The decay dynamics of N, N-dimethylthioacetamide after excitation to the S3(ππ*) state was studied by using the resonance Raman spectroscopy and complete active space self- consistent field method calculations. T...The decay dynamics of N, N-dimethylthioacetamide after excitation to the S3(ππ*) state was studied by using the resonance Raman spectroscopy and complete active space self- consistent field method calculations. The UV-absorption and vibrational spectra were as- signed. The A-band resonance Raman spectra were obtained in acetonitrile, methanol and water with the laser excitation wavelengths in resonance with the first intense absorption band to probe the Franck-Condon region structural dynamics. The CASSCF calculations were carried out to determine the excitation energies and optimized structures of the lower- lying singlet states and conical intersection point. The A-band structural dynamics and the corresponding decay mechanism were obtained by the analysis of the resonance Raman in- tensity pattern and the CASSCF calculated structural parameters. The major decay channel of S3,FC (ππ*)→S3(ππ*)/S1 (nπ*)→S1(nπ*) is proposed.展开更多
The decay dynamic of an excited quantum emitter(QE)is one of the most important contents in quantum optics.It has been widely applied in the field of quantum computing and quantum state manipulation.When the electroma...The decay dynamic of an excited quantum emitter(QE)is one of the most important contents in quantum optics.It has been widely applied in the field of quantum computing and quantum state manipulation.When the electromagnetic environment is described by several pseudomodes,the effective Hamiltonian method based on the multi-mode Jaynes-Cummings model provides a clear physical picture and a simple and convenient way to solve the decay dynamics.However,in previous studies,only the resonant modes are taken into account,while the non-resonant contributions are ignored.In this work,we study the applicability and accuracy of the effective Hamiltonian method for the decay dynamics.We consider different coupling strengths between a two-level QE and a gold nanosphere.The results for dynamics by the resolvent operator technique are used as a reference.Numerical results show that the effective Hamiltonian method provides accurate results when the two-level QE is resonant with the plasmon.However,when the detuning is large,the effective Hamiltonian method is not accurate.In addition,the effective Hamiltonian method cannot be applied when there is a bound state between the QE and the plasmon.These results are of great significance to the study of the decay dynamics in micro-nano structures described by quasi-normal modes.展开更多
The S_(1) state decay dynamics of 2-hydroxypyridine following UV excitation at a wavelength range of 276.9-250.0 nm is investigated using femtosecond time-resolved photoelectron imaging technique.Based on pump wavelen...The S_(1) state decay dynamics of 2-hydroxypyridine following UV excitation at a wavelength range of 276.9-250.0 nm is investigated using femtosecond time-resolved photoelectron imaging technique.Based on pump wavelength dependence of the decay dynamics,a refined decay picture is proposed.At pump wavelength of 276.9 nm,the S_(1) state is depopulated through intersystem crossing to lower triplet state(s).At 264.0 nm,both intersystem crossing to lower triplet state(s)and internal conversion to the ground state are in operation.At 250.0 nm,internal conversion to the ground state becomes dominated.展开更多
3-Furfural(C_(5)H_(4)O_(2))is a furan(C_(4)H_(4)O)derivative compound formed by replacing the hydrogen(H)atom at the ring 3-position with the aldehyde(CHO)group substituent.In this work,we intend to investigate the ul...3-Furfural(C_(5)H_(4)O_(2))is a furan(C_(4)H_(4)O)derivative compound formed by replacing the hydrogen(H)atom at the ring 3-position with the aldehyde(CHO)group substituent.In this work,we intend to investigate the ultrafast decay dynamics of electronically excited 3-furfural using the femtosecond time-resolved photoelectron imaging technique.At pump wavelengths of 259.5,238.6 and 218.311m,two alternative decay mechanisms for the S_(2)(^(1)ππ*)state are tentatively proposed and discussed.Specifically,we prefer to suggest that a fraction of the initially prepared wavepacket in the S_(2)(^(1)ππ*)state is likely to undergo the subpicosecond relaxation via the S_(1)(^(1)nπ*)state.Presumably the lower lying T_(2)(^(3)ππ*)state is subsequently populated on a∼4 ps timescale via intersystem crossing from the minimum of the S_(1)(^(1)nπ*)state surface.The relaxation of the T_(2)(^(3)ππ*)state is sensitive to its vibrational excess energy and the value of its lifetime is 1.6±0.2 ns,280±30 ps and 50±10 ps for pump wavelengths of 259.5,238.6 and 218.3 m,respectively.展开更多
