期刊文献+
共找到7,497篇文章
< 1 2 250 >
每页显示 20 50 100
Processing map for oxide dispersion strengthening Cu alloys based on experimental results and machine learning modelling
1
作者 Le Zong Lingxin Li +8 位作者 Lantian Zhang Xuecheng Jin Yong Zhang Wenfeng Yang Pengfei Liu Bin Gan Liujie Xu Yuanshen Qi Wenwen Sun 《International Journal of Minerals,Metallurgy and Materials》 2026年第1期292-305,共14页
Oxide dispersion strengthened(ODS)alloys are extensively used owing to high thermostability and creep strength contributed from uniformly dispersed fine oxides particles.However,the existence of these strengthening pa... Oxide dispersion strengthened(ODS)alloys are extensively used owing to high thermostability and creep strength contributed from uniformly dispersed fine oxides particles.However,the existence of these strengthening particles also deteriorates the processability and it is of great importance to establish accurate processing maps to guide the thermomechanical processes to enhance the formability.In this study,we performed particle swarm optimization-based back propagation artificial neural network model to predict the high temperature flow behavior of 0.25wt%Al2O3 particle-reinforced Cu alloys,and compared the accuracy with that of derived by Arrhenius-type constitutive model and back propagation artificial neural network model.To train these models,we obtained the raw data by fabricating ODS Cu alloys using the internal oxidation and reduction method,and conducting systematic hot compression tests between 400 and800℃with strain rates of 10^(-2)-10 S^(-1).At last,processing maps for ODS Cu alloys were proposed by combining processing parameters,mechanical behavior,microstructure characterization,and the modeling results achieved a coefficient of determination higher than>99%. 展开更多
关键词 oxide dispersion strengthened Cu alloys constitutive model machine learning hot deformation processing maps
在线阅读 下载PDF
A systematic data-driven modelling framework for nonlinear distillation processes incorporating data intervals clustering and new integrated learning algorithm
2
作者 Zhe Wang Renchu He Jian Long 《Chinese Journal of Chemical Engineering》 2025年第5期182-199,共18页
The distillation process is an important chemical process,and the application of data-driven modelling approach has the potential to reduce model complexity compared to mechanistic modelling,thus improving the efficie... The distillation process is an important chemical process,and the application of data-driven modelling approach has the potential to reduce model complexity compared to mechanistic modelling,thus improving the efficiency of process optimization or monitoring studies.However,the distillation process is highly nonlinear and has multiple uncertainty perturbation intervals,which brings challenges to accurate data-driven modelling of distillation processes.This paper proposes a systematic data-driven modelling framework to solve these problems.Firstly,data segment variance was introduced into the K-means algorithm to form K-means data interval(KMDI)clustering in order to cluster the data into perturbed and steady state intervals for steady-state data extraction.Secondly,maximal information coefficient(MIC)was employed to calculate the nonlinear correlation between variables for removing redundant features.Finally,extreme gradient boosting(XGBoost)was integrated as the basic learner into adaptive boosting(AdaBoost)with the error threshold(ET)set to improve weights update strategy to construct the new integrated learning algorithm,XGBoost-AdaBoost-ET.The superiority of the proposed framework is verified by applying this data-driven modelling framework to a real industrial process of propylene distillation. 展开更多
关键词 Integrated learning algorithm Data intervals clustering Feature selection Application of artificial intelligence in distillation industry data-driven modelling
在线阅读 下载PDF
NJmat 2.0:User Instructions of Data-Driven Machine Learning Interface for Materials Science
3
作者 Lei Zhang Hangyuan Deng 《Computers, Materials & Continua》 2025年第4期1-11,共11页
