The integration of physics-based modelling and data-driven artificial intelligence(AI)has emerged as a transformative paradigm in computational mechanics.This perspective reviews the development and current status of ...The integration of physics-based modelling and data-driven artificial intelligence(AI)has emerged as a transformative paradigm in computational mechanics.This perspective reviews the development and current status of AI-empowered frameworks,including data-driven methods,physics-informed neural networks,and neural operators.While these approaches have demonstrated significant promise,challenges remain in terms of robustness,generalisation,and computational efficiency.We delineate four promising research directions:(1)Modular neural architectures inspired by traditional computational mechanics,(2)physics informed neural operators for resolution-invariant operator learning,(3)intelligent frameworks for multiphysics and multiscale biomechanics problems,and(4)structural optimisation strategies based on physics constraints and reinforcement learning.These directions represent a shift toward foundational frameworks that combine the strengths of physics and data,opening new avenues for the modelling,simulation,and optimisation of complex physical systems.展开更多
This paper takes the assessment and evaluation of computational mechanics course as the background,and constructs a diversified course evaluation system that is student-centered and integrates both quantitative and qu...This paper takes the assessment and evaluation of computational mechanics course as the background,and constructs a diversified course evaluation system that is student-centered and integrates both quantitative and qualitative evaluation methods.The system not only pays attention to students’practical operation and theoretical knowledge mastery but also puts special emphasis on the cultivation of students’innovative abilities.In order to realize a comprehensive and objective evaluation,the assessment and evaluation method of the entropy weight model combining TOPSIS(Technique for Order Preference by Similarity to Ideal Solution)multi-attribute decision analysis and entropy weight theory is adopted,and its validity and practicability are verified through example analysis.This method can not only comprehensively and objectively evaluate students’learning outcomes,but also provide a scientific decision-making basis for curriculum teaching reform.The implementation of this diversified course evaluation system can better reflect the comprehensive ability of students and promote the continuous improvement of teaching quality.展开更多
We propose an integrated method of data-driven and mechanism models for well logging formation evaluation,explicitly focusing on predicting reservoir parameters,such as porosity and water saturation.Accurately interpr...We propose an integrated method of data-driven and mechanism models for well logging formation evaluation,explicitly focusing on predicting reservoir parameters,such as porosity and water saturation.Accurately interpreting these parameters is crucial for effectively exploring and developing oil and gas.However,with the increasing complexity of geological conditions in this industry,there is a growing demand for improved accuracy in reservoir parameter prediction,leading to higher costs associated with manual interpretation.The conventional logging interpretation methods rely on empirical relationships between logging data and reservoir parameters,which suffer from low interpretation efficiency,intense subjectivity,and suitability for ideal conditions.The application of artificial intelligence in the interpretation of logging data provides a new solution to the problems existing in traditional methods.It is expected to improve the accuracy and efficiency of the interpretation.If large and high-quality datasets exist,data-driven models can reveal relationships of arbitrary complexity.Nevertheless,constructing sufficiently large logging datasets with reliable labels remains challenging,making it difficult to apply data-driven models effectively in logging data interpretation.Furthermore,data-driven models often act as“black boxes”without explaining their predictions or ensuring compliance with primary physical constraints.This paper proposes a machine learning method with strong physical constraints by integrating mechanism and data-driven models.Prior knowledge of logging data interpretation is embedded into machine learning regarding network structure,loss function,and optimization algorithm.We employ the Physically Informed Auto-Encoder(PIAE)to predict porosity and water saturation,which can be trained without labeled reservoir parameters using self-supervised learning techniques.This approach effectively achieves automated interpretation and facilitates generalization across diverse datasets.展开更多
Aptamers are a type of single-chain oligonucleotide that can combine with a specific target.Due to their simple preparation,easy modification,stable structure and reusability,aptamers have been widely applied as bioch...Aptamers are a type of single-chain oligonucleotide that can combine with a specific target.Due to their simple preparation,easy modification,stable structure and reusability,aptamers have been widely applied as biochemical sensors for medicine,food safety and environmental monitoring.However,there is little research on aptamer-target binding mechanisms,which limits their application and development.Computational simulation has gained much attention for revealing aptamer-target binding mechanisms at the atomic level.This work summarizes the main simulation methods used in the mechanistic analysis of aptamer-target complexes,the characteristics of binding between aptamers and different targets(metal ions,small organic molecules,biomacromolecules,cells,bacteria and viruses),the types of aptamer-target interactions and the factors influencing their strength.It provides a reference for further use of simulations in understanding aptamer-target binding mechanisms.展开更多
The advancement of flexible memristors has significantly promoted the development of wearable electronic for emerging neuromorphic computing applications.Inspired by in-memory computing architecture of human brain,fle...The advancement of flexible memristors has significantly promoted the development of wearable electronic for emerging neuromorphic computing applications.Inspired by in-memory computing architecture of human brain,flexible memristors exhibit great application potential in emulating artificial synapses for highefficiency and low power consumption neuromorphic computing.This paper provides comprehensive overview of flexible memristors from perspectives of development history,material system,device structure,mechanical deformation method,device performance analysis,stress simulation during deformation,and neuromorphic computing applications.The recent advances in flexible electronics are summarized,including single device,device array and integration.The challenges and future perspectives of flexible memristor for neuromorphic computing are discussed deeply,paving the way for constructing wearable smart electronics and applications in large-scale neuromorphic computing and high-order intelligent robotics.展开更多
