在进行实时对抗的任务中,对于敌方的动作识别较为困难,需要根据对方的移动轨迹或行为来分析对方的意图,预测其未来目标,构建规划策略库.针对此问题,提出基于数据驱动的多智能体识别算法,该算法首先采用基于自动机的特征提取方法,获得规...在进行实时对抗的任务中,对于敌方的动作识别较为困难,需要根据对方的移动轨迹或行为来分析对方的意图,预测其未来目标,构建规划策略库.针对此问题,提出基于数据驱动的多智能体识别算法,该算法首先采用基于自动机的特征提取方法,获得规划需要的位置和任务信息;然后将规划识别问题转换为多分类问题,并从单智能体角度切入,给出了一种基于极端梯度提升(extreme gradient boosting,XGBoost)的多分类模型;之后,对于多智能体之间可能存在的合作行为,使用无监督学习的一种基于密度对噪声鲁棒的空间聚类算法(density-based spatial clustering of applications with noise,DBSCAN)对多智能体进行分簇,以促进协同合作.对于同簇智能体,构建了一种针对多智能体的多分类模型,完成对多智能体的目标预测.在获悉敌方目标后,提出基于博弈的围捕逼停算法,构建非合作动态博弈模型,通过求解纳什均衡得到应对敌方的最优策略.最后,通过仿真验证了所提出算法的有效性.展开更多
现有的索引选择方法存在诸多局限性.首先,大多数方法考虑场景较为单一,不能针对特定数据模态选择合适的索引结构,进而无法有效应对海量多模态数据;其次,现有方法未考虑索引选择时索引构建的代价,无法有效应对动态的工作负载.针对上述问...现有的索引选择方法存在诸多局限性.首先,大多数方法考虑场景较为单一,不能针对特定数据模态选择合适的索引结构,进而无法有效应对海量多模态数据;其次,现有方法未考虑索引选择时索引构建的代价,无法有效应对动态的工作负载.针对上述问题,提出一种面向多模态数据的智能高效索引选择模型APE-X DQN(Distributed prioritized experience replay in deep Q-network),称为AP-IS(APE-X DQN for index selection).AP-IS设计了新型索引集编码和SQL语句编码方法,该方法使AP-IS在感知多模态数据的同时兼顾索引结构本身的特性,极大地降低了索引的存储代价.APIS集成新型索引效益评估方法,在优化强化学习奖励机制的同时,监控数据库工作负载的执行状态,保证动态工作负载下AP-IS在时间和空间上的优化效果.在真实多模态数据集上进行大量实验,验证了AP-IS在工作负载的延迟、存储代价和训练效率等方面的性能,结果均明显优于最新索引选择方法.展开更多
文摘在进行实时对抗的任务中,对于敌方的动作识别较为困难,需要根据对方的移动轨迹或行为来分析对方的意图,预测其未来目标,构建规划策略库.针对此问题,提出基于数据驱动的多智能体识别算法,该算法首先采用基于自动机的特征提取方法,获得规划需要的位置和任务信息;然后将规划识别问题转换为多分类问题,并从单智能体角度切入,给出了一种基于极端梯度提升(extreme gradient boosting,XGBoost)的多分类模型;之后,对于多智能体之间可能存在的合作行为,使用无监督学习的一种基于密度对噪声鲁棒的空间聚类算法(density-based spatial clustering of applications with noise,DBSCAN)对多智能体进行分簇,以促进协同合作.对于同簇智能体,构建了一种针对多智能体的多分类模型,完成对多智能体的目标预测.在获悉敌方目标后,提出基于博弈的围捕逼停算法,构建非合作动态博弈模型,通过求解纳什均衡得到应对敌方的最优策略.最后,通过仿真验证了所提出算法的有效性.
文摘现有的索引选择方法存在诸多局限性.首先,大多数方法考虑场景较为单一,不能针对特定数据模态选择合适的索引结构,进而无法有效应对海量多模态数据;其次,现有方法未考虑索引选择时索引构建的代价,无法有效应对动态的工作负载.针对上述问题,提出一种面向多模态数据的智能高效索引选择模型APE-X DQN(Distributed prioritized experience replay in deep Q-network),称为AP-IS(APE-X DQN for index selection).AP-IS设计了新型索引集编码和SQL语句编码方法,该方法使AP-IS在感知多模态数据的同时兼顾索引结构本身的特性,极大地降低了索引的存储代价.APIS集成新型索引效益评估方法,在优化强化学习奖励机制的同时,监控数据库工作负载的执行状态,保证动态工作负载下AP-IS在时间和空间上的优化效果.在真实多模态数据集上进行大量实验,验证了AP-IS在工作负载的延迟、存储代价和训练效率等方面的性能,结果均明显优于最新索引选择方法.