A database-based strategy of candidate generation was proposed for molecular design of new de-phenol extractants following the idea of finding new applications of existing commercial compounds. The strategy has the ad...A database-based strategy of candidate generation was proposed for molecular design of new de-phenol extractants following the idea of finding new applications of existing commercial compounds. The strategy has the advantage that the environmental, safety and health risks of candidate compounds are known and controllable. In this work, the Existing Commercial Compounds(ECC) database and special combined search strategy were developed as the base for the proposed CAMD method following such idea, and molecules for phenol extraction used in coking wastewater treatment were selected from the ECC database. The candidate solvents cover the following categories: ketones, esters, ethers, alcohols, anhydrides and benzene compounds, which are consistent with the de-phenol extractants commonly used in the industry or experiment. The compounds with higher partition coefficient and selectivity than widely used methyl isobutyl ketone(MIBK) are mainly ketones. 26 obtained molecules show higher partition coefficient and selectivity than MIBK, which are suggested to be further investigated by experiment. Furthermore, analysis of these potential molecules may present the effective functional groups as the initial group set to generate new molecular structures of de-phenol extractants. The results show that the proposed method enables us to efficiently generate chemicals with benefits of less time, less economical cost, and known environmental impact as well.展开更多
Transcription factors play an indispensable role in maintaining cellular viability and finely regulating complex internal metabolic networks.These crucial bioactive functions rely on their ability to respond to effect...Transcription factors play an indispensable role in maintaining cellular viability and finely regulating complex internal metabolic networks.These crucial bioactive functions rely on their ability to respond to effectors and concurrently interact with binding sites.Recent advancements have brought innovative insights into the understanding of transcription factors.In this review,we comprehensively summarize the mechanisms by which transcription factors carry out their functions,along with calculation and experimental-based methods employed in their identification.Additionally,we highlight recent achievements in the application of transcription factors in various biotechnological fields,including cell engineering,human health,and biomanufacturing.Finally,the current limitations of research and provide prospects for future investigations are discussed.This review will provide enlightening theoretical guidance for transcription factors engineering.展开更多
基金Supported by the National Natural Science Foundation of China(Grant No.2156112001)National Basic Science Data Sharing Service Project(DKA2017-12-02-05)
文摘A database-based strategy of candidate generation was proposed for molecular design of new de-phenol extractants following the idea of finding new applications of existing commercial compounds. The strategy has the advantage that the environmental, safety and health risks of candidate compounds are known and controllable. In this work, the Existing Commercial Compounds(ECC) database and special combined search strategy were developed as the base for the proposed CAMD method following such idea, and molecules for phenol extraction used in coking wastewater treatment were selected from the ECC database. The candidate solvents cover the following categories: ketones, esters, ethers, alcohols, anhydrides and benzene compounds, which are consistent with the de-phenol extractants commonly used in the industry or experiment. The compounds with higher partition coefficient and selectivity than widely used methyl isobutyl ketone(MIBK) are mainly ketones. 26 obtained molecules show higher partition coefficient and selectivity than MIBK, which are suggested to be further investigated by experiment. Furthermore, analysis of these potential molecules may present the effective functional groups as the initial group set to generate new molecular structures of de-phenol extractants. The results show that the proposed method enables us to efficiently generate chemicals with benefits of less time, less economical cost, and known environmental impact as well.
基金supported by National Key Research&Development Program of China(2018YFA0900504,2020YFA0907700,and 2018YFA0900300)the National Natural Foundation of China(31401674)+1 种基金the National First-Class Discipline Program of Light Industry Technology and Engineering(LITE2018-22)the Top-notch Academic Programs Project of Jiangsu Higher Education Institutions.This research grant was awarded to author Youran Li.
文摘Transcription factors play an indispensable role in maintaining cellular viability and finely regulating complex internal metabolic networks.These crucial bioactive functions rely on their ability to respond to effectors and concurrently interact with binding sites.Recent advancements have brought innovative insights into the understanding of transcription factors.In this review,we comprehensively summarize the mechanisms by which transcription factors carry out their functions,along with calculation and experimental-based methods employed in their identification.Additionally,we highlight recent achievements in the application of transcription factors in various biotechnological fields,including cell engineering,human health,and biomanufacturing.Finally,the current limitations of research and provide prospects for future investigations are discussed.This review will provide enlightening theoretical guidance for transcription factors engineering.