NJmat is a user-friendly,data-driven machine learning interface designed for materials design and analysis.The platform integrates advanced computational techniques,including natural language processing(NLP),large lan... NJmat is a user-friendly,data-driven machine learning interface designed for materials design and analysis.The platform integrates advanced computational techniques,including natural language processing(NLP),large language models(LLM),machine learning potentials(MLP),and graph neural networks(GNN),to facili-tate materials discovery.The platform has been applied in diverse materials research areas,including perovskite surface design,catalyst discovery,battery materials screening,structural alloy design,and molecular informatics.By automating feature selection,predictive modeling,and result interpretation,NJmat accelerates the development of high-performance materials across energy storage,conversion,and structural applications.Additionally,NJmat serves as an educational tool,allowing students and researchers to apply machine learning techniques in materials science with minimal coding expertise.Through automated feature extraction,genetic algorithms,and interpretable machine learning models,NJmat simplifies the workflow for materials informatics,bridging the gap between AI and experimental materials research.The latest version(available at https://figshare.com/articles/software/NJmatML/24607893(accessed on 01 January 2025))enhances its functionality by incorporating NJmatNLP,a module leveraging language models like MatBERT and those based on Word2Vec to support materials prediction tasks.By utilizing clustering and cosine similarity analysis with UMAP visualization,NJmat enables intuitive exploration of materials datasets.While NJmat primarily focuses on structure-property relationships and the discovery of novel chemistries,it can also assist in optimizing processing conditions when relevant parameters are included in the training data.By providing an accessible,integrated environment for machine learning-driven materials discovery,NJmat aligns with the objectives of the Materials Genome Initiative and promotes broader adoption of AI techniques in materials science. 展开更多
关键词 data-driven machine learning natural language processing machine learning potential large language model
在线阅读 下载PDF
Deep learning aided underwater acoustic OFDM receivers: Model-driven or data-driven?
4
作者 Hao Zhao Miaowen Wen +3 位作者 Fei Ji Yaokun Liang Hua Yu Cui Yang 《Digital Communications and Networks》 2025年第3期866-877,共12页
The Underwater Acoustic(UWA)channel is bandwidth-constrained and experiences doubly selective fading.It is challenging to acquire perfect channel knowledge for Orthogonal Frequency Division Multiplexing(OFDM)communica... The Underwater Acoustic(UWA)channel is bandwidth-constrained and experiences doubly selective fading.It is challenging to acquire perfect channel knowledge for Orthogonal Frequency Division Multiplexing(OFDM)communications using a finite number of pilots.On the other hand,Deep Learning(DL)approaches have been very successful in wireless OFDM communications.However,whether they will work underwater is still a mystery.For the first time,this paper compares two categories of DL-based UWA OFDM receivers:the DataDriven(DD)method,which performs as an end-to-end black box,and the Model-Driven(MD)method,also known as the model-based data-driven method,which combines DL and expert OFDM receiver knowledge.The encoder-decoder framework and Convolutional Neural Network(CNN)structure are employed to establish the DD receiver.On the other hand,an unfolding-based Minimum Mean Square Error(MMSE)structure is adopted for the MD receiver.We analyze the characteristics of different receivers by Monte Carlo simulations under diverse communications conditions and propose a strategy for selecting a proper receiver under different communication scenarios.Field trials in the pool and sea are also conducted to verify the feasibility and advantages of the DL receivers.It is observed that DL receivers perform better than conventional receivers in terms of bit error rate. 展开更多
关键词 Deep learning Doubly-selective channels data-driven Model-driven Underwater acoustic communication OFDM
在线阅读 下载PDF
Data-Driven Human-in-the-Loop Iterative Learning Fault Estimation Method
5
作者 Fei Wang Jie Sun +1 位作者 Junwei Zhu Ruofeng Wei 《Chinese Journal of Mechanical Engineering》 2025年第6期180-188,共9页
For control systems with unknown model parameters,this paper proposes a data-driven iterative learning method for fault estimation.First,input and output data from the system under fault-free conditions are collected.... For control systems with unknown model parameters,this paper proposes a data-driven iterative learning method for fault estimation.First,input and output data from the system under fault-free conditions are collected.By applying orthogonal triangular decomposition and singular value decomposition,a data-driven realization of the system's kernel representation is derived,based on this representation,a residual generator is constructed.Then,the actuator fault signal is estimated online by analyzing the system's dynamic residual,and an iterative learning algorithm is introduced to continuously optimize the residual-based performance function,thereby enhancing estimation accuracy.The proposed method achieves actuator fault estimation without requiring knowledge of model parameters,eliminating the time-consuming system modeling process,and allowing operators to focus on system optimization and decision-making.Compared with existing fault estimation methods,the proposed method demonstrates superior transient performance,steady-state performance,and real-time capability,reduces the need for manual intervention and lowers operational complexity.Finally,experimental results on a mobile robot verify the effectiveness and advantages of the method. 展开更多