Neuromorphic computing has the potential to overcome limitations of traditional silicon technology in machine learning tasks.Recent advancements in large crossbar arrays and silicon-based asynchronous spiking neural n...Neuromorphic computing has the potential to overcome limitations of traditional silicon technology in machine learning tasks.Recent advancements in large crossbar arrays and silicon-based asynchronous spiking neural networks have led to promising neuromorphic systems.However,developing compact parallel computing technology for integrating artificial neural networks into traditional hardware remains a challenge.Organic computational materials offer affordable,biocompatible neuromorphic devices with exceptional adjustability and energy-efficient switching.Here,the review investigates the advancements made in the development of organic neuromorphic devices.This review explores resistive switching mechanisms such as interface-regulated filament growth,molecular-electronic dynamics,nanowire-confined filament growth,and vacancy-assisted ion migration,while proposing methodologies to enhance state retention and conductance adjustment.The survey examines the challenges faced in implementing low-power neuromorphic computing,e.g.,reducing device size and improving switching time.The review analyses the potential of these materials in adjustable,flexible,and low-power consumption applications,viz.biohybrid spiking circuits interacting with biological systems,systems that respond to specific events,robotics,intelligent agents,neuromorphic computing,neuromorphic bioelectronics,neuroscience,and other applications,and prospects of this technology.展开更多
Various and intricate varieties of lung disease have made it challenging for computer aided diagnosis to appropriately segment lung lesions utilizing computed tomography(CT)images.This study integrates transfer learni...Various and intricate varieties of lung disease have made it challenging for computer aided diagnosis to appropriately segment lung lesions utilizing computed tomography(CT)images.This study integrates transfer learning with the attention mechanism to construct a deep learning model that can automatically detect new coronary pneumonia on lung CT images.In this study,using VGG16 pre-trained by ImageNet as the encoder,the decoder was established utilizing the U-Net structure.The attention module is incorporated during each concatenate procedure,permitting the model to concentrate on the critical information and identify the crucial components efficiently.The public COVID-19-CT-Seg-Benchmark dataset was utilized for experiments,and the highest scores for Dice,F1,and Accuracy were 0.9071,0.9076,and 0.9965,respectively.The generalization performance was assessed concurrently,with performance metrics including Dice,F1,and Accuracy over 0.8.The experimental findings indicate the feasibility of the segmentation network proposed in this study.展开更多
Neuromorphic devices have shown great potential in simulating the function of biological neurons due to their efficient parallel information processing and low energy consumption.MXene-Ti_(3)C_(2)T_(x),an emerging two...Neuromorphic devices have shown great potential in simulating the function of biological neurons due to their efficient parallel information processing and low energy consumption.MXene-Ti_(3)C_(2)T_(x),an emerging twodimensional material,stands out as an ideal candidate for fabricating neuromorphic devices.Its exceptional electrical performance and robust mechanical properties make it an ideal choice for this purpose.This review aims to uncover the advantages and properties of MXene-Ti_(3)C_(2)T_(x)in neuromorphic devices and to promote its further development.Firstly,we categorize several core physical mechanisms present in MXene-Ti_(3)C_(2)T_(x)neuromorphic devices and summarize in detail the reasons for their formation.Then,this work systematically summarizes and classifies advanced techniques for the three main optimization pathways of MXene-Ti_(3)C_(2)T_(x),such as doping engineering,interface engineering,and structural engineering.Significantly,this work highlights innovative applications of MXene-Ti_(3)C_(2)T_(x)neuromorphic devices in cutting-edge computing paradigms,particularly near-sensor computing and in-sensor computing.Finally,this review carefully compiles a table that integrates almost all research results involving MXene-Ti_(3)C_(2)T_(x)neuromorphic devices and discusses the challenges,development prospects,and feasibility of MXene-Ti_(3)C_(2)T_(x)-based neuromorphic devices in practical applications,aiming to lay a solid theoretical foundation and provide technical support for further exploration and application of MXene-Ti_(3)C_(2)T_(x)in the field of neuromorphic devices.展开更多
In this paper,a number of ordinary differential equation(ODE)conversion techniques for trans- formation of nonstandard ODE boundary value problems into standard forms are summarised,together with their applications to...In this paper,a number of ordinary differential equation(ODE)conversion techniques for trans- formation of nonstandard ODE boundary value problems into standard forms are summarised,together with their applications to a variety of boundary value problems in computational solid mechanics,such as eigenvalue problem,geometrical and material nonlinear problem,elastic contact problem and optimal design problems through some simple and representative examples,The advantage of such approach is that various ODE bounda- ry value problems in computational mechanics can be solved effectively in a unified manner by invoking a stand- ard ODE solver.展开更多
Aiming at developing an effective tool to unveil key mechanisms in bio-flight as well as to provide guidelines for bio-inspired micro air vehicles(MAVs) design,we propose a comprehensive computational framework,whic...Aiming at developing an effective tool to unveil key mechanisms in bio-flight as well as to provide guidelines for bio-inspired micro air vehicles(MAVs) design,we propose a comprehensive computational framework,which integrates aerodynamics,flight dynamics,vehicle stability and maneuverability.This framework consists of(1) a Navier-Stokes unsteady aerodynamic model;(2) a linear finite element model for structural dynamics;(3) a fluidstructure interaction(FSI) model for coupled flexible wing aerodynamics aeroelasticity;(4) a free-flying rigid body dynamic(RBD) model utilizing the Newtonian-Euler equations of 6DoF motion;and(5) flight simulator accounting for realistic wing-body morphology,flapping-wing and body kinematics,and a coupling model accounting for the nonlinear 6DoF flight dynamics and stability of insect flapping flight.Results are presented based on hovering aerodynamics with rigid and flexible wings of hawkmoth and fruitfly.The present approach can support systematic analyses of bio- and bio-inspired flight.展开更多
