期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A physics-constrained neural network for predicting excavationinduced ground surface settlement in clay
1
作者 Yifeng Yang Shaoming Liao +3 位作者 Bak Koon Teoh Zewen Li Mengbo Liu Lisheng Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第5期2665-2681,共17页
Accurate prediction of ground surface settlement(GSS)adjacent to an excavation is important to prevent potential damage to the surrounding environment.Previous studies have extensively delved into this topic but all u... Accurate prediction of ground surface settlement(GSS)adjacent to an excavation is important to prevent potential damage to the surrounding environment.Previous studies have extensively delved into this topic but all under the limitations of either imprecise theories or insufficient data.In the present study,we proposed a physics-constrained neural network(PhyNN)for predicting excavation-induced GSS to fully integrate the theory of elasticity with observations and make full use of the strong fitting ability of neural networks(NNs).This model incorporates an analytical solution as an additional regularization term in the loss function to guide the training of NN.Moreover,we introduced three trainable parameters into the analytical solution so that it can be adaptively modified during the training process.The performance of the proposed PhyNN model is verified using data from a case study project.Results show that our PhyNN model achieves higher prediction accuracy,better generalization ability,and robustness than the purely data-driven NN model when confronted with data containing noise and outliers.Remarkably,by incorporating physical constraints,the admissible solution space of PhyNN is significantly narrowed,leading to a substantial reduction in the need for the amount of training data.The proposed PhyNN can be utilized as a general framework for integrating physical constraints into data-driven machine-learning models. 展开更多
关键词 data-physics collaboratively driven EXCAVATION Ground surface settlement(GSS) Physics-constrained loss function Robustness Generalization ability
在线阅读 下载PDF
Research on simulation of gun muzzle flow field empowered by artificial intelligence 被引量:3
2
作者 Mengdi Zhou Linfang Qian +3 位作者 Congyong Cao Guangsong Chen Jin Kong Ming-hao Tong 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期196-208,共13页
Artificial intelligence technology is introduced into the simulation of muzzle flow field to improve its simulation efficiency in this paper.A data-physical fusion driven framework is proposed.First,the known flow fie... Artificial intelligence technology is introduced into the simulation of muzzle flow field to improve its simulation efficiency in this paper.A data-physical fusion driven framework is proposed.First,the known flow field data is used to initialize the model parameters,so that the parameters to be trained are close to the optimal value.Then physical prior knowledge is introduced into the training process so that the prediction results not only meet the known flow field information but also meet the physical conservation laws.Through two examples,it is proved that the model under the fusion driven framework can solve the strongly nonlinear flow field problems,and has stronger generalization and expansion.The proposed model is used to solve a muzzle flow field,and the safety clearance behind the barrel side is divided.It is pointed out that the shape of the safety clearance under different launch speeds is roughly the same,and the pressure disturbance in the area within 9.2 m behind the muzzle section exceeds the safety threshold,which is a dangerous area.Comparison with the CFD results shows that the calculation efficiency of the proposed model is greatly improved under the condition of the same calculation accuracy.The proposed model can quickly and accurately simulate the muzzle flow field under various launch conditions. 展开更多
关键词 Muzzle flow field Artificial intelligence Deep learning data-physical fusion driven Shock wave
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部