期刊文献+
共找到71,544篇文章
< 1 2 250 >
每页显示 20 50 100
Distributed robust data-driven event-triggered control for QUAVs under stochastic disturbances
1
作者 Chao Song Hao Li +2 位作者 Bo Li Jiacun Wang Chunwei Tian 《Defence Technology(防务技术)》 2026年第1期155-171,共17页
To address the issue of instability or even imbalance in the orientation and attitude control of quadrotor unmanned aerial vehicles(QUAVs)under random disturbances,this paper proposes a distributed antidisturbance dat... To address the issue of instability or even imbalance in the orientation and attitude control of quadrotor unmanned aerial vehicles(QUAVs)under random disturbances,this paper proposes a distributed antidisturbance data-driven event-triggered fusion control method,which achieves efficient fault diagnosis while suppressing random disturbances and mitigating communication conflicts within the QUAV swarm.First,the impact of random disturbances on the UAV swarm is analyzed,and a model for orientation and attitude control of QUAVs under stochastic perturbations is established,with the disturbance gain threshold determined.Second,a fault diagnosis system based on a high-gain observer is designed,constructing a fault gain criterion by integrating orientation and attitude information from QUAVs.Subsequently,a model-free dynamic linearization-based data modeling(MFDLDM)framework is developed using model-free adaptive control,which efficiently fits the nonlinear control model of the QUAV swarm while reducing temporal constraints on control data.On this basis,this paper constructs a distributed data-driven event-triggered controller based on the staggered communication mechanism,which consists of an equivalent QUAV controller and an event-triggered controller,and is able to reduce the communication conflicts while suppressing the influence of random interference.Finally,by incorporating random disturbances into the controller,comparative experiments and physical validations are conducted on the QUAV platforms,fully demonstrating the strong adaptability and robustness of the proposed distributed event-triggered fault-tolerant control system. 展开更多
关键词 data-driven QUAV control Fault diagnosis Event-triggered Non-conflicting communication
在线阅读 下载PDF
DriftXMiner: A Resilient Process Intelligence Approach for Safe and Transparent Detection of Incremental Concept Drift in Process Mining
2
作者 Puneetha B.H Manoj Kumar M.V +1 位作者 Prashanth B.S. Piyush Kumar Pareek 《Computers, Materials & Continua》 2026年第1期1086-1118,共33页
Processes supported by process-aware information systems are subject to continuous and often subtle changes due to evolving operational,organizational,or regulatory factors.These changes,referred to as incremental con... Processes supported by process-aware information systems are subject to continuous and often subtle changes due to evolving operational,organizational,or regulatory factors.These changes,referred to as incremental concept drift,gradually alter the behavior or structure of processes,making their detection and localization a challenging task.Traditional process mining techniques frequently assume process stationarity and are limited in their ability to detect such drift,particularly from a control-flow perspective.The objective of this research is to develop an interpretable and robust framework capable of detecting and localizing incremental concept drift in event logs,with a specific emphasis on the structural evolution of control-flow semantics in processes.We propose DriftXMiner,a control-flow-aware hybrid framework that combines statistical,machine learning,and process model analysis techniques.The approach comprises three key components:(1)Cumulative Drift Scanner that tracks directional statistical deviations to detect early drift signals;(2)a Temporal Clustering and Drift-Aware Forest Ensemble(DAFE)to capture distributional and classification-level changes in process behavior;and(3)Petri net-based process model reconstruction,which enables the precise localization of structural drift using transition deviation metrics and replay fitness scores.Experimental validation on the BPI Challenge 2017 event log demonstrates that DriftXMiner effectively identifies and localizes gradual and incremental process drift over time.The framework achieves a detection accuracy of 92.5%,a localization precision of 90.3%,and an F1-score of 0.91,outperforming competitive baselines such as CUSUM+Histograms and ADWIN+Alpha Miner.Visual analyses further confirm that identified drift points align with transitions in control-flow models and behavioral cluster structures.DriftXMiner offers a novel and interpretable solution for incremental concept drift detection and localization in dynamic,process-aware systems.By integrating statistical signal accumulation,temporal behavior profiling,and structural process mining,the framework enables finegrained drift explanation and supports adaptive process intelligence in evolving environments.Its modular architecture supports extension to streaming data and real-time monitoring contexts. 展开更多