关键词 data-driven Residual generator Fault estimation Iterative learning Mobile robot
在线阅读 下载PDF
Deep learning retrieval of 3D casting models combined with professional knowledge for process reuse
6
作者 Xiao-long Pei Hua Hou +2 位作者 Li-wen Chen Zhi-qiang Duan Yu-hong Zhao 《China Foundry》 2025年第6期710-722,共13页
Accurate retrieval of casting 3D models is crucial for process reuse.Current methods primarily focus on shape similarity,neglecting process design features,which compromises reusability.In this study,a novel deep lear... Accurate retrieval of casting 3D models is crucial for process reuse.Current methods primarily focus on shape similarity,neglecting process design features,which compromises reusability.In this study,a novel deep learning retrieval method for process reuse was proposed,which integrates process design features into the retrieval of casting 3D models.This method leverages the comparative language-image pretraining(CLIP)model to extract shape features from the three views and sectional views of the casting model and combines them with process design features such as modulus,main wall thickness,symmetry,and length-to-height ratio to enhance process reusability.A database of 230 production casting models was established for model validation.Results indicate that incorporating process design features improves model accuracy by 6.09%,reaching 97.82%,and increases process similarity by 30.25%.The reusability of the process was further verified using the casting simulation software EasyCast.The results show that the process retrieved after integrating process design features produces the least shrinkage in the target model,demonstrating this method’s superior ability for process reuse.This approach does not require a large dataset for training and optimization,making it highly applicable to casting process design and related manufacturing processes. 展开更多
关键词 CASTING 3D model retrieval process reuse deep learning
在线阅读 下载PDF
Reaction process optimization based on interpretable machine learning and metaheuristic optimization algorithms
7
作者 Dian Zhang Bo Ouyang Zheng-Hong Luo 《Chinese Journal of Chemical Engineering》 2025年第8期77-85,共9页
The optimization of reaction processes is crucial for the green, efficient, and sustainable development of the chemical industry. However, how to address the problems posed by multiple variables, nonlinearities, and u... The optimization of reaction processes is crucial for the green, efficient, and sustainable development of the chemical industry. However, how to address the problems posed by multiple variables, nonlinearities, and uncertainties during optimization remains a formidable challenge. In this study, a strategy combining interpretable machine learning with metaheuristic optimization algorithms is employed to optimize the reaction process. First, experimental data from a biodiesel production process are collected to establish a database. These data are then used to construct a predictive model based on artificial neural network (ANN) models. Subsequently, interpretable machine learning techniques are applied for quantitative analysis and verification of the model. Finally, four metaheuristic optimization algorithms are coupled with the ANN model to achieve the desired optimization. The research results show that the methanol: palm fatty acid distillate (PFAD) molar ratio contributes the most to the reaction outcome, accounting for 41%. The ANN-simulated annealing (SA) hybrid method is more suitable for this optimization, and the optimal process parameters are a catalyst concentration of 3.00% (mass), a methanol: PFAD molar ratio of 8.67, and a reaction time of 30 min. This study provides deeper insights into reaction process optimization, which will facilitate future applications in various reaction optimization processes. 展开更多
关键词 Reaction process optimization Interpretable machine learning Metaheuristic optimization algorithm BIODIESEL
在线阅读 下载PDF
Signal processing and machine learning techniques in DC microgrids:a review
8
