacturing,and integrated blockchains for data security.The paper aims to connect these three aspects of smart manufacturing and proposes that through the application of data-driven modeling,CPPS will aid in transforming manufacturing to become more intuitive and automated.In turn,automated manufacturing will pave the way for the decentralization of manufacturing.Layering blockchain technologies on top of CPPS will ensure the reliability and security of data sharing and integration across decentralized systems.Each of these claims is supported by relevant case studies recently published in the literature and from the industry;a brief on existing challenges and the way forward is also provided.展开更多
A new design scheme of decentralized model reference adaptive sliding mode controller for a class of MIMO nonlinear systems with the high-order interconnections is propcsed. The design is based on the universal approx...A new design scheme of decentralized model reference adaptive sliding mode controller for a class of MIMO nonlinear systems with the high-order interconnections is propcsed. The design is based on the universal approximation capability of the Takagi - Seguno (T-S) fuzzy systems. Motivated by the principle of certainty equivalenteontrol, a decentralized adaptive controller is designed to achieve the tracking objective without computafion of the T-S fuzz ymodel. The approach does not require the upper bound of the uncertainty term to be known through some adaptive estimation. By theoretical analysis, the closed-loop fuzzy control system is proven to be globally stable in the sense that all signalsinvolved are bounded, with tracking errors converging to zero. Simulation results demonstrate the effectiveness of the approach.展开更多
A new decentralized control for aircraft engines is proposed. In the proposed control approach, aircraft engines are considered as uncertain large-scale systems composed of interconnected uncertain subsystems. For eac...A new decentralized control for aircraft engines is proposed. In the proposed control approach, aircraft engines are considered as uncertain large-scale systems composed of interconnected uncertain subsystems. For each subsystem, the time-varying uncertainty, including parameter disturbances and interconnections in/between subsystems, is depicted by a class of general nonlinear functions. A fractional robust decentralized control with two parts, the nominal one and the fractional one, is presented. The nominal control guarantees the asymptotical stability of the engine system without uncertainty. The fractional part aims at overcoming the influences of uncertainty. Compared to the previous studies, the presented control provides not only an extra flexibility for the system performance tuning by the fraction-type gain but also a facility for the control input calculation. The proposed control approach is applied to a turbofan engine with two subsystems. The computer simulation shows that, in the flight envelope, the fractional control not only guarantees the closed-loop system uniform boundedness and ultimate uniform boundedness but also shows good economy.展开更多
The border gateway protocol(BGP)has become the indispensible infrastructure of the Internet as a typical inter-domain routing protocol.However,it is vulnerable to misconfigurations and malicious attacks since BGP does...The border gateway protocol(BGP)has become the indispensible infrastructure of the Internet as a typical inter-domain routing protocol.However,it is vulnerable to misconfigurations and malicious attacks since BGP does not provide enough authentication mechanism to the route advertisement.As a result,it has brought about many security incidents with huge economic losses.Exiting solutions to the routing security problem such as S-BGP,So-BGP,Ps-BGP,and RPKI,are based on the Public Key Infrastructure and face a high security risk from the centralized structure.In this paper,we propose the decentralized blockchain-based route registration framework-decentralized route registration system based on blockchain(DRRS-BC).In DRRS-BC,we produce a global transaction ledge by the information of address prefixes and autonomous system numbers between multiple organizations and ASs,which is maintained by all blockchain nodes and further used for authentication.By applying blockchain,DRRS-BC perfectly solves the problems of identity authentication,behavior authentication as well as the promotion and deployment problem rather than depending on the authentication center.Moreover,it resists to prefix and subprefix hijacking attacks and meets the performance and security requirements of route registration.展开更多