The excited state structural dynamics of phenyl absorbing S2(A'), S3(A'), and S6(A') states were troseopy and complete active space self-consistent and the UV absorption bands were assigned on azide (PhN3) ...The excited state structural dynamics of phenyl absorbing S2(A'), S3(A'), and S6(A') states were troseopy and complete active space self-consistent and the UV absorption bands were assigned on azide (PhN3) after excitation to the light studied using the resonance Raman specfield calculations. The vibrational spectra the basis of the Fourier transform (FT)- Raman, FT-infrared measurements, the density-functional theory computations and the normal mode analysis. The A-, B-, and C-bands resonance Raman spectra in cyclohex- ane, acetonitrile, and methanol solvents were, respectively, obtained at 273.9, 252.7, 245.9, 228.7, 223.1, and 208.8 nm excitation wavelengths to probe the corresponding structural dynamics of PhN3. The results indicated that the structural dynamics in the S2 (A'), S3(A'), and S6(A') states were significantly different. The crossing points of the potential energy surfaces, S2S1(1) and S2S1(2), were predicted to play a key role in the low-lying excited state decay dynamics, in accordance with Kasha's rule, and NT=N8 dissociation. Two decay channels initiated from the Franck-Condon region of the S2(A') state were predicted: the radiative S2,min→S0 radiative decay and the S2→S1 internal conversion through the crossing points S2S1 (1)/S2S1(2).展开更多
The roll motions are influenced by significant viscous effects such as the flow separation.The 3D simulations of free decay roll motions for the ship model DTMB 5512 are carried out by Reynold averaged NavierStokes(RA...The roll motions are influenced by significant viscous effects such as the flow separation.The 3D simulations of free decay roll motions for the ship model DTMB 5512 are carried out by Reynold averaged NavierStokes(RANS) method based on the dynamic mesh technique.A new moving mesh technique is adopted and discussed in details for the present simulations.The purpose of the research is to obtain accurate numerical prediction for roll motions with their respective numerical/modeling errors and uncertainties.Errors and uncertainties are estimated by performing the modern verification and validation(V&V) procedures.Simulation results for the free-floating surface combatant are used to calculate the linear,nonlinear damping coefficients and resonant frequencies including a wide range of forward speed.The present work can provide a useful reference to calculate roll damping by computational fluid dynamics(CFD) method and simulate a general ship motions in waves.展开更多
The biodegradability of chars derived from pyrolysis and hydrothermal carbonisation(HTC) was studied in short-term dynamic incubation experiments under controlled conditions. Carbon dioxide C(CO2) emissions from soil-...The biodegradability of chars derived from pyrolysis and hydrothermal carbonisation(HTC) was studied in short-term dynamic incubation experiments under controlled conditions. Carbon dioxide C(CO2) emissions from soil-char mixtures in combination with solid digestate or mineral nitrogen(N) fertiliser were measured in dynamic chambers for 10 d. Compared to the original material(maize straw), pyrolysis and HTC chars showed significantly lower CO2 emissions and slower decay dynamics; and compared to the soil control, HTC char increased soil respiration to a significant extent, while pyrolysis char did not. The addition of mineral N resulted in a delayed respiration dynamics for HTC char, while the addition of digestate resulted in an increase in the respired CO2 for pyrolysis char and a decrease for HTC char. For the first time, a peculiar two-stage decay kinetics was observed for HTC char,indicating a highly inhomogeneous substrate consisting at least of two C pools.展开更多
