期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
DNDC模型研究进展与前沿分析——基于Citespace文献计量分析 被引量:1
1
作者 项正宇 吴梦洋 操信春 《节水灌溉》 北大核心 2024年第8期85-93,109,共10页
为研究DNDC(Denitrification-Decomposition)模型的演进路径和应用现状,利用CiteSpace软件分析了Web of Science核心合集数据库中1996-2022年间关于“DNDC模型”的研究文献,从发文量分布、关键词、研究热点演进、科研力量等方面进行阐释... 为研究DNDC(Denitrification-Decomposition)模型的演进路径和应用现状,利用CiteSpace软件分析了Web of Science核心合集数据库中1996-2022年间关于“DNDC模型”的研究文献,从发文量分布、关键词、研究热点演进、科研力量等方面进行阐释,并绘制相关图谱。结果表明:DNDC模型研究与应用呈现热度稳步上升、研究主题波浪式减少等趋势;关键词共现分析找出了management、rainfall events、soil organic carbon、denitrification、greenhouse gas、process oriented model等核心关键词,关键词聚类分析识别出Crop model、Soil organic carbon、Denitrification、Life cycle assessment、Ipcc、Agricultural soils、Carbon dynamic、Blue carbon、Greenhouse gases emission、Nitrous oxide等11个聚类;研究力量以中国、美国、加拿大为主,分别占总发文量的41.68%、41.20%和16.16%,中国科研力量在国际合作中的影响力仍有提升空间。当前DNDC模型研究聚焦于作物产量预测、节水农业、土壤碳固存、氮浸出和温室气体等方面。未来DNDC模型可以向提升参数输入精度、减少区域尺度模拟的不确定性、扩大模型适用区域等方面改进。 展开更多
关键词 DNDC(denitrification-decomposition) 热点演化 CITESPACE 可视化分析
在线阅读 下载PDF
Modeling Carbon Dynamics in Paddy Soils in Jiangsu Province of China with Soil Databases Differing in Spatial Resolution 被引量:9
2
作者 XU Sheng-Xiang SHI Xue-Zheng +5 位作者 ZHAO Yong-Cun YU Dong-Sheng WANG Shi-Hang ZHANG Li-Ming C. S. LI TAN Man-Zhi 《Pedosphere》 SCIE CAS CSCD 2011年第6期696-705,共10页
A number of process-based models have been developed for quantifying carbon(C)sequestration in agro-ecosystems.The DeNitrification-DeComposition(DNDC)model was used to simulate and quantify long-term(1980-2008)soil or... A number of process-based models have been developed for quantifying carbon(C)sequestration in agro-ecosystems.The DeNitrification-DeComposition(DNDC)model was used to simulate and quantify long-term(1980-2008)soil organic carbon(SOC)dynamics in the important rice-producing province,Jiangsu,China.Changes in SOC storages were estimated from two soil databases differing in spatial resolution:a county database consisting of 68 polygons and a soil patch-based database of 701 polygons for all 3.7 Mha of rice fields in Jiangsu.The simulated SOC storage with the coarse resolution county database ranged between 131.0-320.6 Tg C in 1980 and 170.3-305.1 Tg C in 2008,respectively,while that estimated with the fine resolution database was 201.6 and 216.2 Tg C in 1980 and 2008,respectively.The results modeled with the soil databases differing in spatial resolution indicated that using the soil input data with higher resolution substantially increased the accuracy of the modeled results;and when lacking detailed soil datasets,the DNDC model,parameterized with the most sensitive factor(MSF) method to cope with attribute uncertainty,could still produce acceptable results although with deviations of up to 60% for the case study reported in this paper. 展开更多
关键词 1:1 000000 soil map C sequestration rate denitrification-decomposition (DNDC) greenhouse gas soil organic carbon (SOC)
原文传递
Equality Testing for Soil Grid Unit Resolutions to Polygon Unit Scales with DNDC Modeling of Regional SOC Pools 被引量:2
3
作者 YU Dongsheng PAN Yue +4 位作者 ZHANG Haidong WANG Xiyang NI Yunlong ZHANG Liming SHI Xue-zheng 《Chinese Geographical Science》 SCIE CSCD 2017年第4期552-568,共17页
Matching soil grid unit resolutions with polygon unit map scales is important to minimize the uncertainty of regional soil organic carbon(SOC) pool simulation due to their strong influences on the modeling.A series of... Matching soil grid unit resolutions with polygon unit map scales is important to minimize the uncertainty of regional soil organic carbon(SOC) pool simulation due to their strong influences on the modeling.A series of soil grid units at varying cell sizes was derived from soil polygon units at six map scales,namely,1:50 000(C5),1:200 000(D2),1:500 000(P5),1:1 000 000(N1),1:4 000 000(N4) and 1:14 000 000(N14),in the Taihu Region of China.Both soil unit formats were used for regional SOC pool simulation with a De Nitrification-DeC omposition(DNDC) process-based model,which spans the time period from 1982 to 2000 at the six map scales.Four indices,namely,soil type number(STN),area(AREA),average SOC