作者 Kanche Anjaiah Jonnalagadda Divya +1 位作者 Eluri N.V.D.V.Prasad Renu Sharma 《Global Energy Interconnection》 2025年第4期598-624,共27页
Low-voltage direct current(DC)microgrids have recently emerged as a promising and viable alternative to traditional alternating cur-rent(AC)microgrids,offering numerous advantages.Consequently,researchers are explorin... Low-voltage direct current(DC)microgrids have recently emerged as a promising and viable alternative to traditional alternating cur-rent(AC)microgrids,offering numerous advantages.Consequently,researchers are exploring the potential of DC microgrids across var-ious configurations.However,despite the sustainability and accuracy offered by DC microgrids,they pose various challenges when integrated into modern power distribution systems.Among these challenges,fault diagnosis holds significant importance.Rapid fault detection in DC microgrids is essential to maintain stability and ensure an uninterrupted power supply to critical loads.A primary chal-lenge is the lack of standards and guidelines for the protection and safety of DC microgrids,including fault detection,location,and clear-ing procedures for both grid-connected and islanded modes.In response,this study presents a brief overview of various approaches for protecting DC microgrids. 展开更多
关键词 DC microgrids Mathematical approach Signal processing technique Machine learning technique Hybrid model DETECTION
在线阅读 下载PDF
Machine learning application in thermal CO_(2)hydrogenation:catalyst design,process optimization,and mechanism insights
9
作者 Rasoul Salami Tianlong Liu +1 位作者 Xue Han Ying Zheng 《Advanced Powder Materials》 2025年第6期1-40,共40页
The growing demand for carbon neutrality has heightened the focus on CO_(2)hydrogenation as a viable strategy for transforming carbon dioxide into valuable chemicals and fuels.Advanced machine learning(ML)approaches i... The growing demand for carbon neutrality has heightened the focus on CO_(2)hydrogenation as a viable strategy for transforming carbon dioxide into valuable chemicals and fuels.Advanced machine learning(ML)approaches integrate materials science with artificial intelligence,enabling scientists to identify hidden patterns in datasets,make informed decisions,and reduce the need for labor-intensive,repetitive experimentation.This review provides a comprehensive overview of ML applications in the thermocatalytic hydrogenation of CO_(2).Following an introduction to ML tools and workflows,various ML algorithms employed in CO_(2)hydrogenation are systematically categorized and reviewed.Next,the application of ML in catalyst discovery is discussed,highlighting its role in identifying optimal compositions and structures.Then,ML-driven strategies for process optimization,particularly in enhancing CO_(2)conversion and product selectivity,are examined.Studies modeling descriptors,spanning catalyst properties and reaction conditions,to predict catalytic performance are analyzed.Consequently,ML-based mechanistic studies are reviewed to elucidate reaction pathways,identify key intermediates,and optimize catalyst performance.Finally,key challenges and future perspectives in leveraging ML for advancing CO_(2)hydrogenation research are presented. 展开更多
关键词 CO_(2)hydrogenation Machine learning Catalyst discovery process optimization Reaction mechanisms Algorithms DESCRIPTORS
在线阅读 下载PDF
Deep Learning in Biomedical Image and Signal Processing:A Survey
10
作者 Batyrkhan Omarov 《Computers, Materials & Continua》 2025年第11期2195-2253,共59页
Deep learning now underpins many state-of-the-art systems for biomedical image and signal processing,enabling automated lesion detection,physiological monitoring,and therapy planning with accuracy that rivals expert p... Deep learning now underpins many state-of-the-art systems for biomedical image and signal processing,enabling automated lesion detection,physiological monitoring,and therapy planning with accuracy that rivals expert performance.This survey reviews the principal model families as convolutional,recurrent,generative,reinforcement,autoencoder,and transfer-learning approaches as emphasising how their architectural choices map to tasks such as segmentation,classification,reconstruction,and anomaly detection.A dedicated treatment of multimodal fusion networks shows how imaging features can be integrated with genomic profiles and clinical records to yield more robust,context-aware predictions.To support clinical adoption,we outline post-hoc explainability techniques(Grad-CAM,SHAP,LIME)and describe emerging intrinsically interpretable designs that expose decision logic to end users.Regulatory guidance from the U.S.FDA,the European Medicines Agency,and the EU AI Act is summarised,linking transparency and lifecycle-monitoring requirements to concrete development practices.Remaining challenges as data imbalance,computational cost,privacy constraints,and cross-domain generalization are discussed alongside promising solutions such as federated learning,uncertainty quantification,and lightweight 3-D architectures.The article therefore offers researchers,clinicians,and policymakers a concise,practice-oriented roadmap for deploying trustworthy deep-learning systems in healthcare. 展开更多