This paper presents a decentralized control strategy for the scheduling of electrical energy activities of a microgrid composed of smart homes connected to a distributor and exchanging renewable energy produced by ind...This paper presents a decentralized control strategy for the scheduling of electrical energy activities of a microgrid composed of smart homes connected to a distributor and exchanging renewable energy produced by individually owned distributed energy resources. The scheduling problem is stated and solved with the aim of reducing the overall energy supply from the grid, by allowing users to exchange the surplus renewable energy and by optimally planning users' controllable loads. We assume that each smart home can both buy/sell energy from/to the grid taking into account time-varying non-linear pricing signals. Simultaneously, smart homes cooperate and may buy/sell locally harvested renewable energy from/to other smart homes. The resulting optimization problem is formulated as a non-convex non-linear programming problem with a coupling of decision variables in the constraints. The proposed solution is based on a novel heuristic iterative decentralized scheme algorithm that suitably extends the Alternating Direction Method of Multipliers to a non-convex and decentralized setting. We discuss the conditions that guarantee the convergence of the presented algorithm. Finally, the application of the proposed technique to a case study under several scenarios shows its effectiveness.展开更多
A novel H∞ tracking-based decentralized indirect adaptive output feedback fuzzy controller for a class of uncertain large-scale nonlinear systems is developed. By virtue of the proper filtering of the observation err...A novel H∞ tracking-based decentralized indirect adaptive output feedback fuzzy controller for a class of uncertain large-scale nonlinear systems is developed. By virtue of the proper filtering of the observation error dynamics, the observer-based decentralized indirect adaptive fuzzy control scheme is presented for a class of large-scale nonlinear systems using the combination of H∞ tracking technique, a fuzzy adaptive observer and fuzzy inference systems. The output feedback and adaptation mechanisms are both robust and implementable indeed owing to their freedom from the unavailable observation error vector. All the signals of the closed-loop largescale system are guaranteed to stay uniformly bounded and the output errors take on H∞ tracking performance. Simulation results substantiate the effectiveness of the proposed scheme.展开更多
基金supported by the National Research Foundation of Korea(NRF)grants(2022R1A2C4001228,2022M3H4A4097524,2022M3I3A1082499,and 2021M3I3A1084818)the Technology Innovation Program(20026415)of the Ministry of Trade,Industry&Energy(MOTIE,Korea)the supports from Nanopac for fabrication of scaled-up reactor.
文摘Wastewater electrolysis cells(WECs)for decentralized wastewater treatment/reuse coupled with H_(2) production can reduce the carbon footprint associated with transportation of water,waste,and energy carrier.This study reports Ir-doped NiFe_(2)O_(4)(NFI,~5 at%Ir)spinel layer with TiO_(2) overlayer(NFI/TiO_(2)),as a scalable heterojunction anode for direct electrolysis of wastewater with circumneutral pH in a single-compartment cell.In dilute(0.1 M)NaCl solutions,the NFI/TiO_(2) marks superior activity and selectivity for chlorine evolution reaction,outperforming the benchmark IrO_(2).Robust operation in near-neutral pH was confirmed.Electroanalyses including operando X-ray absorption spectroscopy unveiled crucial roles of TiO_(2) which serves both as the primary site for Cl−chemisorption and a protective layer for NFI as an ohmic contact.Galvanostatic electrolysis of NH4+-laden synthetic wastewater demonstrated that NFI/TiO_(2)not only achieves quasi-stoichiometric NH_(4)^(+)-to-N_(2)conversion,but also enhances H_(2)generation efficiency with minimal competing reactions such as reduction of dissolved oxygen and reactive chlorine.The scaled-up WEC with NFI/TiO_(2)was demonstrated for electrolysis of toilet wastewater.
文摘Energy access remains a critical challenge in rural South Sudan,with communities heavily relying on expensive and unfriendly environmental energy sources such as diesel generators and biomass.This study addresses the predicament by evaluating the feasibility of renewable energy-based decentralized electrification in the selected village ofDoleibHill,UpperNile,South Sudan.Using a demand assessment and theMulti-Tier Framework(MTF)approach,it categorizes households,public facilities,private sector,Non-GovernmentalOrganizations(NGOs)and business energy needs and designs an optimized hybrid energy system incorporating solar Photovoltaic(PV),wind turbines,batteries,and a generator.The proposed system,simulated in Hybrid Optimization Model Electric Renewable(HOMER)Pro,demonstrates strong economic viability,with a present worth of$292,145,an annual worth of$22,854,a return on investment(ROI)of 36.5%,and an internal rate of return(IRR)of 42.1%.The simple payback period is 2.31 years,and the discounted payback period is 2.62 years.The system achieves a levelized cost of energy(LCOE)of$0.276/kWh and significantly reduces dependence on diesel,producing 798,800 kWh annually fromwind energy.This research provides a replicable model for cost-effective,sustainable rural electrification,offering valuable insights for policymakers and energy planners seeking to expand electricity access in off-grid communities.