关键词 Process mining concept drift gradual drift incremental drift clustering ensemble techniques process model event log
在线阅读 下载PDF
Data-Driven Prediction of Maximum Displacement of Flexible Riser Based on Movement of Platform 被引量:1
3
作者 SONG Jin-ze WU Yu-ze +3 位作者 HE Yu-fa ZHOU Shui-gen ZHU Hong-jun DENG Kai-rui 《China Ocean Engineering》 2025年第5期793-805,共13页
Mitigating vortex-induced vibrations(VIV)in flexible risers represents a critical concern in offshore oil and gas production,considering its potential impact on operational safety and efficiency.The accurate predictio... Mitigating vortex-induced vibrations(VIV)in flexible risers represents a critical concern in offshore oil and gas production,considering its potential impact on operational safety and efficiency.The accurate prediction of displacement and position of VIV in flexible risers remains challenging under actual marine conditions.This study presents a data-driven model for riser displacement prediction that corresponds to field conditions.Experimental data analysis reveals that the XGBoost algorithm predicts the maximum displacement and position with superior accuracy compared with Support vector regression(SVR),considering both computational efficiency and precision.Platform displacement in the Y-direction demonstrates a significant positive correlation with both axial depth and maximum displacement magnitude.The fourth point displacement exhibits the highest contribution to model prediction outcomes,showing a positive influence on maximum displacement while negatively affecting the axial depth of maximum displacement.Platform displacement in the X-and Y-directions exhibits competitive effects on both the riser’s maximum displacement and its axial depth.Through the implementation of XGBoost algorithm and SHapley Additive exPlanation(SHAP)analysis,the model effectively estimates the riser’s maximum displacement and its precise location.This data-driven approach achieves predictions using minimal,readily available data points,enhancing its practical field applications and demonstrating clear relevance to academic and professional communities. 展开更多
关键词 data-driven method flexible riser vortex-induced vibration(VIV) platform displacement
在线阅读 下载PDF
Research on the Construction and Practice of an Evidence-Based Value-Added Evaluation System Based on Data-Driven 被引量:1
4
作者 Lingduo Yang Lili Xu +2 位作者 Yan Xu Furong Peng Shuai Zhang 《Journal of Contemporary Educational Research》 2025年第5期61-67,共7页
Based on the educational evaluation reform,this study explores the construction of an evidence-based value-added evaluation system based on data-driven,aiming to solve the limitations of traditional evaluation methods... Based on the educational evaluation reform,this study explores the construction of an evidence-based value-added evaluation system based on data-driven,aiming to solve the limitations of traditional evaluation methods.The research adopts the method of combining theoretical analysis and practical application,and designs the evidence-based value-added evaluation framework,which includes the core elements of a multi-source heterogeneous data acquisition and processing system,a value-added evaluation agent based on a large model,and an evaluation implementation and application mechanism.Through empirical research verification,the evaluation system has remarkable effects in improving learning participation,promoting ability development,and supporting teaching decision-making,and provides a theoretical reference and practical path for educational evaluation reform in the new era.The research shows that the evidence-based value-added evaluation system based on data-driven can reflect students’actual progress more fairly and objectively by accurately measuring the difference in starting point and development range of students,and provide strong support for the realization of high-quality education development. 展开更多
关键词 data-driven Evidence-based evaluation Value-added evaluation Large model Educational evaluation reform
在线阅读 下载PDF
An integrated method of data-driven and mechanism models for formation evaluation with logs 被引量:1
5
作者 Meng-Lu Kang Jun Zhou +4 位作者 Juan Zhang Li-Zhi Xiao Guang-Zhi Liao Rong-Bo Shao Gang Luo 《Petroleum Science》 2025年第3期1110-1124,共15页