Most of granular materials are highly heteroge- neous, composed of voids and particles with different sizes and shapes. Geological matter, soil and clay in nature, geo-structure, concrete, etc. are practical ex- ample...Most of granular materials are highly heteroge- neous, composed of voids and particles with different sizes and shapes. Geological matter, soil and clay in nature, geo-structure, concrete, etc. are practical ex- amples among them. From the microscopic view, a lo- cal region in the medium is occupied by particles with small but finite sizes and granular material is naturally modeled as an assembly of discrete particles in contacts On the other hand, the local region is identified with a material point in the overall structure and this discon- tinuous medium can then be represented by an effective continuum on the macroscopic level展开更多
Three recent breakthroughs due to AI in arts and science serve as motivation:An award winning digital image,protein folding,fast matrix multiplication.Many recent developments in artificial neural networks,particularl...Three recent breakthroughs due to AI in arts and science serve as motivation:An award winning digital image,protein folding,fast matrix multiplication.Many recent developments in artificial neural networks,particularly deep learning(DL),applied and relevant to computational mechanics(solid,fluids,finite-element technology)are reviewed in detail.Both hybrid and pure machine learning(ML)methods are discussed.Hybrid methods combine traditional PDE discretizations with ML methods either(1)to help model complex nonlinear constitutive relations,(2)to nonlinearly reduce the model order for efficient simulation(turbulence),or(3)to accelerate the simulation by predicting certain components in the traditional integration methods.Here,methods(1)and(2)relied on Long-Short-Term Memory(LSTM)architecture,with method(3)relying on convolutional neural networks.Pure ML methods to solve(nonlinear)PDEs are represented by Physics-Informed Neural network(PINN)methods,which could be combined with attention mechanism to address discontinuous solutions.Both LSTM and attention architectures,together with modern and generalized classic optimizers to include stochasticity for DL networks,are extensively reviewed.Kernel machines,including Gaussian processes,are provided to sufficient depth for more advanced works such as shallow networks with infinite width.Not only addressing experts,readers are assumed familiar with computational mechanics,but not with DL,whose concepts and applications are built up from the basics,aiming at bringing first-time learners quickly to the forefront of research.History and limitations of AI are recounted and discussed,with particular attention at pointing out misstatements or misconceptions of the classics,even in well-known references.Positioning and pointing control of a large-deformable beam is given as an example.展开更多
This is a brief review on the recent book: Duality System in Applied Mechanics and Optimal Control, by Zhong Wan-Xie, published by Kluwer Academic Publishers, 2004. The book represents a significant effort to re-estab...This is a brief review on the recent book: Duality System in Applied Mechanics and Optimal Control, by Zhong Wan-Xie, published by Kluwer Academic Publishers, 2004. The book represents a significant effort to re-establish the historic and deep tie between control and mechanics by striving to connect and integrate concepts, methods, and algorithms in mechanics and control so that a unified framework can be established for both analytical and computational purposes. Clearly, it has demonstrated that the duality system method can be used as a mathematical and systematic foundation to deal with many important concepts and problems in both mechanics and control. This book is not only very useful for research and applications, but also extremely helpful for multidisciplinary curriculum development when students from one field are trying to learning and applying concepts and methods from the other field.展开更多
Many fishes use undulatory fin to propel themselves in the underwater environment. These locomotor mechanisms have a popular interest to many researchers. In the present study, we perform a three-dimensional unsteady ...Many fishes use undulatory fin to propel themselves in the underwater environment. These locomotor mechanisms have a popular interest to many researchers. In the present study, we perform a three-dimensional unsteady computation of an undulatory mechanical fin that is driven by Shape Memory Alloy (SMA). The objective of the computation is to investigate the fluid dynamics of force production associated with the undulatory mechanical fin. An unstructured, grid-based, unsteady Navier-Stokes solver with automatic adaptive remeshing is used to compute the unsteady flow around the fin through five complete cycles. The pressure distribution on fin surface is computed and integrated to provide fin forces which are decomposed into lift and thrust. The velocity field is also computed throughout the swimming cycle. Finally, a comparison is conducted to reveal the dynamics of force generation according to the kinematic parameters of the undulatory fin (amplitude, frequency and wavelength).展开更多
Internal friction characteristic is one of the basic properties of geotechnical materials and it exists in mechanical elements all the time. However,until now internal friction is only considered in limit analysis and...Internal friction characteristic is one of the basic properties of geotechnical materials and it exists in mechanical elements all the time. However,until now internal friction is only considered in limit analysis and plastic mechanics but not included in elastic theory for rocks and soils. We consider that internal friction exists in both elastic state and plastic state of geotechnical materials,so the mechanical unit of friction material is constituted. Based on study results of soil tests,the paper also proposes that cohesion takes effect first and internal friction works gradually with the increment of deformation. By assuming that the friction coefficient is proportional to the strain,the internal friction is computed. At last,by imitating the linear elastic mechanics,the nonlinear elastic mechanics model of friction material is established,where the shear modulus G is not a constant. The new model and the traditional elastic model are used simultaneously to analyze an elastic foundation. The results indicate that the displacements computed by the new model are less than those from the traditional method,which agrees with the fact and shows that the mechanical units of friction material are suitable for geotechnical material.展开更多