关键词 Deep learning biomedical imaging signal processing neural networks image segmentation disease classification drug discovery patient monitoring robotic surgery artificial intelligence in healthcare
在线阅读 下载PDF
Optimization of Extrusion-based Silicone Additive Manufacturing Process Parameters Based on Improved Kernel Extreme Learning Machine
11
作者 Zi-Ning Li Xiao-Qing Tian +3 位作者 Dingyifei Ma Shahid Hussain Lian Xia Jiang Han 《Chinese Journal of Polymer Science》 2025年第5期848-862,共15页
Silicone material extrusion(MEX)is widely used for processing liquids and pastes.Owing to the uneven linewidth and elastic extrusion deformation caused by material accumulation,products may exhibit geometric errors an... Silicone material extrusion(MEX)is widely used for processing liquids and pastes.Owing to the uneven linewidth and elastic extrusion deformation caused by material accumulation,products may exhibit geometric errors and performance defects,leading to a decline in product quality and affecting its service life.This study proposes a process parameter optimization method that considers the mechanical properties of printed specimens and production costs.To improve the quality of silicone printing samples and reduce production costs,three machine learning models,kernel extreme learning machine(KELM),support vector regression(SVR),and random forest(RF),were developed to predict these three factors.Training data were obtained through a complete factorial experiment.A new dataset is obtained using the Euclidean distance method,which assigns the elimination factor.It is trained with Bayesian optimization algorithms for parameter optimization,the new dataset is input into the improved double Gaussian extreme learning machine,and finally obtains the improved KELM model.The results showed improved prediction accuracy over SVR and RF.Furthermore,a multi-objective optimization framework was proposed by combining genetic algorithm technology with the improved KELM model.The effectiveness and reasonableness of the model algorithm were verified by comparing the optimized results with the experimental results. 展开更多
关键词 Silicone material extrusion process parameter optimization Double Gaussian kernel extreme learning machine Euclidean distance assigned to the elimination factor Multi-objective optimization framework
原文传递
基于MDP和Q-learning的绿色移动边缘计算任务卸载策略
12
作者 赵宏伟 吕盛凱 +2 位作者 庞芷茜 马子涵 李雨 《河南理工大学学报(自然科学版)》 北大核心 2025年第5期9-16,共8页
目的为了在汽车、空调等制造类工业互联网企业中实现碳中和,利用边缘计算任务卸载技术处理生产设备的任务卸载问题,以减少服务器的中心负载,减少数据中心的能源消耗和碳排放。方法提出一种基于马尔可夫决策过程(Markov decision process... 目的为了在汽车、空调等制造类工业互联网企业中实现碳中和,利用边缘计算任务卸载技术处理生产设备的任务卸载问题,以减少服务器的中心负载,减少数据中心的能源消耗和碳排放。方法提出一种基于马尔可夫决策过程(Markov decision process,MDP)和Q-learning的绿色边缘计算任务卸载策略,该策略考虑了计算频率、传输功率、碳排放等约束,基于云边端协同计算模型,将碳排放优化问题转化为混合整数线性规划模型,通过MDP和Q-learning求解模型,并对比随机分配算法、Q-learning算法、SARSA(state action reward state action)算法的收敛性能、碳排放与总时延。结果与已有的计算卸载策略相比,新策略对应的任务调度算法收敛比SARSA算法、Q-learning算法分别提高了5%,2%,收敛性更好;系统碳排放成本比Q-learning算法、SARSA算法分别减少了8%,22%;考虑终端数量多少,新策略比Q-learning算法、SARSA算法终端数量分别减少了6%,7%;系统总计算时延上,新策略明显低于其他算法,比随机分配算法、Q-learning算法、SARSA算法分别减少了27%,14%,22%。结论该策略能够合理优化卸载计算任务和资源分配,权衡时延、能耗,减少系统碳排放量。 展开更多
关键词 碳排放 边缘计算 强化学习 马尔可夫决策过程 任务卸载
在线阅读 下载PDF
Machine Learning for 5G and Beyond:From ModelBased to Data-Driven Mobile Wireless Networks 被引量:12
13
作者 Tianyu Wang Shaowei Wang Zhi-Hua Zhou 《China Communications》 SCIE CSCD 2019年第1期165-175,共11页
During the past few decades,mobile wireless communications have experienced four generations of technological revolution,namely from 1 G to 4 G,and the deployment of the latest 5 G networks is expected to take place i... During the past few decades,mobile wireless communications have experienced four generations of technological revolution,namely from 1 G to 4 G,and the deployment of the latest 5 G networks is expected to take place in 2019.One fundamental question is how we can push forward the development of mobile wireless communications while it has become an extremely complex and sophisticated system.We believe that the answer lies in the huge volumes of data produced by the network itself,and machine learning may become a key to exploit such information.In this paper,we elaborate why the conventional model-based paradigm,which has been widely proved useful in pre-5 G networks,can be less efficient or even less practical in the future 5 G and beyond mobile networks.Then,we explain how the data-driven paradigm,using state-of-the-art machine learning techniques,can become a promising solution.At last,we provide a typical use case of the data-driven paradigm,i.e.,proactive load balancing,in which online learning is utilized to adjust cell configurations in advance to avoid burst congestion caused by rapid traffic changes. 展开更多