We propose an integrated method of data-driven and mechanism models for well logging formation evaluation,explicitly focusing on predicting reservoir parameters,such as porosity and water saturation.Accurately interpr... We propose an integrated method of data-driven and mechanism models for well logging formation evaluation,explicitly focusing on predicting reservoir parameters,such as porosity and water saturation.Accurately interpreting these parameters is crucial for effectively exploring and developing oil and gas.However,with the increasing complexity of geological conditions in this industry,there is a growing demand for improved accuracy in reservoir parameter prediction,leading to higher costs associated with manual interpretation.The conventional logging interpretation methods rely on empirical relationships between logging data and reservoir parameters,which suffer from low interpretation efficiency,intense subjectivity,and suitability for ideal conditions.The application of artificial intelligence in the interpretation of logging data provides a new solution to the problems existing in traditional methods.It is expected to improve the accuracy and efficiency of the interpretation.If large and high-quality datasets exist,data-driven models can reveal relationships of arbitrary complexity.Nevertheless,constructing sufficiently large logging datasets with reliable labels remains challenging,making it difficult to apply data-driven models effectively in logging data interpretation.Furthermore,data-driven models often act as“black boxes”without explaining their predictions or ensuring compliance with primary physical constraints.This paper proposes a machine learning method with strong physical constraints by integrating mechanism and data-driven models.Prior knowledge of logging data interpretation is embedded into machine learning regarding network structure,loss function,and optimization algorithm.We employ the Physically Informed Auto-Encoder(PIAE)to predict porosity and water saturation,which can be trained without labeled reservoir parameters using self-supervised learning techniques.This approach effectively achieves automated interpretation and facilitates generalization across diverse datasets. 展开更多
关键词 Well log Reservoir evaluation Label scarcity Mechanism model data-driven model Physically informed model Self-supervised learning Machine learning
原文传递
Concept Analysis of the Utilization of Artifacts in Nursing Practice Instruction
6
作者 Takeshi Matsumoto 《Open Journal of Nursing》 2025年第1期21-29,共9页
This study aims to clarify the conceptual characteristics of artifact utilization in nursing practice instruction. Five selected articles were analyzed using the concept analysis method by Walker and Avant. The attrib... This study aims to clarify the conceptual characteristics of artifact utilization in nursing practice instruction. Five selected articles were analyzed using the concept analysis method by Walker and Avant. The attributes, antecedents, and consequences of the concept were extracted from the target literature. The analysis revealed two attributes (“connecting people to people” and “connecting people to objects”);two antecedents (“recognition of artifacts” and “selection of artifacts”);and two consequences (“designing a fulfilling learning environment” and “improving the quality of education”). The concept was defined as “promoting the utilization of artifacts by recognizing and selecting them, connecting people to people and people to objects, designing a fulfilling learning environment, and improving the quality of education”. 展开更多
关键词 ARTIFACTS Nursing Practice Instruction concept Analysis
在线阅读 下载PDF
A Maritime Document Knowledge Graph Construction Method Based on Conceptual Proximity Relations
7
作者 Yiwen Lin Tao Yang +3 位作者 Yuqi Shao Meng Yuan Pinghua Hu Chen Li 《Journal of Computer and Communications》 2025年第2期51-67,共17页
The cost and strict input format requirements of GraphRAG make it less efficient for processing large documents. This paper proposes an alternative approach for constructing a knowledge graph (KG) from a PDF document ... The cost and strict input format requirements of GraphRAG make it less efficient for processing large documents. This paper proposes an alternative approach for constructing a knowledge graph (KG) from a PDF document with a focus on simplicity and cost-effectiveness. The process involves splitting the document into chunks, extracting concepts within each chunk using a large language model (LLM), and building relationships based on the proximity of concepts in the same chunk. Unlike traditional named entity recognition (NER), which identifies entities like “Shanghai”, the proposed method identifies concepts, such as “Convenient transportation in Shanghai” which is found to be more meaningful for KG construction. Each edge in the KG represents a relationship between concepts occurring in the same text chunk. The process is computationally inexpensive, leveraging locally set up tools like Mistral 7B openorca instruct and Ollama for model inference, ensuring the entire graph generation process is cost-free. A method of assigning weights to relationships, grouping similar pairs, and summarizing multiple relationships into a single edge with associated weight and relation details is introduced. Additionally, node degrees and communities are calculated for node sizing and coloring. This approach offers a scalable, cost-effective solution for generating meaningful knowledge graphs from large documents, achieving results comparable to GraphRAG while maintaining accessibility for personal machines. 展开更多