Developing sensorless techniques for estimating battery expansion is essential for effective mechanical state monitoring,improving the accuracy of digital twin simulation and abnormality detection.Therefore,this paper...Developing sensorless techniques for estimating battery expansion is essential for effective mechanical state monitoring,improving the accuracy of digital twin simulation and abnormality detection.Therefore,this paper presents a data-driven approach to expansion estimation using electromechanical coupled models with machine learning.The proposed method integrates reduced-order impedance models with data-driven mechanical models,coupling the electrochemical and mechanical states through the state of charge(SOC)and mechanical pressure within a state estimation framework.The coupling relationship was established through experimental insights into pressure-related impedance parameters and the nonlinear mechanical behavior with SOC and pressure.The data-driven model was interpreted by introducing a novel swelling coefficient defined by component stiffnesses to capture the nonlinear mechanical behavior across various mechanical constraints.Sensitivity analysis of the impedance model shows that updating model parameters with pressure can reduce the mean absolute error of simulated voltage by 20 mV and SOC estimation error by 2%.The results demonstrate the model's estimation capabilities,achieving a root mean square error of less than 1 kPa when the maximum expansion force is from 30 kPa to 120 kPa,outperforming calibrated stiffness models and other machine learning techniques.The model's robustness and generalizability are further supported by its effective handling of SOC estimation and pressure measurement errors.This work highlights the importance of the proposed framework in enhancing state estimation and fault diagnosis for lithium-ion batteries.展开更多
Computational grids (CGs) aim to offer pervasive access to a diverse collection of geographically distributed resources owned by different serf-interested agents or organizations. These agents may manipulate the res...Computational grids (CGs) aim to offer pervasive access to a diverse collection of geographically distributed resources owned by different serf-interested agents or organizations. These agents may manipulate the resource allocation algorithm in their own benefit, and their selfish behavior may lead to severe performance degradation and poor efficiency. In this paper, game theory is introduced to solve the problem of barging for resource collection in heterogeneous distributed systems. By using the Cournot model that is an important model in static and complete information games, the algorithm is optimized in order to maximize the benefit. It can be seen that the approach is more suitable to the real situation and has practical use. Validity of the solutions is shown.展开更多
This research reviews the application of computational mechanics on the properties of nano/micro scaled thin films,in which the application of different computational methods is included.The concept and fundamental th...This research reviews the application of computational mechanics on the properties of nano/micro scaled thin films,in which the application of different computational methods is included.The concept and fundamental theories of concerned applications,material behavior estimations,interfacial delamination behavior,strain engineering,and multilevel modeling are thoroughly discussed.Moreover,an example of an interfacial adhesion estimation is presented to systematically estimate the related mechanical reliability issue in the microelectronic industry.The presented results show that the peeled mode fracture is the dominant delamination behavior of layered material system,with high stiffness along the bonding interface.However,the shear mode fracture being dominated as the polymer cover plate with low moduli is considered.The occurrence of crack advance is also significantly influenced by the interfacial crack length and applied loading.Therefore,this paper could serve as a guideline of several engineering cases with the assistance of computational mechanics.展开更多
Data-driven computing in elasticity attempts to directly use experimental data on material,without constructing an empirical model of the constitutive relation,to predict an equilibrium state of a structure subjected ...Data-driven computing in elasticity attempts to directly use experimental data on material,without constructing an empirical model of the constitutive relation,to predict an equilibrium state of a structure subjected to a specified external load.Provided that a data set comprising stress-strain pairs of material is available,a data-driven method using the kernel method and the regularized least-squares was developed to extract a manifold on which the points in the data set approximately lie(Kanno 2021,Jpn.J.Ind.Appl.Math.).From the perspective of physical experiments,stress field cannot be directly measured,while displacement and force fields are measurable.In this study,we extend the previous kernel method to the situation that pairs of displacement and force,instead of pairs of stress and strain,are available as an input data set.A new regularized least-squares problem is formulated in this problem setting,and an alternating minimization algorithm is proposed to solve the problem.展开更多
In Wireless Sensor Networks (WSNs), it is necessary to predict computational overheads of security mechanisms without final implementations to provide guidelines for system design. This paper presents an accurate and ...In Wireless Sensor Networks (WSNs), it is necessary to predict computational overheads of security mechanisms without final implementations to provide guidelines for system design. This paper presents an accurate and flexible model to predict overheads of these mechanisms. This model is based on overheads of basic operations frequently used in cryptography algorithms, which are essential elements of security mechanisms. Several popular cryptography algorithms and security mechanisms are evaluated using this model. According to simulation results, relative prediction errors are less than 7% for most cryptography algorithms and security mechanisms.展开更多
基金supported by the Australian Research Council(Grant No.IC190100020)the Australian Research Council Indus〓〓try Fellowship(Grant No.IE230100435)the National Natural Science Foundation of China(Grant Nos.12032014 and T2488101)。
文摘The integration of physics-based modelling and data-driven artificial intelligence(AI)has emerged as a transformative paradigm in computational mechanics.This perspective reviews the development and current status of AI-empowered frameworks,including data-driven methods,physics-informed neural networks,and neural operators.While these approaches have demonstrated significant promise,challenges remain in terms of robustness,generalisation,and computational efficiency.We delineate four promising research directions:(1)Modular neural architectures inspired by traditional computational mechanics,(2)physics informed neural operators for resolution-invariant operator learning,(3)intelligent frameworks for multiphysics and multiscale biomechanics problems,and(4)structural optimisation strategies based on physics constraints and reinforcement learning.These directions represent a shift toward foundational frameworks that combine the strengths of physics and data,opening new avenues for the modelling,simulation,and optimisation of complex physical systems.