基金supported by InnerMongolia Natural Science Foundation Project(2021LHMS06003)Inner Mongolia University Basic Research Business Fee Project(114).
文摘Federated Graph Learning (FGL) enables model training without requiring each client to share local graph data, effectively breaking data silos by aggregating the training parameters from each terminal while safeguarding data privacy. Traditional FGL relies on a centralized server for model aggregation;however, this central server presents challenges such as a single point of failure and high communication overhead. Additionally, efficiently training a robust personalized local model for each client remains a significant objective in federated graph learning. To address these issues, we propose a decentralized Federated Graph Learning framework with efficient communication, termed Decentralized Federated Graph Learning via Surrogate Model (SD_FGL). In SD_FGL, each client is required to maintain two models: a private model and a surrogate model. The surrogate model is publicly shared and can exchange and update information directly with any client, eliminating the need for a central server and reducing communication overhead. The private model is independently trained by each client, allowing it to calculate similarity with other clients based on local data as well as information shared through the surrogate model. This enables the private model to better adjust its training strategy and selectively update its parameters. Additionally, local differential privacy is incorporated into the surrogate model training process to enhance privacy protection. Testing on three real-world graph datasets demonstrates that the proposed framework improves accuracy while achieving decentralized Federated Graph Learning with lower communication overhead and stronger privacy safeguards.
基金supported in part by the Guangdong Provincial Universities'Characteristic Innovation Project under Grant 2024KTSCX360in part by the Guangdong Educational Science Planning Project under Grant 2023GXJK837.
文摘Inspired by the collective behaviors observed in bird flocks and fish schools,this paper proposes a novel Decentralized Model Predictive Flocking Control(DMPFC)framework to enable UAV swarms to autonomously track predefined reference trajectories while avoiding collisions and maintaining a stable quasi[Math Processing Error]-lattice formation.Unlike traditional approaches that rely on switching between predefined swarm formations,this framework utilizes identical local interaction rules for each UAV,allowing them to dynamically adjust their control inputs based on the motion states of neighboring UAVs,external environmental factors,and the desired reference trajectory,thereby enabling the swarm to adapt its formation dynamically.Through iterative state updates,the UAVs achieve consensus,allowing the swarm to follow the reference trajectory while self-organizing into a cohesive and stable group structure.To enhance computational efficiency,the framework integrates a closed-form solution for the optimization process,enabling real-time implementation even on computationally constrained micro-quadrotors.Theoretical analysis demonstrates that the proposed method ensures swarm consensus,maintains desired inter-agent distances,and stabilizes the swarm formation.Extensive simulations and real-world experiments validate the approach’s effectiveness and practicality,demonstrating that the proposed method achieves velocity consensus within approximately 200 ms and forms a stable quasi[Math Processing Error]-lattice structure nearly ten times faster than traditional models,with trajectory tracking errors on the order of millimeters.This underscores its potential for robust and efficient UAV swarm coordination in complex scenarios.
基金supported by the National Key Research and Development Program of China(2022YFB3305904)the National Natural Science Foundation of China(62133003,61991403,61991400)+4 种基金the Open Project of State Key Laboratory of Synthetical Automation for Process Industries(SAPI-2024-KFKT-05,SAPI-2024-KFKT-08)China Academy of Engineering Institute of Land Cooperation Consulting Project(2023-DFZD-60-02,N2424004)the Fundamental Research Funds for the Central UniversitiesShanghai Municipal Science and Technology Major Project(2021SHZDZX0100)the Key Research and Development Program of Liaoning Province(2023JH26/10200011)
文摘In this paper, we study the decentralized federated learning problem, which involves the collaborative training of a global model among multiple devices while ensuring data privacy.In classical federated learning, the communication channel between the devices poses a potential risk of compromising private information. To reduce the risk of adversary eavesdropping in the communication channel, we propose TRADE(transmit difference weight) concept. This concept replaces the decentralized federated learning algorithm's transmitted weight parameters with differential weight parameters, enhancing the privacy data against eavesdropping. Subsequently, by integrating the TRADE concept with the primal-dual stochastic gradient descent(SGD)algorithm, we propose a decentralized TRADE primal-dual SGD algorithm. We demonstrate that our proposed algorithm's convergence properties are the same as those of the primal-dual SGD algorithm while providing enhanced privacy protection. We validate the algorithm's performance on fault diagnosis task using the Case Western Reserve University dataset, and image classification tasks using the CIFAR-10 and CIFAR-100 datasets,revealing model accuracy comparable to centralized federated learning. Additionally, the experiments confirm the algorithm's privacy protection capability.