关键词 Knowledge Graph Large Language Model concept Extraction Cost-Effective Graph Construction
在线阅读 下载PDF
Data-Driven Precision Training Model for Innovation and Entrepreneurship Talents in Universities:Theoretical Framework and Implementation Path
8
作者 Shuai Yuan 《Journal of Electronic Research and Application》 2025年第6期237-243,共7页
Against the backdrop of the national innovation strategy and the digital transformation of education,the traditional“extensive”training model for innovation and entrepreneurship talents struggles to meet the persona... Against the backdrop of the national innovation strategy and the digital transformation of education,the traditional“extensive”training model for innovation and entrepreneurship talents struggles to meet the personalized development needs of students,making an urgent shift toward precision and intelligence necessary.This study constructs a four-dimensional integrated framework centered on data,“Goal-Data-Intervention-Evaluation”,and proposes a data-driven training model for innovation and entrepreneurship talents in universities.By collecting multi-source data such as learning behaviors,competency assessments,and practical projects,the model conducts in-depth analysis of students’individual characteristics and development potential,enabling precise decision-making in goal setting,teaching intervention,and practical guidance.Based on data analysis,a supportive system for personalized teaching and practical activities is established.Combined with process-oriented and summative evaluations,a closed-loop feedback mechanism is formed to improve training effectiveness.This model provides a theoretical framework and practical path for the scientific,personalized,and intelligent development of innovation and entrepreneurship education in universities. 展开更多
关键词 data-driven AI Innovation and entrepreneurship Talent training
在线阅读 下载PDF
Topology Optimization of Lattice Structures through Data-Driven Model of M-VCUT Level Set Based Substructure
9
作者 Minjie Shao Tielin Shi +1 位作者 Qi Xia Shiyuan Liu 《Computer Modeling in Engineering & Sciences》 2025年第9期2685-2703,共19页
A data-driven model ofmultiple variable cutting(M-VCUT)level set-based substructure is proposed for the topology optimization of lattice structures.TheM-VCUTlevel setmethod is used to represent substructures,enriching... A data-driven model ofmultiple variable cutting(M-VCUT)level set-based substructure is proposed for the topology optimization of lattice structures.TheM-VCUTlevel setmethod is used to represent substructures,enriching their diversity of configuration while ensuring connectivity.To construct the data-driven model of substructure,a database is prepared by sampling the space of substructures spanned by several substructure prototypes.Then,for each substructure in this database,the stiffness matrix is condensed so that its degrees of freedomare reduced.Thereafter,the data-drivenmodel of substructures is constructed through interpolationwith compactly supported radial basis function(CS-RBF).The inputs of the data-driven model are the design variables of topology optimization,and the outputs are the condensed stiffness matrix and volume of substructures.During the optimization,this data-driven model is used,thus avoiding repeated static condensation that would requiremuch computation time.Several numerical examples are provided to verify the proposed method. 展开更多
关键词 data-driven lattice structure SUBSTRUCTURE M-VCUT level set topology optimization
在线阅读 下载PDF
Metabolic Surgery: Concepts and New Classification
10
作者 Paulo Reis Rizzo Esselin de Melo Victor Ramos Mussa Dib +34 位作者 Carlos Augusto Scussel Madalosso Chetan Parmar Omar Ghanem Miguel Ángel Carbajo Ricardo Zorron Amador García Ruiz de Gordejuela Caio Gustavo Gaspar de Aquino Luiz Alfredo Vieira d’Almeida Luciano Antozzi Rui Ribeiro Halit Eren Taskin Jorge Bravo López Christine Stier Patrick Noel José Sergio Verboonen Sotelo Laurent Abram Layani Ramon Vilallonga Puy Elinton Adami Chaim Helmuth Billy Carlos Eduardo Domene Paula Volpe Nilton Tokio Kawahara Augusto Cláudio de Almeida Tinoco Antelmo Sasso Fin Hiroji Okano Júnior Nicholas Tavares Kruel Giorgio Alfredo Pedroso Baretta Diogo Swain Kfouri Anna Carolina Hoff Fernando Reis Esselin Melo Thonya Cruz Braga Clayton Alencar Moreira Luis Poggi Almino Cardoso Ramos Antonio Torres 《Surgical Science》 2025年第2期87-109,共23页