Accurate fault detection and diagnosis is important for secure and profitable operation of modern power systems.In this paper,an ensemble of conflict-resolving Fuzzy ARTMAP classifiers,known as Probabilistic Multiple ...Accurate fault detection and diagnosis is important for secure and profitable operation of modern power systems.In this paper,an ensemble of conflict-resolving Fuzzy ARTMAP classifiers,known as Probabilistic Multiple Fuzzy ARTMAP with Dynamic Decay Adjustment(PMFAMDDA),for accurate discrimination between normal and faulty operating conditions of a Circulating Water(CW)system in a power generation plant is proposed.The decisions of PMFAMDDA are reached through a probabilistic plurality voting strategy that is in agreement with the Bayesian theorem.The results of the proposed PMFAMDDA model are compared with those from an ensemble of Probabilistic Multiple Fuzzy ARTMAP(PMFAM)classifiers.The outcomes reveal that PMFAMDDA,in general,outperforms PMFAM in discriminating operating conditions of the CW system.展开更多
A theoretical analysis of the refracted shadows produced by steady and time-decaying liquid vortices under uniform illumination from above is given in this article. An expression for the induced shadow intensity is de...A theoretical analysis of the refracted shadows produced by steady and time-decaying liquid vortices under uniform illumination from above is given in this article. An expression for the induced shadow intensity is derived and found to be a function of the vortex's free surface profile, i.e., function of the static pressure distribution. The patterns for different focusing depth are given and compared with previous visualization results from the literature. The phenomenon is examined and illustrated as a bench mark case by using both steady and time-decaying algebraic vortex models. However, this study can be extended to check the feasibility of recovering the main flow properties by analyzing the luminous image intensity of the refracted patterns. The present analysis is valid only when the swirl velocity is order of magnitude higher than the meridional flow components and the vorticity is concentrated within the core region and of intense conditions.展开更多
Through man-made disturbance experiments, the corresponding relationships be-tween suspended particulate matter (SPM) and wind speed in different lake areas were simu-lated, the physicochemical formal transformation a...Through man-made disturbance experiments, the corresponding relationships be-tween suspended particulate matter (SPM) and wind speed in different lake areas were simu-lated, the physicochemical formal transformation and biological mineralizing and decaying processes of phosphorus in SPM were studied, the contribution of phosphorus transformation to phosphorus loading of the water of Lake Taihu was quantitatively estimated. The results show that about 0.44 t·a-1 loading in Lake Taihu mainly comes from phosphorus-releasing action of SPM in physicochemical transformed to soluble reactive phosphorus (SRP), and the contribution mainly from biological mineralizing and decaying was about 425.8 t·a-1, which is equal to 15.0% of the total external loading of Lake Taihu, namely 4.7—7.5 times as much as SRP loading en-tering the lake by the rivers; thus it is the important source in dynamical internal loading of the lake. The determining factors for dynamical internal loading in lakes are organic phosphorus content in suspended solid and its biological transition availability.展开更多
Recent experimental signals have led to a revival of tetraquarks,the hypothetical q~2q~2 hadronic states proposed by Jaffe in 1976 to explain the light scalar mesons.Mesonic structures with exotic quantum numbers have...Recent experimental signals have led to a revival of tetraquarks,the hypothetical q~2q~2 hadronic states proposed by Jaffe in 1976 to explain the light scalar mesons.Mesonic structures with exotic quantum numbers have indeed been observed recently,though a controversy persists as to whether these are true resonances and not merely kinematical threshold enhancements,or otherwise states not of a true q~2q~2 nature.Moreover,puzzling non-exotic mesons are also often claimed to have a tetraquark configuration.However,the corresponding model calculations are practically always carried out in pure and static bound-state approaches,ignoring completely the coupling to asymptotic two-meson states and unitarity,especially the dynamical effects thereof.In this short paper we argue that these static predictions of real tetraquark masses are highly unreliable and provide little evidence of the very existence of such states.展开更多
基金This work was supported by the National Natu- ral Science Foundation of China (No.21033002 and No.21202032) and the National Basic Research Pro- gram of China (No.2013CB834604).