基金2024 Key Project of Teaching Reform Research and Practice in Higher Education in Henan Province“Exploration and Practice of Training Model for Outstanding Students in Basic Mechanics Discipline”(2024SJGLX094)Henan Province“Mechanics+X”Basic Discipline Outstanding Student Training Base2024 Research and Practice Project of Higher Education Teaching Reform in Henan University of Science and Technology“Optimization and Practice of Ability-Oriented Teaching Mode for Computational Mechanics Course:A New Exploration in Cultivating Practical Simulation Engineers”(2024BK074)。
文摘This paper takes the assessment and evaluation of computational mechanics course as the background,and constructs a diversified course evaluation system that is student-centered and integrates both quantitative and qualitative evaluation methods.The system not only pays attention to students’practical operation and theoretical knowledge mastery but also puts special emphasis on the cultivation of students’innovative abilities.In order to realize a comprehensive and objective evaluation,the assessment and evaluation method of the entropy weight model combining TOPSIS(Technique for Order Preference by Similarity to Ideal Solution)multi-attribute decision analysis and entropy weight theory is adopted,and its validity and practicability are verified through example analysis.This method can not only comprehensively and objectively evaluate students’learning outcomes,but also provide a scientific decision-making basis for curriculum teaching reform.The implementation of this diversified course evaluation system can better reflect the comprehensive ability of students and promote the continuous improvement of teaching quality.
基金supported by National Key Research and Development Program (2019YFA0708301)National Natural Science Foundation of China (51974337)+2 种基金the Strategic Cooperation Projects of CNPC and CUPB (ZLZX2020-03)Science and Technology Innovation Fund of CNPC (2021DQ02-0403)Open Fund of Petroleum Exploration and Development Research Institute of CNPC (2022-KFKT-09)
文摘We propose an integrated method of data-driven and mechanism models for well logging formation evaluation,explicitly focusing on predicting reservoir parameters,such as porosity and water saturation.Accurately interpreting these parameters is crucial for effectively exploring and developing oil and gas.However,with the increasing complexity of geological conditions in this industry,there is a growing demand for improved accuracy in reservoir parameter prediction,leading to higher costs associated with manual interpretation.The conventional logging interpretation methods rely on empirical relationships between logging data and reservoir parameters,which suffer from low interpretation efficiency,intense subjectivity,and suitability for ideal conditions.The application of artificial intelligence in the interpretation of logging data provides a new solution to the problems existing in traditional methods.It is expected to improve the accuracy and efficiency of the interpretation.If large and high-quality datasets exist,data-driven models can reveal relationships of arbitrary complexity.Nevertheless,constructing sufficiently large logging datasets with reliable labels remains challenging,making it difficult to apply data-driven models effectively in logging data interpretation.Furthermore,data-driven models often act as“black boxes”without explaining their predictions or ensuring compliance with primary physical constraints.This paper proposes a machine learning method with strong physical constraints by integrating mechanism and data-driven models.Prior knowledge of logging data interpretation is embedded into machine learning regarding network structure,loss function,and optimization algorithm.We employ the Physically Informed Auto-Encoder(PIAE)to predict porosity and water saturation,which can be trained without labeled reservoir parameters using self-supervised learning techniques.This approach effectively achieves automated interpretation and facilitates generalization across diverse datasets.
文摘Aptamers are a type of single-chain oligonucleotide that can combine with a specific target.Due to their simple preparation,easy modification,stable structure and reusability,aptamers have been widely applied as biochemical sensors for medicine,food safety and environmental monitoring.However,there is little research on aptamer-target binding mechanisms,which limits their application and development.Computational simulation has gained much attention for revealing aptamer-target binding mechanisms at the atomic level.This work summarizes the main simulation methods used in the mechanistic analysis of aptamer-target complexes,the characteristics of binding between aptamers and different targets(metal ions,small organic molecules,biomacromolecules,cells,bacteria and viruses),the types of aptamer-target interactions and the factors influencing their strength.It provides a reference for further use of simulations in understanding aptamer-target binding mechanisms.
基金supported by the NSFC(12474071)Natural Science Foundation of Shandong Province(ZR2024YQ051)+5 种基金Open Research Fund of State Key Laboratory of Materials for Integrated Circuits(SKLJC-K2024-12)the Shanghai Sailing Program(23YF1402200,23YF1402400)Natural Science Foundation of Jiangsu Province(BK20240424)Taishan Scholar Foundation of Shandong Province(tsqn202408006)Young Talent of Lifting engineering for Science and Technology in Shandong,China(SDAST2024QTB002)the Qilu Young Scholar Program of Shandong University.