Bariatric and metabolic surgeries have gained extensive popularity and trust due to their documented efficacy and safety in managing not only obesity but also associated comorbidities such as diabetes mellitus, hypert... Bariatric and metabolic surgeries have gained extensive popularity and trust due to their documented efficacy and safety in managing not only obesity but also associated comorbidities such as diabetes mellitus, hypertension, dyslipidemia, sleep apnea, and joint pain. Traditionally, bariatric surgeries have been categorized into hypoabsorptive, restrictive, or hybrid approaches. However, these classifications inadequately reflect the complex anatomical and physiological alterations associated with modern surgical methodologies. This paper explores the evolution of metabolic surgeries, emphasizing the integration of physiological concepts into classic procedures to provide more tailored and effective treatment options for obesity and its comorbidities. Finally, the proposal for a new classification based on current metabolic concepts will facilitate communication among patients, doctors, and healthcare professionals. Additionally, it will enable a more didactic and standardized approach to data collection for conducting studies and publications. 展开更多
关键词 Metabolic Surgery Bariatric Surgery OBESITY Physiological concepts Gastrointestinal Procedures Transit Bipartition Long Common Channel Metabolically Functional Stomach Wide Anastomosis
暂未订购
Data-Driven Parametric Design of Additively Manufactured Hybrid Lattice Structure for Stiffness and Wide-Band Damping Performance
11
作者 Chenyang Li Shangqin Yuan +3 位作者 Han Zhang Shaoying Li Xinyue Li Jihong Zhu 《Additive Manufacturing Frontiers》 2025年第2期30-39,共10页
The outstanding comprehensive mechanical properties of newly developed hybrid lattice structures make them useful in engineering applications for bearing multiple mechanical loads.Additive-manufacturing technologies m... The outstanding comprehensive mechanical properties of newly developed hybrid lattice structures make them useful in engineering applications for bearing multiple mechanical loads.Additive-manufacturing technologies make it possible to fabricate these highly spatially programmable structures and greatly enhance the freedom in their design.However,traditional analytical methods do not sufficiently reflect the actual vibration-damping mechanism of lattice structures and are limited by their high computational cost.In this study,a hybrid lattice structure consisting of various cells was designed based on quasi-static and vibration experiments.Subsequently,a novel parametric design method based on a data-driven approach was developed for hybrid lattices with engineered properties.The response surface method was adopted to define the sensitive optimization target.A prediction model for the lattice geometric parameters and vibration properties was established using a backpropagation neural network.Then,it was integrated into the genetic algorithm to create the optimal hybrid lattice with varying geometric features and the required wide-band vibration-damping characteristics.Validation experiments were conducted,demonstrating that the optimized hybrid lattice can achieve the target properties.In addition,the data-driven parametric design method can reduce computation time and be widely applied to complex structural designs when analytical and empirical solutions are unavailable. 展开更多
关键词 Hybrid lattice structure data-driven Wide-band damping Machine-learning method
在线阅读 下载PDF
Deep learning aided underwater acoustic OFDM receivers: Model-driven or data-driven?
12
作者 Hao Zhao Miaowen Wen +3 位作者 Fei Ji Yaokun Liang Hua Yu Cui Yang 《Digital Communications and Networks》 2025年第3期866-877,共12页
The Underwater Acoustic(UWA)channel is bandwidth-constrained and experiences doubly selective fading.It is challenging to acquire perfect channel knowledge for Orthogonal Frequency Division Multiplexing(OFDM)communica... The Underwater Acoustic(UWA)channel is bandwidth-constrained and experiences doubly selective fading.It is challenging to acquire perfect channel knowledge for Orthogonal Frequency Division Multiplexing(OFDM)communications using a finite number of pilots.On the other hand,Deep Learning(DL)approaches have been very successful in wireless OFDM communications.However,whether they will work underwater is still a mystery.For the first time,this paper compares two categories of DL-based UWA OFDM receivers:the DataDriven(DD)method,which performs as an end-to-end black box,and the Model-Driven(MD)method,also known as the model-based data-driven method,which combines DL and expert OFDM receiver knowledge.The encoder-decoder framework and Convolutional Neural Network(CNN)structure are employed to establish the DD receiver.On the other hand,an unfolding-based Minimum Mean Square Error(MMSE)structure is adopted for the MD receiver.We analyze the characteristics of different receivers by Monte Carlo simulations under diverse communications conditions and propose a strategy for selecting a proper receiver under different communication scenarios.Field trials in the pool and sea are also conducted to verify the feasibility and advantages of the DL receivers.It is observed that DL receivers perform better than conventional receivers in terms of bit error rate. 展开更多
关键词 Deep learning Doubly-selective channels data-driven Model-driven Underwater acoustic communication OFDM
在线阅读 下载PDF