文摘The decay dynamics of N, N-dimethylthioacetamide after excitation to the S3(ππ*) state was studied by using the resonance Raman spectroscopy and complete active space self- consistent field method calculations. The UV-absorption and vibrational spectra were as- signed. The A-band resonance Raman spectra were obtained in acetonitrile, methanol and water with the laser excitation wavelengths in resonance with the first intense absorption band to probe the Franck-Condon region structural dynamics. The CASSCF calculations were carried out to determine the excitation energies and optimized structures of the lower- lying singlet states and conical intersection point. The A-band structural dynamics and the corresponding decay mechanism were obtained by the analysis of the resonance Raman in- tensity pattern and the CASSCF calculated structural parameters. The major decay channel of S3,FC (ππ*)→S3(ππ*)/S1 (nπ*)→S1(nπ*) is proposed.
基金Project supported by the National Natural Science Foundation of China(11964010,11564013 and 11464014)the Natural Science Foundation of Hunan Province(2020JJ4495)+1 种基金the Scientific Research Fund of Hunan Provincial Education Department(22A0377 and 21A0333)the Jishou University Innovation Foundation for Postgraduate(Jdy20038)。
文摘The decay dynamic of an excited quantum emitter(QE)is one of the most important contents in quantum optics.It has been widely applied in the field of quantum computing and quantum state manipulation.When the electromagnetic environment is described by several pseudomodes,the effective Hamiltonian method based on the multi-mode Jaynes-Cummings model provides a clear physical picture and a simple and convenient way to solve the decay dynamics.However,in previous studies,only the resonant modes are taken into account,while the non-resonant contributions are ignored.In this work,we study the applicability and accuracy of the effective Hamiltonian method for the decay dynamics.We consider different coupling strengths between a two-level QE and a gold nanosphere.The results for dynamics by the resolvent operator technique are used as a reference.Numerical results show that the effective Hamiltonian method provides accurate results when the two-level QE is resonant with the plasmon.However,when the detuning is large,the effective Hamiltonian method is not accurate.In addition,the effective Hamiltonian method cannot be applied when there is a bound state between the QE and the plasmon.These results are of great significance to the study of the decay dynamics in micro-nano structures described by quasi-normal modes.
基金supported by the National Natural Science Foundation of China(No.21833003)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB17000000)the Key Technology Team of the Chinese Academy of Sciences(GJJSTD20190002)。
文摘The S_(1) state decay dynamics of 2-hydroxypyridine following UV excitation at a wavelength range of 276.9-250.0 nm is investigated using femtosecond time-resolved photoelectron imaging technique.Based on pump wavelength dependence of the decay dynamics,a refined decay picture is proposed.At pump wavelength of 276.9 nm,the S_(1) state is depopulated through intersystem crossing to lower triplet state(s).At 264.0 nm,both intersystem crossing to lower triplet state(s)and internal conversion to the ground state are in operation.At 250.0 nm,internal conversion to the ground state becomes dominated.
基金supported by the National Natural Science Foundation of China(No.22203095,No.22103087,and No.22288201)the State Key Laboratory of Molecular Reaction Dynamics(SKLMRDZ202406)the Chinese Academy of Sciences(GJJSTD20220001).