关键词 mobile WIRELESS networks data-driven PARADIGM MACHINE learning
在线阅读 下载PDF
Multi-model ensemble learning for battery state-of-health estimation:Recent advances and perspectives 被引量:2
14
作者 Chuanping Lin Jun Xu +4 位作者 Delong Jiang Jiayang Hou Ying Liang Zhongyue Zou Xuesong Mei 《Journal of Energy Chemistry》 2025年第1期739-759,共21页
The burgeoning market for lithium-ion batteries has stimulated a growing need for more reliable battery performance monitoring. Accurate state-of-health(SOH) estimation is critical for ensuring battery operational per... The burgeoning market for lithium-ion batteries has stimulated a growing need for more reliable battery performance monitoring. Accurate state-of-health(SOH) estimation is critical for ensuring battery operational performance. Despite numerous data-driven methods reported in existing research for battery SOH estimation, these methods often exhibit inconsistent performance across different application scenarios. To address this issue and overcome the performance limitations of individual data-driven models,integrating multiple models for SOH estimation has received considerable attention. Ensemble learning(EL) typically leverages the strengths of multiple base models to achieve more robust and accurate outputs. However, the lack of a clear review of current research hinders the further development of ensemble methods in SOH estimation. Therefore, this paper comprehensively reviews multi-model ensemble learning methods for battery SOH estimation. First, existing ensemble methods are systematically categorized into 6 classes based on their combination strategies. Different realizations and underlying connections are meticulously analyzed for each category of EL methods, highlighting distinctions, innovations, and typical applications. Subsequently, these ensemble methods are comprehensively compared in terms of base models, combination strategies, and publication trends. Evaluations across 6 dimensions underscore the outstanding performance of stacking-based ensemble methods. Following this, these ensemble methods are further inspected from the perspectives of weighted ensemble and diversity, aiming to inspire potential approaches for enhancing ensemble performance. Moreover, addressing challenges such as base model selection, measuring model robustness and uncertainty, and interpretability of ensemble models in practical applications is emphasized. Finally, future research prospects are outlined, specifically noting that deep learning ensemble is poised to advance ensemble methods for battery SOH estimation. The convergence of advanced machine learning with ensemble learning is anticipated to yield valuable avenues for research. Accelerated research in ensemble learning holds promising prospects for achieving more accurate and reliable battery SOH estimation under real-world conditions. 展开更多
关键词 Lithium-ion battery State-of-health estimation data-driven Machine learning Ensemble learning Ensemble diversity
在线阅读 下载PDF
Data-Driven Deep Learning for OTFS Detection 被引量:7
15
作者 Yi Gong Qingyu Li +2 位作者 Fanke Meng Xinru Li Zhan Xu 《China Communications》 SCIE CSCD 2023年第1期88-101,共14页
Recently,orthogonal time frequency space(OTFS)was presented to alleviate severe Doppler effects in high mobility scenarios.Most of the current OTFS detection schemes rely on perfect channel state information(CSI).Howe... Recently,orthogonal time frequency space(OTFS)was presented to alleviate severe Doppler effects in high mobility scenarios.Most of the current OTFS detection schemes rely on perfect channel state information(CSI).However,in real-life systems,the parameters of channels will constantly change,which are often difficult to capture and describe.In this paper,we summarize the existing research on OTFS detection based on data-driven deep learning(DL)and propose three new network structures.The presented three networks include a residual network(ResNet),a dense network(DenseNet),and a residual dense network(RDN)for OTFS detection.The detection schemes based on data-driven paradigms do not require a model that is easy to handle mathematically.Meanwhile,compared with the existing fully connected-deep neural network(FC-DNN)and standard convolutional neural network(CNN),these three new networks can alleviate the problems of gradient explosion and gradient disappearance.Through simulation,it is proved that RDN has the best performance among the three proposed schemes due to the combination of shallow and deep features.RDN can solve the issue of performance loss caused by the traditional network not fully utilizing all the hierarchical information. 展开更多