Data-Driven Human-in-the-Loop Iterative Learning Fault Estimation Method
13
作者 Fei Wang Jie Sun +1 位作者 Junwei Zhu Ruofeng Wei 《Chinese Journal of Mechanical Engineering》 2025年第6期180-188,共9页
For control systems with unknown model parameters,this paper proposes a data-driven iterative learning method for fault estimation.First,input and output data from the system under fault-free conditions are collected.... For control systems with unknown model parameters,this paper proposes a data-driven iterative learning method for fault estimation.First,input and output data from the system under fault-free conditions are collected.By applying orthogonal triangular decomposition and singular value decomposition,a data-driven realization of the system's kernel representation is derived,based on this representation,a residual generator is constructed.Then,the actuator fault signal is estimated online by analyzing the system's dynamic residual,and an iterative learning algorithm is introduced to continuously optimize the residual-based performance function,thereby enhancing estimation accuracy.The proposed method achieves actuator fault estimation without requiring knowledge of model parameters,eliminating the time-consuming system modeling process,and allowing operators to focus on system optimization and decision-making.Compared with existing fault estimation methods,the proposed method demonstrates superior transient performance,steady-state performance,and real-time capability,reduces the need for manual intervention and lowers operational complexity.Finally,experimental results on a mobile robot verify the effectiveness and advantages of the method. 展开更多
关键词 data-driven Residual generator Fault estimation Iterative learning Mobile robot
在线阅读 下载PDF
Leveraging Bayesian methods for addressing multi-uncertainty in data-driven seismic liquefaction assessment
14
作者 Zhihui Wang Roberto Cudmani +2 位作者 Andrés Alfonso Peña Olarte Chaozhe Zhang Pan Zhou 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第4期2474-2491,共18页
When assessing seismic liquefaction potential with data-driven models,addressing the uncertainties of establishing models,interpreting cone penetration tests(CPT)data and decision threshold is crucial for avoiding bia... When assessing seismic liquefaction potential with data-driven models,addressing the uncertainties of establishing models,interpreting cone penetration tests(CPT)data and decision threshold is crucial for avoiding biased data selection,ameliorating overconfident models,and being flexible to varying practical objectives,especially when the training and testing data are not identically distributed.A workflow characterized by leveraging Bayesian methodology was proposed to address these issues.Employing a Multi-Layer Perceptron(MLP)as the foundational model,this approach was benchmarked against empirical methods and advanced algorithms for its efficacy in simplicity,accuracy,and resistance to overfitting.The analysis revealed that,while MLP models optimized via maximum a posteriori algorithm suffices for straightforward scenarios,Bayesian neural networks showed great potential for preventing overfitting.Additionally,integrating decision thresholds through various evaluative principles offers insights for challenging decisions.Two case studies demonstrate the framework's capacity for nuanced interpretation of in situ data,employing a model committee for a detailed evaluation of liquefaction potential via Monte Carlo simulations and basic statistics.Overall,the proposed step-by-step workflow for analyzing seismic liquefaction incorporates multifold testing and real-world data validation,showing improved robustness against overfitting and greater versatility in addressing practical challenges.This research contributes to the seismic liquefaction assessment field by providing a structured,adaptable methodology for accurate and reliable analysis. 展开更多
关键词 data-driven method Bayes analysis Seismic liquefaction UNCERTAINTY Neural network
在线阅读 下载PDF
An artificial neural network-based data-driven constitutive model of shape memory alloys
15
作者 Xingyu Zhou Ziang Liu +1 位作者 Chao Yu Guozheng Kang 《Acta Mechanica Sinica》 2025年第8期108-125,共18页
The constitutive models of shape memory alloys(SMAs)play an important role in facilitating the widespread application of such types of alloys in various engineering fields.However,to accurately describe the deformatio... The constitutive models of shape memory alloys(SMAs)play an important role in facilitating the widespread application of such types of alloys in various engineering fields.However,to accurately describe the deformation behaviors of SMAs,the concepts in classical plasticity are employed in the existing constitutive models,and a series of complex mathematical equations are involved.Such complexity brings inconvenience for the construction,implementation,and application of the constitutive models.To overcome these shortcomings,a data-driven constitutive model of SMAs is developed