文摘The advancement of flexible memristors has significantly promoted the development of wearable electronic for emerging neuromorphic computing applications.Inspired by in-memory computing architecture of human brain,flexible memristors exhibit great application potential in emulating artificial synapses for highefficiency and low power consumption neuromorphic computing.This paper provides comprehensive overview of flexible memristors from perspectives of development history,material system,device structure,mechanical deformation method,device performance analysis,stress simulation during deformation,and neuromorphic computing applications.The recent advances in flexible electronics are summarized,including single device,device array and integration.The challenges and future perspectives of flexible memristor for neuromorphic computing are discussed deeply,paving the way for constructing wearable smart electronics and applications in large-scale neuromorphic computing and high-order intelligent robotics.
基金financially supported by the Ministry of Education(Singapore)(MOE-T2EP50220-0022)SUTD-MIT International Design Center(Singapore)+3 种基金SUTD-ZJU IDEA Grant Program(SUTD-ZJU(VP)201903)SUTD Kickstarter Initiative(SKI 2021_02_03,SKI 2021_02_17,SKI 2021_01_04)Agency of Science,Technology and Research(Singapore)(A20G9b0135)National Supercomputing Centre(Singapore)(15001618)。
文摘Neuromorphic computing has the potential to overcome limitations of traditional silicon technology in machine learning tasks.Recent advancements in large crossbar arrays and silicon-based asynchronous spiking neural networks have led to promising neuromorphic systems.However,developing compact parallel computing technology for integrating artificial neural networks into traditional hardware remains a challenge.Organic computational materials offer affordable,biocompatible neuromorphic devices with exceptional adjustability and energy-efficient switching.Here,the review investigates the advancements made in the development of organic neuromorphic devices.This review explores resistive switching mechanisms such as interface-regulated filament growth,molecular-electronic dynamics,nanowire-confined filament growth,and vacancy-assisted ion migration,while proposing methodologies to enhance state retention and conductance adjustment.The survey examines the challenges faced in implementing low-power neuromorphic computing,e.g.,reducing device size and improving switching time.The review analyses the potential of these materials in adjustable,flexible,and low-power consumption applications,viz.biohybrid spiking circuits interacting with biological systems,systems that respond to specific events,robotics,intelligent agents,neuromorphic computing,neuromorphic bioelectronics,neuroscience,and other applications,and prospects of this technology.
基金the Natural Science Foundation of Zhejiang Province(No.LQ20F020024)。
文摘Various and intricate varieties of lung disease have made it challenging for computer aided diagnosis to appropriately segment lung lesions utilizing computed tomography(CT)images.This study integrates transfer learning with the attention mechanism to construct a deep learning model that can automatically detect new coronary pneumonia on lung CT images.In this study,using VGG16 pre-trained by ImageNet as the encoder,the decoder was established utilizing the U-Net structure.The attention module is incorporated during each concatenate procedure,permitting the model to concentrate on the critical information and identify the crucial components efficiently.The public COVID-19-CT-Seg-Benchmark dataset was utilized for experiments,and the highest scores for Dice,F1,and Accuracy were 0.9071,0.9076,and 0.9965,respectively.The generalization performance was assessed concurrently,with performance metrics including Dice,F1,and Accuracy over 0.8.The experimental findings indicate the feasibility of the segmentation network proposed in this study.
基金supported by the National Science Foundation for Distinguished Young Scholars of China(Grant No.12425209)the National Natural Science Foundation of China(Grant No.U20A20390,11827803,12172034,11822201,62004056,62104058,62271269).
文摘Neuromorphic devices have shown great potential in simulating the function of biological neurons due to their efficient parallel information processing and low energy consumption.MXene-Ti_(3)C_(2)T_(x),an emerging twodimensional material,stands out as an ideal candidate for fabricating neuromorphic devices.Its exceptional electrical performance and robust mechanical properties make it an ideal choice for this purpose.This review aims to uncover the advantages and properties of MXene-Ti_(3)C_(2)T_(x)in neuromorphic devices and to promote its further development.Firstly,we categorize several core physical mechanisms present in MXene-Ti_(3)C_(2)T_(x)neuromorphic devices and summarize in detail the reasons for their formation.Then,this work systematically summarizes and classifies advanced techniques for the three main optimization pathways of MXene-Ti_(3)C_(2)T_(x),such as doping engineering,interface engineering,and structural engineering.Significantly,this work highlights innovative applications of MXene-Ti_(3)C_(2)T_(x)neuromorphic devices in cutting-edge computing paradigms,particularly near-sensor computing and in-sensor computing.Finally,this review carefully compiles a table that integrates almost all research results involving MXene-Ti_(3)C_(2)T_(x)neuromorphic devices and discusses the challenges,development prospects,and feasibility of MXene-Ti_(3)C_(2)T_(x)-based neuromorphic devices in practical applications,aiming to lay a solid theoretical foundation and provide technical support for further exploration and application of MXene-Ti_(3)C_(2)T_(x)in the field of neuromorphic devices.