文摘3-Furfural(C_(5)H_(4)O_(2))is a furan(C_(4)H_(4)O)derivative compound formed by replacing the hydrogen(H)atom at the ring 3-position with the aldehyde(CHO)group substituent.In this work,we intend to investigate the ultrafast decay dynamics of electronically excited 3-furfural using the femtosecond time-resolved photoelectron imaging technique.At pump wavelengths of 259.5,238.6 and 218.311m,two alternative decay mechanisms for the S_(2)(^(1)ππ*)state are tentatively proposed and discussed.Specifically,we prefer to suggest that a fraction of the initially prepared wavepacket in the S_(2)(^(1)ππ*)state is likely to undergo the subpicosecond relaxation via the S_(1)(^(1)nπ*)state.Presumably the lower lying T_(2)(^(3)ππ*)state is subsequently populated on a∼4 ps timescale via intersystem crossing from the minimum of the S_(1)(^(1)nπ*)state surface.The relaxation of the T_(2)(^(3)ππ*)state is sensitive to its vibrational excess energy and the value of its lifetime is 1.6±0.2 ns,280±30 ps and 50±10 ps for pump wavelengths of 259.5,238.6 and 218.3 m,respectively.
基金This work is supported by the National Natural Science Foundation of China (No.21473163, No.21033002, No.21202032) and the National Basic Research Program of China (No.2013CB834604).
文摘The excited state structural dynamics of phenyl absorbing S2(A'), S3(A'), and S6(A') states were troseopy and complete active space self-consistent and the UV absorption bands were assigned on azide (PhN3) after excitation to the light studied using the resonance Raman specfield calculations. The vibrational spectra the basis of the Fourier transform (FT)- Raman, FT-infrared measurements, the density-functional theory computations and the normal mode analysis. The A-, B-, and C-bands resonance Raman spectra in cyclohex- ane, acetonitrile, and methanol solvents were, respectively, obtained at 273.9, 252.7, 245.9, 228.7, 223.1, and 208.8 nm excitation wavelengths to probe the corresponding structural dynamics of PhN3. The results indicated that the structural dynamics in the S2 (A'), S3(A'), and S6(A') states were significantly different. The crossing points of the potential energy surfaces, S2S1(1) and S2S1(2), were predicted to play a key role in the low-lying excited state decay dynamics, in accordance with Kasha's rule, and NT=N8 dissociation. Two decay channels initiated from the Franck-Condon region of the S2(A') state were predicted: the radiative S2,min→S0 radiative decay and the S2→S1 internal conversion through the crossing points S2S1 (1)/S2S1(2).
基金the National Natural Science Foundation of China(No.51579147)
文摘The roll motions are influenced by significant viscous effects such as the flow separation.The 3D simulations of free decay roll motions for the ship model DTMB 5512 are carried out by Reynold averaged NavierStokes(RANS) method based on the dynamic mesh technique.A new moving mesh technique is adopted and discussed in details for the present simulations.The purpose of the research is to obtain accurate numerical prediction for roll motions with their respective numerical/modeling errors and uncertainties.Errors and uncertainties are estimated by performing the modern verification and validation(V&V) procedures.Simulation results for the free-floating surface combatant are used to calculate the linear,nonlinear damping coefficients and resonant frequencies including a wide range of forward speed.The present work can provide a useful reference to calculate roll damping by computational fluid dynamics(CFD) method and simulate a general ship motions in waves.
基金performed within the framework of the SAW project "Biochar in Agriculture:Perspectives for Germany and Malaysia" funded by the Leibniz Association,Germany,within the context of the "Joint Initiative for Research and Innovation"
文摘The biodegradability of chars derived from pyrolysis and hydrothermal carbonisation(HTC) was studied in short-term dynamic incubation experiments under controlled conditions. Carbon dioxide C(CO2) emissions from soil-char mixtures in combination with solid digestate or mineral nitrogen(N) fertiliser were measured in dynamic chambers for 10 d. Compared to the original material(maize straw), pyrolysis and HTC chars showed significantly lower CO2 emissions and slower decay dynamics; and compared to the soil control, HTC char increased soil respiration to a significant extent, while pyrolysis char did not. The addition of mineral N resulted in a delayed respiration dynamics for HTC char, while the addition of digestate resulted in an increase in the respired CO2 for pyrolysis char and a decrease for HTC char. For the first time, a peculiar two-stage decay kinetics was observed for HTC char,indicating a highly inhomogeneous substrate consisting at least of two C pools.