in this work based on the artificial neural network(ANN).In the proposed model,the components of the strain tensor in principal space,ambient temperature,and the maximum equivalent strain in the deformation history from the initial state to the current loading state are chosen as the input features,and the components of the stress tensor in principal space are set as the output.The proposed ANN-based constitutive model is implemented into the finite element program ABAQUS by deriving its consistent tangent modulus and writing a user-defined material subroutine.The stress-strain responses of SMA material under various loading paths and at different ambient temperatures are used to train the ANN model,which is generated from the existing constitutive model(numerical experiments).To validate the capability of the proposed model,the predicted stress-strain responses of SMA material,and the global and local responses of two typical SMA structures are compared with the corresponding numerical experiments.This work demonstrates a good potential to obtain the constitutive model of SMAs by pure data and avoid the need for vast stores of knowledge for the construction of constitutive models. 展开更多
关键词 Shape memory alloys Constitutive model data-driven Artificial neural network
原文传递
State-Owned Enterprises IPD R&D Management Optimization Using Data-Driven Decision-Making Models
16
作者 ZHAO Yao ZHOU Wei +1 位作者 DING Hui WANG Tingyong 《Chinese Business Review》 2025年第3期99-108,共10页
In the rapidly evolving technological landscape,state-owned enterprises(SOEs)encounter significant challenges in sustaining their competitiveness through efficient R&D management.Integrated Product Development(IPD... In the rapidly evolving technological landscape,state-owned enterprises(SOEs)encounter significant challenges in sustaining their competitiveness through efficient R&D management.Integrated Product Development(IPD),with its emphasis on cross-functional teamwork,concurrent engineering,and data-driven decision-making,has been widely recognized for enhancing R&D efficiency and product quality.However,the unique characteristics of SOEs pose challenges to the effective implementation of IPD.The advancement of big data and artificial intelligence technologies offers new opportunities for optimizing IPD R&D management through data-driven decision-making models.This paper constructs and validates a data-driven decision-making model tailored to the IPD R&D management of SOEs.By integrating data mining,machine learning,and other advanced analytical techniques,the model serves as a scientific and efficient decision-making tool.It aids SOEs in optimizing R&D resource allocation,shortening product development cycles,reducing R&D costs,and improving product quality and innovation.Moreover,this study contributes to a deeper theoretical understanding of the value of data-driven decision-making in the context of IPD. 展开更多
关键词 state-owned enterprises IPD R&D management data-driven decision-making R&D optimization innovation
在线阅读 下载PDF
A data-driven PCA-RF-VIM method to identify key factors driving post-fracturing gas production of tight reservoirs
17
作者 Yifan Zhao Xiaofan Li +5 位作者 Lei Zuo Zhongtai Hu Liangbin Dou Huagui Yu Tiantai Li Jun Lu 《Energy Geoscience》 2025年第2期436-450,共15页
Hydraulic fracturing technology has achieved remarkable results in improving the production of tight gas reservoirs,but its effectiveness is under the joint action of multiple factors of complexity.Traditional analysi... Hydraulic fracturing technology has achieved remarkable results in improving the production of tight gas reservoirs,but its effectiveness is under the joint action of multiple factors of complexity.Traditional analysis methods have limitations in dealing with these complex and interrelated factors,and it is difficult to fully reveal the actual contribution of each factor to the production.Machine learning-based methods explore the complex mapping relationships between large amounts of data to provide datadriven insights into the key factors driving production.In this study,a data-driven PCA-RF-VIM(Principal Component Analysis-Random Forest-Variable Importance Measures)approach of analyzing the importance of features is proposed to identify the key factors driving post-fracturing production.Four types of parameters,including log parameters,geological and reservoir physical parameters,hydraulic fracturing design parameters,and reservoir stimulation parameters,were inputted into the PCA-RF-VIM model.The model was trained using 6-fold cross-validation and grid search,and the relative importance ranking of each factor was finally obtained.In order to verify the validity of the PCA-RF-VIM model,a consolidation model that uses three other independent data-driven methods(Pearson correlation coefficient,RF feature significance analysis method,and XGboost feature significance analysis method)are applied to compare with the PCA-RF-VIM model.A comparison the two