基金Fundação de AmparoàPesquisa do Estado da Bahia(FAPESB),Coordenação de Aperfeiçoamento de Pessoal de Nível Superior(CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico(CNPq)organizations for supporting the Graduate Program in Computer Science at the Federal University of Bahia.
文摘Intensely using online social networks(OSNs)makes users concerned about privacy of data.Given the centralized nature of these platforms,and since each platform has a particular storage mechanism,authentication,and access control,their users do not have the control and the right over their data.Therefore,users cannot easily switch between similar platforms or transfer data from one platform to another.These issues imply,among other things,a threat to privacy since such users depend on the interests of the service provider responsible for administering OSNs.As a strategy for the decentralization of the OSNs and,consequently,as a solution to the privacy problems in these environments,the so-called decentralized online social networks(DOSNs)have emerged.Unlike OSNs,DOSNs are decentralized content management platforms because they do not use centralized service providers.Although DOSNs address some of the privacy issues encountered in OSNs,DOSNs also pose significant challenges to consider,for example,access control to user profile information with high granularity.This work proposes developing an ontological model and a service to support privacy in DOSNs.The model describes the main concepts of privacy access control in DOSNs and their relationships.In addition,the service will consume the model to apply access control according to the policies represented in the model.Our model was evaluated in two phases to verify its compliance with the proposed domain.Finally,we evaluated our service with a performance evaluation,and the results were satisfactory concerning the response time of access control requests.
基金supported in part by National Key R&D Program of China(Grant No.2021YFB1714100)in part by the National Natural Science Foundation of China(NSFC)under Grant 62371239+5 种基金in part by the the Program of Science and Technology Cooperation of Nanjing with International/Hong Kong,Macao and Taiwan(Grant No.202401019)in part by the Guangdong Basic and Applied Basic Research Foundation(Grant No.2024A1515012407)in part by the the Research Center for FinTech and Digital-Intelligent Management at Shenzhen University,in part by the National Natural Science Foundation of China under Grant 62271192in part by the Equipment Pre-Research Joint Research Program of Ministry of Education under Grant 8091B032129in part by the Major Science and Technology Projects of Longmen Laboratory under Grant 231100220300 and 231100220200in part by the Central Plains Leading Talent in Scientific and Technological Innovation Program under Grant 244200510048.
文摘Traditional Internet of Things(IoT)architectures that rely on centralized servers for data management and decision-making are vulnerable to security threats and privacy leakage.To address this issue,blockchain has been advocated for decentralized data management in a tamper-resistance,traceable,and transparent manner.However,a major issue that hinders the integration of blockchain and IoT lies in that,it is rather challenging for resource-constrained IoT devices to perform computation-intensive blockchain consensuses such as Proof-of-Work(PoW).Furthermore,the incentive mechanism of PoW pushes lightweight IoT nodes to aggregate their computing power to increase the possibility of successful block generation.Nevertheless,this eventually leads to the formation of computing power alliances,and significantly compromises the decentralization and security of BlockChain-aided IoT(BC-IoT)networks.To cope with these issues,we propose a lightweight consensus protocol for BC-IoT,called Proof-of-Trusted-Work(PoTW).The goal of the proposed consensus is to disincentivize the centralization of computing power and encourage the independent participation of lightweight IoT nodes in blockchain consensus.First,we put forth an on-chain reputation evaluation rule and a reputation chain for PoTW to enable the verifiability and traceability of nodes’reputations based on their contributions of computing power to the blockchain consensus,and we incorporate the multi-level block generation difficulty as a rewards for nodes to accumulate reputations.Second,we model the block generation process of PoTW and analyze the block throughput using the continuous time Markov chain.Additionally,we define and optimize the relative throughput gain to quantify and maximize the capability of PoTW that suppresses the computing power centralization(i.e.,centralization suppression).Furthermore,we investigate the impact of the computing power of the computing power alliance and the levels of block generation difficulty on the centralization suppression capability of PoTW.Finally,simulation results demonstrate the consistency of the analytical results in terms of block throughput.In particular,the results show that PoTW effectively reduces the block generation proportion of the computing power alliance compared with PoW,while simultaneously improving that of individual lightweight nodes.This indicates that PoTW is capable of suppressing the centralization of computing power to a certain degree.Moreover,as the levels of block generation difficulty in PoTW increase,its centralization suppression capability strengthens.