基金The project is supported by National Natural Science Foundation of China
文摘In this paper,a number of ordinary differential equation(ODE)conversion techniques for trans- formation of nonstandard ODE boundary value problems into standard forms are summarised,together with their applications to a variety of boundary value problems in computational solid mechanics,such as eigenvalue problem,geometrical and material nonlinear problem,elastic contact problem and optimal design problems through some simple and representative examples,The advantage of such approach is that various ODE bounda- ry value problems in computational mechanics can be solved effectively in a unified manner by invoking a stand- ard ODE solver.
基金supported by a PRESTO-JST program,the Grant-in-Aid for Scientific Research JSPS.Japan(18656056 and 18100002).
文摘Aiming at developing an effective tool to unveil key mechanisms in bio-flight as well as to provide guidelines for bio-inspired micro air vehicles(MAVs) design,we propose a comprehensive computational framework,which integrates aerodynamics,flight dynamics,vehicle stability and maneuverability.This framework consists of(1) a Navier-Stokes unsteady aerodynamic model;(2) a linear finite element model for structural dynamics;(3) a fluidstructure interaction(FSI) model for coupled flexible wing aerodynamics aeroelasticity;(4) a free-flying rigid body dynamic(RBD) model utilizing the Newtonian-Euler equations of 6DoF motion;and(5) flight simulator accounting for realistic wing-body morphology,flapping-wing and body kinematics,and a coupling model accounting for the nonlinear 6DoF flight dynamics and stability of insect flapping flight.Results are presented based on hovering aerodynamics with rigid and flexible wings of hawkmoth and fruitfly.The present approach can support systematic analyses of bio- and bio-inspired flight.
文摘Most of granular materials are highly heteroge- neous, composed of voids and particles with different sizes and shapes. Geological matter, soil and clay in nature, geo-structure, concrete, etc. are practical ex- amples among them. From the microscopic view, a lo- cal region in the medium is occupied by particles with small but finite sizes and granular material is naturally modeled as an assembly of discrete particles in contacts On the other hand, the local region is identified with a material point in the overall structure and this discon- tinuous medium can then be represented by an effective continuum on the macroscopic level
文摘Three recent breakthroughs due to AI in arts and science serve as motivation:An award winning digital image,protein folding,fast matrix multiplication.Many recent developments in artificial neural networks,particularly deep learning(DL),applied and relevant to computational mechanics(solid,fluids,finite-element technology)are reviewed in detail.Both hybrid and pure machine learning(ML)methods are discussed.Hybrid methods combine traditional PDE discretizations with ML methods either(1)to help model complex nonlinear constitutive relations,(2)to nonlinearly reduce the model order for efficient simulation(turbulence),or(3)to accelerate the simulation by predicting certain components in the traditional integration methods.Here,methods(1)and(2)relied on Long-Short-Term Memory(LSTM)architecture,with method(3)relying on convolutional neural networks.Pure ML methods to solve(nonlinear)PDEs are represented by Physics-Informed Neural network(PINN)methods,which could be combined with attention mechanism to address discontinuous solutions.Both LSTM and attention architectures,together with modern and generalized classic optimizers to include stochasticity for DL networks,are extensively reviewed.Kernel machines,including Gaussian processes,are provided to sufficient depth for more advanced works such as shallow networks with infinite width.Not only addressing experts,readers are assumed familiar with computational mechanics,but not with DL,whose concepts and applications are built up from the basics,aiming at bringing first-time learners quickly to the forefront of research.History and limitations of AI are recounted and discussed,with particular attention at pointing out misstatements or misconceptions of the classics,even in well-known references.Positioning and pointing control of a large-deformable beam is given as an example.
基金Supported by the Outstanding Young Scientist Research Fund from the National Natural Science Foundation of P. R. China (60125310)
文摘This is a brief review on the recent book: Duality System in Applied Mechanics and Optimal Control, by Zhong Wan-Xie, published by Kluwer Academic Publishers, 2004. The book represents a significant effort to re-establish the historic and deep tie between control and mechanics by striving to connect and integrate concepts, methods, and algorithms in mechanics and control so that a unified framework can be established for both analytical and computational purposes. Clearly, it has demonstrated that the duality system method can be used as a mathematical and systematic foundation to deal with many important concepts and problems in both mechanics and control. This book is not only very useful for research and applications, but also extremely helpful for multidisciplinary curriculum development when students from one field are trying to learning and applying concepts and methods from the other field.
文摘Many fishes use undulatory fin to propel themselves in the underwater environment. These locomotor mechanisms have a popular interest to many researchers. In the present study, we perform a three-dimensional unsteady computation of an undulatory mechanical fin that is driven by Shape Memory Alloy (SMA). The objective of the computation is to investigate the fluid dynamics of force production associated with the undulatory mechanical fin. An unstructured, grid-based, unsteady Navier-Stokes solver with automatic adaptive remeshing is used to compute the unsteady flow around the fin through five complete cycles. The pressure distribution on fin surface is computed and integrated to provide fin forces which are decomposed into lift and thrust. The velocity field is also computed throughout the swimming cycle. Finally, a comparison is conducted to reveal the dynamics of force generation according to the kinematic parameters of the undulatory fin (amplitude, frequency and wavelength).