基金supported by the Fundamental Research Grant Scheme of Ministry of Higher Education,Malaysia(No.6711195)Multi media University and University of Science Malaysia
文摘Accurate fault detection and diagnosis is important for secure and profitable operation of modern power systems.In this paper,an ensemble of conflict-resolving Fuzzy ARTMAP classifiers,known as Probabilistic Multiple Fuzzy ARTMAP with Dynamic Decay Adjustment(PMFAMDDA),for accurate discrimination between normal and faulty operating conditions of a Circulating Water(CW)system in a power generation plant is proposed.The decisions of PMFAMDDA are reached through a probabilistic plurality voting strategy that is in agreement with the Bayesian theorem.The results of the proposed PMFAMDDA model are compared with those from an ensemble of Probabilistic Multiple Fuzzy ARTMAP(PMFAM)classifiers.The outcomes reveal that PMFAMDDA,in general,outperforms PMFAM in discriminating operating conditions of the CW system.
文摘A theoretical analysis of the refracted shadows produced by steady and time-decaying liquid vortices under uniform illumination from above is given in this article. An expression for the induced shadow intensity is derived and found to be a function of the vortex's free surface profile, i.e., function of the static pressure distribution. The patterns for different focusing depth are given and compared with previous visualization results from the literature. The phenomenon is examined and illustrated as a bench mark case by using both steady and time-decaying algebraic vortex models. However, this study can be extended to check the feasibility of recovering the main flow properties by analyzing the luminous image intensity of the refracted patterns. The present analysis is valid only when the swirl velocity is order of magnitude higher than the meridional flow components and the vorticity is concentrated within the core region and of intense conditions.
基金This work was supported by the Chinese Academy of Sciences(Grant No.KZCX1-SW-12-Ⅱ)the National Natural Science Foundation of China(Grant No.40171083) the Chinese Academy of Sciences(Grant No.CXNIGLAS-A02-02).
文摘Through man-made disturbance experiments, the corresponding relationships be-tween suspended particulate matter (SPM) and wind speed in different lake areas were simu-lated, the physicochemical formal transformation and biological mineralizing and decaying processes of phosphorus in SPM were studied, the contribution of phosphorus transformation to phosphorus loading of the water of Lake Taihu was quantitatively estimated. The results show that about 0.44 t·a-1 loading in Lake Taihu mainly comes from phosphorus-releasing action of SPM in physicochemical transformed to soluble reactive phosphorus (SRP), and the contribution mainly from biological mineralizing and decaying was about 425.8 t·a-1, which is equal to 15.0% of the total external loading of Lake Taihu, namely 4.7—7.5 times as much as SRP loading en-tering the lake by the rivers; thus it is the important source in dynamical internal loading of the lake. The determining factors for dynamical internal loading in lakes are organic phosphorus content in suspended solid and its biological transition availability.
文摘Recent experimental signals have led to a revival of tetraquarks,the hypothetical q~2q~2 hadronic states proposed by Jaffe in 1976 to explain the light scalar mesons.Mesonic structures with exotic quantum numbers have indeed been observed recently,though a controversy persists as to whether these are true resonances and not merely kinematical threshold enhancements,or otherwise states not of a true q~2q~2 nature.Moreover,puzzling non-exotic mesons are also often claimed to have a tetraquark configuration.However,the corresponding model calculations are practically always carried out in pure and static bound-state approaches,ignoring completely the coupling to asymptotic two-meson states and unitarity,especially the dynamical effects thereof.In this short paper we argue that these static predictions of real tetraquark masses are highly unreliable and provide little evidence of the very existence of such states.