文摘Recent advancements in decentralized finance(DeFi)have resulted in a rapid increase in the use of Automated Market Makers(AMMs)for creating decentralized exchanges(DEXs).In this paper,we organize these developments by treating an AMM as a neoclassical black-box characterized by the conversion of inputs(tokens)to outputs(prices).The conversion is governed by the technology of the AMM summarized by an‘exchange function’.Various types of AMMs are examined,including:Constant Product Market Makers;Constant Mean Market Makers;Constant Sum Market Makers;Hybrid Function Market Makers;and,Dynamic Automated Market Makers.The paper also looks at the impact of introducing concentrated liquidity in an AMM.Overall,the framework presented here provides an intuitive geometric representation of how an AMM operates,and a clear delineation of the similarities and differences across the various types of AMMs.
文摘This paper addresses the problem of global practical stabilization of discrete-time switched affine systems via statedependent switching rules.Several attempts have been made to solve this problem via different types of a common quadratic Lyapunov function and an ellipsoid.These classical results require either the quadratic Lyapunov function or the employed ellipsoid to be of the centralized type.In some cases,the ellipsoids are defined dependently as the level sets of a decentralized Lyapunov function.In this paper,we extend the existing results by the simultaneous use of a general decentralized Lyapunov function and a decentralized ellipsoid parameterized independently.The proposed conditions provide less conservative results than existing works in the sense of the ultimate invariant set of attraction size.Two different approaches are proposed to extract the ultimate invariant set of attraction with a minimum size,i.e.,a purely numerical method and a numerical-analytical one.In the former,both invariant and attractiveness conditions are imposed to extract the final set of matrix inequalities.The latter is established on a principle that the attractiveness of a set implies its invariance.Thus,the stability conditions are derived based on only the attractiveness property as a set of matrix inequalities with a smaller dimension.Illustrative examples are presented to prove the satisfactory operation of the proposed stabilization methods.
文摘The control method of highly redundant robot manipulators is introduced. A decentralized autonomous control scheme is used to guide the movement of robot manipulators so that the work done by manipulators is minimized. The method of computing pseudoinverse which needs too many complicated calculation can be avoided. Then the calculation and control of robots are simplified. At the same time system robustness/fault tolerance is achieved.
文摘A new decentralized adaptive control scheme is presented for linear time invariant systems with first order interconnections. The proposed control scheme with “proportional plus integral” terms is used to improve the convergence rate and the ultimate bound of the tracking error. It is important to note that the adaptive scheme uses lower adaptive gains and smaller control inputs to avoid input saturation and oscillatory behavior. Simulation results are illustrated for controlling a dual inverted pendulum and a multivariable turbofan engine using the proposed adaptive scheme. These simulations validate out conclusions.
基金the National High Technology Research and Development Program (863 Program) of China(No2002AA601012-01)
文摘The low removal efficiency of total nitrogen (TN) is one of the main disadvantages of traditional single stage subsurface infiltration system, which combines an anaerobic tank and a soil filter field. In this study, a full-scale, two-stage anaerobic tank and soil trench system was designed and operated to evaluate the feasibility and performances in treating sewage from a school campus for over a one-year monitoring period. The raw sewage was prepared and fed into the first anaerobic tank and second tank by 60% and 40%, respectively. This novel process could decrease chemical oxygen demand with the dichromate method by 89%-96%, suspended solids by 91%-97%, and total phosphorus by 91%-97%. The denitrification was satisfactory in the second stage soil trench, so the removals of TN as well as ammonia nitrogen (NH4^+-N) reached 68%-75% and 96% 99%, respectively. It appeared that the removal efficiency of TN in this two-stage anaerobic tank and soil trench system was more effective than that in the single stage soil infiltration system. The effluent met the discharge standard for the sewage treatment plant (GB18918-2002) of China.