models shows that they contain almost the same parameters in the top ten,with only minor differences in one parameter.In combination with the reservoir characteristics,the reasonableness of the PCA-RF-VIM model is verified,and the importance ranking of the parameters by this method is more consistent with the reservoir characteristics of the study area.Ultimately,the ten parameters are selected as the controlling factors that have the potential to influence post-fracturing gas production,as the combined importance of these top ten parameters is 91.95%on driving natural gas production.Analyzing and obtaining these ten controlling factors provides engineers with a new insight into the reservoir selection for fracturing stimulation and fracturing parameter optimization to improve fracturing efficiency and productivity. 展开更多
关键词 data-driven method Controlling factor Hydraulic fracturing Gas production
在线阅读 下载PDF
Research on the Teaching Mode of Translation Course for English Majors from the Perspective of OBE Concept
18
作者 Weihong Chen Hongyu Liu 《Journal of Educational Theory and Management》 2025年第1期19-23,共5页
This paper mainly discusses the innovative teaching mode of translation for English Majors under the guidance of OBE education philosophy.Firstly,by analyzing the current situation of translation teaching for English ... This paper mainly discusses the innovative teaching mode of translation for English Majors under the guidance of OBE education philosophy.Firstly,by analyzing the current situation of translation teaching for English majors,this paper points out the main problems,and combined with the OBE education concept,through optimizing the top-level design,updating the teaching content,improving the teaching methods,and scientifically using the evaluation methods,constructs a student-centered and outcome-oriented teaching mode.It is hoped that this study can improve students’translation ability and comprehensive quality,and provide a useful reference for the reform of translation teaching for English majors. 展开更多
关键词 OBE concept English majors Translation courses Teaching mode
在线阅读 下载PDF
Origin and Inheritance of Health Preservation Concepts in Treatise on Cold Damage and Miscellaneous Diseases(Shang Han Za Bing Lun)
19
作者 Qingya Li Shuohan Su +5 位作者 Qian Wang Long Feng Haiyan Zhang Liran Xu Dongyang Li Xiaodan Yin 《Chinese Medicine and Natural Products》 2025年第3期135-139,共5页
By analyzing the structure and academic characteristics of early Western Han medical texts such as Prescriptions for Fifty-Two Diseases(Wu Shi Er Bing Fang)and Prescriptions for Health Preservation(Yang Sheng Fang),an... By analyzing the structure and academic characteristics of early Western Han medical texts such as Prescriptions for Fifty-Two Diseases(Wu Shi Er Bing Fang)and Prescriptions for Health Preservation(Yang Sheng Fang),and considering the development of philosophical thinking during the pre-Qin and Han periods,this study summarizes how Zhongjing Zhang’s Treatise on Cold Damage and Miscellaneous Diseases(Shang Han Za Bing Lun)inherited pre-Qin and Han philosophical thought while further integrating Daoist“natural law”cosmology,Confucian“benevolence”social ethics,and the“isomorphic unity of heaven and humanity”medical theory in Yellow Emperor’s Inner Classic(Huang Di Nei Jing).It proposes health preservation concepts encompassing heaven-human,body-spirit,and benevolence perspectives,along with dietary hygiene,representing the medical embodiment of pre-Han“virtue cultivation”and“body nurturing”life philosophies that profoundly influenced subsequent traditional Chinese medicine health preservation theory and practice. 展开更多
关键词 health preservation Treatise on Cold Damage and Miscellaneous Diseases Shang Han Za Bing Lun Zhongjing Zhang heaven-human view body-spirit concept benevolence concept
原文传递
Parameter Estimation of a Tumor Growth Model under Data-driven Approach and Its Numerical Solution in Matlab
20
作者 Zhuo Chen Yihan Zeng +3 位作者 Wei Chen Ruixian Zheng Zejun Du Meibao Ge 《Journal of Clinical and Nursing Research》 2025年第4期50-56,共7页
This paper focuses on the numerical solution of a tumor growth model under a data-driven approach.Based on the inherent laws of the data and reasonable assumptions,an ordinary differential equation model for tumor gro... This paper focuses on the numerical solution of a tumor growth model under a data-driven approach.Based on the inherent laws of the data and reasonable assumptions,an ordinary differential equation model for tumor growth is established.Nonlinear fitting is employed to obtain the optimal parameter estimation of the mathematical model,and the numerical solution is carried out using the Matlab software.By comparing the clinical data with the simulation results,a good agreement is achieved,which verifies the rationality and feasibility of the model. 展开更多
关键词 MATLAB Tumor growth model data-driven approach Ordinary differential equation
暂未订购
上一页 1 2 250 下一页 到第
使用帮助 返回顶部