Program slice has many applications such as program debugging, testing, maintenance, and complexity measurement. A static slice consists of all statements in program P that may effect the value of variable v a...Program slice has many applications such as program debugging, testing, maintenance, and complexity measurement. A static slice consists of all statements in program P that may effect the value of variable v at some point p , and a dynamic slice consists only of statements that influence the value of variable occurrence for specific program inputs. In this paper, we concern the problem of dynamic slicing of object oriented programs which, to our knowledge, has not been addressed in the literatures. To solve this problem, we present the dynamic object oriented dependence graph (DODG)which is an arc classified digraph to explicitly represent various dynamic dependence between statement instances for a particular execution of an object oriented program. Based on the DODG, we present a two phase backward algorithm for computing a dynamic slice of an object oriented program.展开更多
The development of the information technology has brought threats to human society when it has influenced seriously the global politics, economics and military etc. But among the security of information system, buffer...The development of the information technology has brought threats to human society when it has influenced seriously the global politics, economics and military etc. But among the security of information system, buffer overrun vulnerability is undoubtedly one of the most important and common vulnerabilities. This paper describes a new technology, named program slicing, to detect the buffer overflow leak in security-critical C code. First, we use slicing technology to analyze the variables which may be with vulnerability and extract the expressions which will bring memory overflow. Secondly, we utilize debug technology to get the size of memory applied by the variable and the size of memory used for these code segments (the slicing result) further. Therefore we can judge whether it will overflow according to the analysis above. According to the unique excellence of program slicing performing in the large-scale program’s debugging, the method to detect buffer overrun vulnerability described in this paper will reduce the workload greatly and locate the code sentences affected by corresponding variable set quickly, particularly including the potential vulnerability caused by parameter dependence among the subroutines.展开更多
文摘Program slice has many applications such as program debugging, testing, maintenance, and complexity measurement. A static slice consists of all statements in program P that may effect the value of variable v at some point p , and a dynamic slice consists only of statements that influence the value of variable occurrence for specific program inputs. In this paper, we concern the problem of dynamic slicing of object oriented programs which, to our knowledge, has not been addressed in the literatures. To solve this problem, we present the dynamic object oriented dependence graph (DODG)which is an arc classified digraph to explicitly represent various dynamic dependence between statement instances for a particular execution of an object oriented program. Based on the DODG, we present a two phase backward algorithm for computing a dynamic slice of an object oriented program.
文摘The development of the information technology has brought threats to human society when it has influenced seriously the global politics, economics and military etc. But among the security of information system, buffer overrun vulnerability is undoubtedly one of the most important and common vulnerabilities. This paper describes a new technology, named program slicing, to detect the buffer overflow leak in security-critical C code. First, we use slicing technology to analyze the variables which may be with vulnerability and extract the expressions which will bring memory overflow. Secondly, we utilize debug technology to get the size of memory applied by the variable and the size of memory used for these code segments (the slicing result) further. Therefore we can judge whether it will overflow according to the analysis above. According to the unique excellence of program slicing performing in the large-scale program’s debugging, the method to detect buffer overrun vulnerability described in this paper will reduce the workload greatly and locate the code sentences affected by corresponding variable set quickly, particularly including the potential vulnerability caused by parameter dependence among the subroutines.