文摘This paper addresses the co-design problem of decentralized dynamic event-triggered communication and active suspension control for an in-wheel motor driven electric vehicle equipped with a dynamic damper. The main objective is to simultaneously improve the desired suspension performance caused by various road disturbances and alleviate the network resource utilization for the concerned in-vehicle networked suspension system. First, a T-S fuzzy active suspension model of an electric vehicle under dynamic damping is established. Second,a novel decentralized dynamic event-triggered communication mechanism is developed to regulate each sensor's data transmissions such that sampled data packets on each sensor are scheduled in an independent manner. In contrast to the traditional static triggering mechanisms, a key feature of the proposed mechanism is that the threshold parameter in the event trigger is adjusted adaptively over time to reduce the network resources occupancy. Third, co-design criteria for the desired event-triggered fuzzy controller and dynamic triggering mechanisms are derived. Finally, comprehensive comparative simulation studies of a 3-degrees-of-freedom quarter suspension model are provided under both bump road disturbance and ISO-2631 classified random road disturbance to validate the effectiveness of the proposed co-design approach. It is shown that ride comfort can be greatly improved in either road disturbance case and the suspension deflection, dynamic tyre load and actuator control input are all kept below the prescribed maximum allowable limits, while simultaneously maintaining desirable communication efficiency.
基金National Natural Science Foundation of China(61174200, 61004072)Research Fund for the Doctoral Program of Higher Education of China(20102302110031)
文摘This paper deals with the problem of cooperative attitude tracking with time-varying communication delays as well as the delays between inter-synchronization control parts and self-tracking control parts in the spacecraft formation flying. First, we present the attitude synchronization tracking control algorithms and analyze the sufficient delay-dependent stability condition with the choice of a Lyapunov function when the angular velocity can be measured. More specifically, a class of linear filters is developed to derive an output feedback control law without having direct information of the angular velocity, which is significant for practical applications with low-cost configurations of spacecraft. Using a well-chosen Lyapunov-Krasovskii function, it is proven that the presented control law can make the spacecraft formation attitude tracking system synchronous and achieve ex- ponential stability, in the face of model uncertainties, as well as non-uniform time-varying delays in communication links and different control parts. Finally, simulation results are presented to demonstrate the effectiveness of the proposed control schemes.
文摘With the concepts of Industry 4.0 and smart manufacturing gaining popularity,there is a growing notion that conventional manufacturing will witness a transition toward a new paradigm,targeting innovation,automation,better response to customer needs,and intelligent systems.Within this context,this review focuses on the concept of cyber–physical production system(CPPS)and presents a holistic perspective on the role of the CPPS in three key and essential drivers of this transformation:data-driven manufacturing,decentralized manufacturing,and integrated blockchains for data security.The paper aims to connect these three aspects of smart manufacturing and proposes that through the application of data-driven modeling,CPPS will aid in transforming manufacturing to become more intuitive and automated.In turn,automated manufacturing will pave the way for the decentralization of manufacturing.Layering blockchain technologies on top of CPPS will ensure the reliability and security of data sharing and integration across decentralized systems.Each of these claims is supported by relevant case studies recently published in the literature and from the industry;a brief on existing challenges and the way forward is also provided.
文摘A new design scheme of decentralized model reference adaptive sliding mode controller for a class of MIMO nonlinear systems with the high-order interconnections is propcsed. The design is based on the universal approximation capability of the Takagi - Seguno (T-S) fuzzy systems. Motivated by the principle of certainty equivalenteontrol, a decentralized adaptive controller is designed to achieve the tracking objective without computafion of the T-S fuzz ymodel. The approach does not require the upper bound of the uncertainty term to be known through some adaptive estimation. By theoretical analysis, the closed-loop fuzzy control system is proven to be globally stable in the sense that all signalsinvolved are bounded, with tracking errors converging to zero. Simulation results demonstrate the effectiveness of the approach.