文摘Internal friction characteristic is one of the basic properties of geotechnical materials and it exists in mechanical elements all the time. However,until now internal friction is only considered in limit analysis and plastic mechanics but not included in elastic theory for rocks and soils. We consider that internal friction exists in both elastic state and plastic state of geotechnical materials,so the mechanical unit of friction material is constituted. Based on study results of soil tests,the paper also proposes that cohesion takes effect first and internal friction works gradually with the increment of deformation. By assuming that the friction coefficient is proportional to the strain,the internal friction is computed. At last,by imitating the linear elastic mechanics,the nonlinear elastic mechanics model of friction material is established,where the shear modulus G is not a constant. The new model and the traditional elastic model are used simultaneously to analyze an elastic foundation. The results indicate that the displacements computed by the new model are less than those from the traditional method,which agrees with the fact and shows that the mechanical units of friction material are suitable for geotechnical material.
基金Fund supported this work for Excellent Youth Scholars of China(Grant No.52222708)the National Natural Science Foundation of China(Grant No.51977007)+1 种基金Part of this work is supported by the research project“SPEED”(03XP0585)at RWTH Aachen Universityfunded by the German Federal Ministry of Education and Research(BMBF)。
文摘Developing sensorless techniques for estimating battery expansion is essential for effective mechanical state monitoring,improving the accuracy of digital twin simulation and abnormality detection.Therefore,this paper presents a data-driven approach to expansion estimation using electromechanical coupled models with machine learning.The proposed method integrates reduced-order impedance models with data-driven mechanical models,coupling the electrochemical and mechanical states through the state of charge(SOC)and mechanical pressure within a state estimation framework.The coupling relationship was established through experimental insights into pressure-related impedance parameters and the nonlinear mechanical behavior with SOC and pressure.The data-driven model was interpreted by introducing a novel swelling coefficient defined by component stiffnesses to capture the nonlinear mechanical behavior across various mechanical constraints.Sensitivity analysis of the impedance model shows that updating model parameters with pressure can reduce the mean absolute error of simulated voltage by 20 mV and SOC estimation error by 2%.The results demonstrate the model's estimation capabilities,achieving a root mean square error of less than 1 kPa when the maximum expansion force is from 30 kPa to 120 kPa,outperforming calibrated stiffness models and other machine learning techniques.The model's robustness and generalizability are further supported by its effective handling of SOC estimation and pressure measurement errors.This work highlights the importance of the proposed framework in enhancing state estimation and fault diagnosis for lithium-ion batteries.
基金Project supported by the Science Foundation of Shanghai Municipal Commission of Science and Technology(Grant No.00JC14052)
文摘Computational grids (CGs) aim to offer pervasive access to a diverse collection of geographically distributed resources owned by different serf-interested agents or organizations. These agents may manipulate the resource allocation algorithm in their own benefit, and their selfish behavior may lead to severe performance degradation and poor efficiency. In this paper, game theory is introduced to solve the problem of barging for resource collection in heterogeneous distributed systems. By using the Cournot model that is an important model in static and complete information games, the algorithm is optimized in order to maximize the benefit. It can be seen that the approach is more suitable to the real situation and has practical use. Validity of the solutions is shown.
文摘This research reviews the application of computational mechanics on the properties of nano/micro scaled thin films,in which the application of different computational methods is included.The concept and fundamental theories of concerned applications,material behavior estimations,interfacial delamination behavior,strain engineering,and multilevel modeling are thoroughly discussed.Moreover,an example of an interfacial adhesion estimation is presented to systematically estimate the related mechanical reliability issue in the microelectronic industry.The presented results show that the peeled mode fracture is the dominant delamination behavior of layered material system,with high stiffness along the bonding interface.However,the shear mode fracture being dominated as the polymer cover plate with low moduli is considered.The occurrence of crack advance is also significantly influenced by the interfacial crack length and applied loading.Therefore,this paper could serve as a guideline of several engineering cases with the assistance of computational mechanics.
基金supported by Research Grant from the Kajima Foundation,JST CREST Grant No.JPMJCR1911,JapanJSPS KAKENHI(Nos.17K06633,21K04351).
文摘Data-driven computing in elasticity attempts to directly use experimental data on material,without constructing an empirical model of the constitutive relation,to predict an equilibrium state of a structure subjected to a specified external load.Provided that a data set comprising stress-strain pairs of material is available,a data-driven method using the kernel method and the regularized least-squares was developed to extract a manifold on which the points in the data set approximately lie(Kanno 2021,Jpn.J.Ind.Appl.Math.).From the perspective of physical experiments,stress field cannot be directly measured,while displacement and force fields are measurable.In this study,we extend the previous kernel method to the situation that pairs of displacement and force,instead of pairs of stress and strain,are available as an input data set.A new regularized least-squares problem is formulated in this problem setting,and an alternating minimization algorithm is proposed to solve the problem.
基金Supported by 863 Project of China (No.2006AA01Z224)
文摘In Wireless Sensor Networks (WSNs), it is necessary to predict computational overheads of security mechanisms without final implementations to provide guidelines for system design. This paper presents an accurate and flexible model to predict overheads of these mechanisms. This model is based on overheads of basic operations frequently used in cryptography algorithms, which are essential elements of security mechanisms. Several popular cryptography algorithms and security mechanisms are evaluated using this model. According to simulation results, relative prediction errors are less than 7% for most cryptography algorithms and security mechanisms.