关键词 data-driven deep learning OTFS DETECTION
在线阅读 下载PDF
Machine Learning and Data-Driven Techniques for the Control of Smart Power Generation Systems:An Uncertainty Handling Perspective 被引量:13
16
作者 Li Sun Fengqi You 《Engineering》 SCIE EI 2021年第9期1239-1247,共9页
Due to growing concerns regarding climate change and environmental protection,smart power generation has become essential for the economical and safe operation of both conventional thermal power plants and sustainable... Due to growing concerns regarding climate change and environmental protection,smart power generation has become essential for the economical and safe operation of both conventional thermal power plants and sustainable energy.Traditional first-principle model-based methods are becoming insufficient when faced with the ever-growing system scale and its various uncertainties.The burgeoning era of machine learning(ML)and data-driven control(DDC)techniques promises an improved alternative to these outdated methods.This paper reviews typical applications of ML and DDC at the level of monitoring,control,optimization,and fault detection of power generation systems,with a particular focus on uncovering how these methods can function in evaluating,counteracting,or withstanding the effects of the associated uncertainties.A holistic view is provided on the control techniques of smart power generation,from the regulation level to the planning level.The benefits of ML and DDC techniques are accordingly interpreted in terms of visibility,maneuverability,flexibility,profitability,and safety(abbreviated as the“5-TYs”),respectively.Finally,an outlook on future research and applications is presented. 展开更多
关键词 Smart power generation Machine learning data-driven control Systems engineering
在线阅读 下载PDF
Data Analytics and Machine Learning for Smart Process Manufacturing: Recent Advances and Perspectives in the Big Data Era 被引量:22
17
作者 Chao Shang Fengqi You 《Engineering》 SCIE EI 2019年第6期1010-1016,共7页
Safe, ef cient, and sustainable operations and control are primary objectives in industrial manufacturing processes. State-of-the-art technologies heavily rely on human intervention, thereby showing apparent limitatio... Safe, ef cient, and sustainable operations and control are primary objectives in industrial manufacturing processes. State-of-the-art technologies heavily rely on human intervention, thereby showing apparent limitations in practice. The burgeoning era of big data is in uencing the process industries tremendously, providing unprecedented opportunities to achieve smart manufacturing. This kind of manufacturing requires machines to not only be capable of relieving humans from intensive physical work, but also be effective in taking on intellectual labor and even producing innovations on their own. To attain this goal, data analytics and machine learning are indispensable. In this paper, we review recent advances in data analytics and machine learning applied to the monitoring, control, and optimization of industrial processes, paying particular attention to the interpretability and functionality of machine learning mod- els. By analyzing the gap between practical requirements and the current research status, promising future research directions are identi ed. 展开更多
关键词 Big data Machine learning Smart manufacturing process systems engineering
在线阅读 下载PDF
State of the art in applications of machine learning in steelmaking process modeling 被引量:11
18
作者 Runhao Zhang Jian Yang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第11期2055-2075,共21页