基金supported by the Fundamental Research Funds for the Central Universities, China (No.NJ2016020)
文摘A new decentralized control for aircraft engines is proposed. In the proposed control approach, aircraft engines are considered as uncertain large-scale systems composed of interconnected uncertain subsystems. For each subsystem, the time-varying uncertainty, including parameter disturbances and interconnections in/between subsystems, is depicted by a class of general nonlinear functions. A fractional robust decentralized control with two parts, the nominal one and the fractional one, is presented. The nominal control guarantees the asymptotical stability of the engine system without uncertainty. The fractional part aims at overcoming the influences of uncertainty. Compared to the previous studies, the presented control provides not only an extra flexibility for the system performance tuning by the fraction-type gain but also a facility for the control input calculation. The proposed control approach is applied to a turbofan engine with two subsystems. The computer simulation shows that, in the flight envelope, the fractional control not only guarantees the closed-loop system uniform boundedness and ultimate uniform boundedness but also shows good economy.
基金This work was supported by the National Natural Science Foundation of China(61601041)the Fundamental Research Funds for the Central Universities(2019PTB-003).
文摘The border gateway protocol(BGP)has become the indispensible infrastructure of the Internet as a typical inter-domain routing protocol.However,it is vulnerable to misconfigurations and malicious attacks since BGP does not provide enough authentication mechanism to the route advertisement.As a result,it has brought about many security incidents with huge economic losses.Exiting solutions to the routing security problem such as S-BGP,So-BGP,Ps-BGP,and RPKI,are based on the Public Key Infrastructure and face a high security risk from the centralized structure.In this paper,we propose the decentralized blockchain-based route registration framework-decentralized route registration system based on blockchain(DRRS-BC).In DRRS-BC,we produce a global transaction ledge by the information of address prefixes and autonomous system numbers between multiple organizations and ASs,which is maintained by all blockchain nodes and further used for authentication.By applying blockchain,DRRS-BC perfectly solves the problems of identity authentication,behavior authentication as well as the promotion and deployment problem rather than depending on the authentication center.Moreover,it resists to prefix and subprefix hijacking attacks and meets the performance and security requirements of route registration.
基金supported by European Regional Development Fund in the "Apulian Technology Clusters SMARTPUGLIA 2020"Program
文摘This paper presents a decentralized control strategy for the scheduling of electrical energy activities of a microgrid composed of smart homes connected to a distributor and exchanging renewable energy produced by individually owned distributed energy resources. The scheduling problem is stated and solved with the aim of reducing the overall energy supply from the grid, by allowing users to exchange the surplus renewable energy and by optimally planning users' controllable loads. We assume that each smart home can both buy/sell energy from/to the grid taking into account time-varying non-linear pricing signals. Simultaneously, smart homes cooperate and may buy/sell locally harvested renewable energy from/to other smart homes. The resulting optimization problem is formulated as a non-convex non-linear programming problem with a coupling of decision variables in the constraints. The proposed solution is based on a novel heuristic iterative decentralized scheme algorithm that suitably extends the Alternating Direction Method of Multipliers to a non-convex and decentralized setting. We discuss the conditions that guarantee the convergence of the presented algorithm. Finally, the application of the proposed technique to a case study under several scenarios shows its effectiveness.
基金supported by the National Natural Science Foundation of China(90510010).
文摘A novel H∞ tracking-based decentralized indirect adaptive output feedback fuzzy controller for a class of uncertain large-scale nonlinear systems is developed. By virtue of the proper filtering of the observation error dynamics, the observer-based decentralized indirect adaptive fuzzy control scheme is presented for a class of large-scale nonlinear systems using the combination of H∞ tracking technique, a fuzzy adaptive observer and fuzzy inference systems. The output feedback and adaptation mechanisms are both robust and implementable indeed owing to their freedom from the unavailable observation error vector. All the signals of the closed-loop largescale system are guaranteed to stay uniformly bounded and the output errors take on H∞ tracking performance. Simulation results substantiate the effectiveness of the proposed scheme.