density(ASOCD) and total SOC stocks(SOCS) of surface paddy soils that were simulated by the DNDC,were distinguished from all these soil polygon and grid units.Subjecting to the four index values(IV) from the parent polygon units,the variations in an index value(VIV,%) from the grid units were used to assess its dataset accuracy and redundancy,which reflects the uncertainty in the simulation of SOC pools.Optimal soil grid unit resolutions were generated and suggested for the DNDC simulation of regional SOC pools,matching their respective soil polygon unit map scales.With these optimal raster resolutions,the soil grid units datasets can have the same accuracy as their parent polygon units datasets without any redundancy,when VIV < 1% was assumed to be a criterion for all four indices.A quadratic curve regression model,namely,y = – 0.80 × 10^(–6)x^2 + 0.0228 x + 0.0211(R^2 = 0.9994,P < 0.05),and a power function model R? = 10.394?^(0.2153)(R^2 = 0.9759,P < 0.05) were revealed,which describe the relationship between the optimal soil grid unit resolution(y,km) and soil polygon unit map scale(1:10 000x),the ratio(R?,%) of the optimal soil grid size to average polygon patch size(?,km^2) and the ?,with the highest R^2 among different mathematical regressions,respectively.This knowledge may facilitate the grid partitioning of regions during the investigation and simulation of SOC pool dynamics at a certain map scale,and be referenced to other landscape polygon patches' mesh partition. 展开更多
关键词 soil organic carbon(SOC) soil grid unit resolutions soil polygon unit map scales denitrification-decomposition(DNDC) model SOC pools
在线阅读 下载PDF
Uncertainty and Sensitivity Analyses for Modeling Long-Term Soil Organic Carbon Dynamics of Paddy Soils Under Different Climate-Soil-Management Combinations
4
作者 QIN Fal ZHAO Yongcun +2 位作者 SHI Xuezheng XU Shengxiang YU Dongsheng 《Pedosphere》 SCIE CAS CSCD 2017年第5期912-925,共14页
Reporting modeling results with uncertainty information can benefit decision making by decreasing the extent that variability exerts a disproportionate influence on the options selected. For making decisions with more... Reporting modeling results with uncertainty information can benefit decision making by decreasing the extent that variability exerts a disproportionate influence on the options selected. For making decisions with more confidence, the uncertainty interval should be as narrow as possible. Here, the soil organic carbon (SOC) dynamics of the major paddy soil subgroup from 4 different paddy field regions of China (located in 4 counties under different climate-soil-management combinations) were modeled using the DeNitrification- DeComposition (DNDC) model for the period from 1980 to 2008. Uncertainty intervals associated with the SOC dynamics for these 4 subgroups were estimated by a long-term global sensitivity and uncertainty analysis (i. e., the Sobolt method), and their sensitivities to 7 influential factors were quantified using the total effect sensitivity index. The results, modeled with high confidence, indicated that in the past 29 years, the studied paddy soils in Xinxing, Yixing, and Zhongjiang counties were carbon (C) sinks, while the paddy soil in Helong County was a C source. The 3 C sinks sequestered 12.2 (5.4, 19.6), 17.1 (8.9, 25.0), and 16.9 (-1.2, 33.6) t C ha-1 (values in the parentheses are the 5th and 95th percentiles, respectively). Conversely, the C source had a loss of -5.4 (-14.2, 0.06) t C ha-1 in the past 29 years. The 7 factors, which changed with the climate-soil-management context, exhibited variable influences on modeled SOC. Measures with potential to conserve or sequestrate more C into paddy soils, such as incorporating more crop residues into soils and reducing chemical fertilizer application rates, were recommended for specific soils based on the sensitivity analysis results. 展开更多
关键词 carbon loss carbon sequestration carbon sink carbon source denitrification-decomposition model fertilizer appli-cation influential factors residue incorporation Sobol~ method
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部