With the development of automation and informatization in the steelmaking industry,the human brain gradually fails to cope with an increasing amount of data generated during the steelmaking process.Machine learning te... With the development of automation and informatization in the steelmaking industry,the human brain gradually fails to cope with an increasing amount of data generated during the steelmaking process.Machine learning technology provides a new method other than production experience and metallurgical principles in dealing with large amounts of data.The application of machine learning in the steelmaking process has become a research hotspot in recent years.This paper provides an overview of the applications of machine learning in the steelmaking process modeling involving hot metal pretreatment,primary steelmaking,secondary refining,and some other aspects.The three most frequently used machine learning algorithms in steelmaking process modeling are the artificial neural network,support vector machine,and case-based reasoning,demonstrating proportions of 56%,14%,and 10%,respectively.Collected data in the steelmaking plants are frequently faulty.Thus,data processing,especially data cleaning,is crucially important to the performance of machine learning models.The detection of variable importance can be used to optimize the process parameters and guide production.Machine learning is used in hot metal pretreatment modeling mainly for endpoint S content prediction.The predictions of the endpoints of element compositions and the process parameters are widely investigated in primary steelmaking.Machine learning is used in secondary refining modeling mainly for ladle furnaces,Ruhrstahl–Heraeus,vacuum degassing,argon oxygen decarburization,and vacuum oxygen decarburization processes.Further development of machine learning in the steelmaking process modeling can be realized through additional efforts in the construction of the data platform,the industrial transformation of the research achievements to the practical steelmaking process,and the improvement of the universality of the machine learning models. 展开更多
关键词 machine learning steelmaking process modeling artificial neural network support vector machine case-based reasoning data processing
在线阅读 下载PDF
A Comparison of the lexical processing in Children's Word Acquisition and in Adults' Word Learning
19
作者 翟卉欣 《中国校外教育(上旬)》 2008年第S1期1039-1040,共2页
Children can acquire knowledge of their mother tongue easily in a relatively short time,whereas adults are too inferior to bear the comparison in learning a second language.This paper sets out to study the background ... Children can acquire knowledge of their mother tongue easily in a relatively short time,whereas adults are too inferior to bear the comparison in learning a second language.This paper sets out to study the background and process of children's and adults' language learning,make comparison and contrast,and find out an effective way to promote adults' second language learning. 展开更多
关键词 children’s LANGUAGE ACQUISITION adults’ FOREIGN la
在线阅读 下载PDF
Applications of advanced signal processing and machine learning in the neonatal hypoxic-ischemic electroencephalography 被引量:6
20
作者 Hamid Abbasi Charles P.Unsworth 《Neural Regeneration Research》 SCIE CAS CSCD 2020年第2期222-231,共10页
Perinatal hypoxic-ischemic-encephalopathy significantly contributes to neonatal death and life-long disability such as cerebral palsy. Advances in signal processing and machine learning have provided the research comm... Perinatal hypoxic-ischemic-encephalopathy significantly contributes to neonatal death and life-long disability such as cerebral palsy. Advances in signal processing and machine learning have provided the research community with an opportunity to develop automated real-time identification techniques to detect the signs of hypoxic-ischemic-encephalopathy in larger electroencephalography/amplitude-integrated electroencephalography data sets more easily. This review details the recent achievements, performed by a number of prominent research groups across the world, in the automatic identification and classification of hypoxic-ischemic epileptiform neonatal seizures using advanced signal processing and machine learning techniques. This review also addresses the clinical challenges that current automated techniques face in order to be fully utilized by clinicians, and highlights the importance of upgrading the current clinical bedside sampling frequencies to higher sampling rates in order to provide better hypoxic-ischemic biomarker detection frameworks. Additionally, the article highlights that current clinical automated epileptiform detection strategies for human neonates have been only concerned with seizure detection after the therapeutic latent phase of injury. Whereas recent animal studies have demonstrated that the latent phase of opportunity is critically important for early diagnosis of hypoxic-ischemic-encephalopathy electroencephalography biomarkers and although difficult, detection strategies could utilize biomarkers in the latent phase to also predict the onset of future seizures. 展开更多
关键词 advanced signal processing AEEG automatic detection classification clinical EEG fetal HIE hypoxic-ischemic ENCEPHALOPATHY machine learning neonatal SEIZURE real-time identification review
暂未订购
上一页 1 2 250 下一页 到第
使用帮助 返回顶部