期刊文献+
共找到8,857篇文章
< 1 2 250 >
每页显示 20 50 100
Data-Driven Model Identification and Control of the Inertial Systems
1
作者 Irina Cojuhari 《Intelligent Control and Automation》 2023年第1期1-18,共18页
In the synthesis of the control algorithm for complex systems, we are often faced with imprecise or unknown mathematical models of the dynamical systems, or even with problems in finding a mathematical model of the sy... In the synthesis of the control algorithm for complex systems, we are often faced with imprecise or unknown mathematical models of the dynamical systems, or even with problems in finding a mathematical model of the system in the open loop. To tackle these difficulties, an approach of data-driven model identification and control algorithm design based on the maximum stability degree criterion is proposed in this paper. The data-driven model identification procedure supposes the finding of the mathematical model of the system based on the undamped transient response of the closed-loop system. The system is approximated with the inertial model, where the coefficients are calculated based on the values of the critical transfer coefficient, oscillation amplitude and period of the underdamped response of the closed-loop system. The data driven control design supposes that the tuning parameters of the controller are calculated based on the parameters obtained from the previous step of system identification and there are presented the expressions for the calculation of the tuning parameters. The obtained results of data-driven model identification and algorithm for synthesis the controller were verified by computer simulation. 展开更多
关键词 data-driven model identification Controller Tuning Undamped Transient Response Closed-Loop System identification PID Controller
在线阅读 下载PDF
Review of System Identification for Manoeuvring Modelling of Marine Surface Ships
2
作者 Haitong Xu C.Guedes Soares 《哈尔滨工程大学学报(英文版)》 2025年第3期459-478,共20页
A state-of-the-art review is presented of mathematical manoeuvring models for surface ships and parameter estimation methods that have been used to build mathematical manoeuvring models for surface ships. In the first... A state-of-the-art review is presented of mathematical manoeuvring models for surface ships and parameter estimation methods that have been used to build mathematical manoeuvring models for surface ships. In the first part, the classical manoeuvring models, such as the Abkowitz model, MMG, Nomoto and their revised versions, are revisited and the model structure with the hydrodynamic coefficients is also presented.Then, manoeuvring tests, including both the scaled model tests and sea trials, are introduced with the fact that the test data is critically important to obtain reliable results using parameter estimation methods. In the last part, selected papers published in journals and international conferences are reviewed and the statistical analysis of the manoeuvring models, test data, system identification methods and environmental disturbances used in the paper is presented. 展开更多
关键词 Manoeuvring simulation System identification Manoeuvring model Manoeuvring test
在线阅读 下载PDF
A new rope-sheave traction contact force model incorporating complex geometric features developed through parameter identification methods
3
作者 Yunting HAN Hui HU +1 位作者 Haoran SUN Xi SHI 《Applied Mathematics and Mechanics(English Edition)》 2025年第10期1983-2006,共24页
The complex geometrical features of mechanical components significantly influence contact interactions and system dynamics.However,directly modeling contact forces on surfaces with intricate geometries presents consid... The complex geometrical features of mechanical components significantly influence contact interactions and system dynamics.However,directly modeling contact forces on surfaces with intricate geometries presents considerable challenges.This study focuses on the helically twisted wire rope-sheave contact and proposes a contact force model that incorporates complex geometric features through a parameter identification approach.The model's impact on contact forces and system dynamics is thoroughly investigated.Leveraging a point contact model and an elliptic integral approximation,a loss function is formulated using the finite element(FE)contact model results as the reference data.Geometric parameters are subsequently determined by optimizing this loss function via a genetic algorithm(GA).The findings reveal that the contact stiffness increases with the wire rope pitch length,the radius of principal curvature,and the elliptic eccentricity of the contact zone.The proposed contact force model is integrated into a rigid-flexible coupled dynamics model,developed by the absolute node coordinate formulation,to examine the effects of contact geometry on system dynamics.The results demonstrate that the variations in wire rope geometry alter the contact stiffness,which in turn affects dynamic rope tension through frictional energy dissipation.The enhanced model's predictions exhibit superior alignment with the experimental data,thereby validating the methodology.This approach provides new insights for deducing the contact geometry from kinetic parameters and monitoring the performance degradation of mechanical components. 展开更多
关键词 complex contact geometry contact force modeling parameter identification helical wire rope rigid-flexible couple dynamics modeling
在线阅读 下载PDF
Adaptive Multi-Learning Cooperation Search Algorithm for Photovoltaic Model Parameter Identification
4
作者 Xu Chen Shuai Wang Kaixun He 《Computers, Materials & Continua》 2025年第10期1779-1806,共28页
Accurate and reliable photovoltaic(PV)modeling is crucial for the performance evaluation,control,and optimization of PV systems.However,existing methods for PV parameter identification often suffer from limitations in... Accurate and reliable photovoltaic(PV)modeling is crucial for the performance evaluation,control,and optimization of PV systems.However,existing methods for PV parameter identification often suffer from limitations in accuracy and efficiency.To address these challenges,we propose an adaptive multi-learning cooperation search algorithm(AMLCSA)for efficient identification of unknown parameters in PV models.AMLCSA is a novel algorithm inspired by teamwork behaviors in modern enterprises.It enhances the original cooperation search algorithm in two key aspects:(i)an adaptive multi-learning strategy that dynamically adjusts search ranges using adaptive weights,allowing better individuals to focus on local exploitation while guiding poorer individuals toward global exploration;and(ii)a chaotic grouping reflection strategy that introduces chaotic sequences to enhance population diversity and improve search performance.The effectiveness of AMLCSA is demonstrated on single-diode,double-diode,and three PV-module models.Simulation results show that AMLCSA offers significant advantages in convergence,accuracy,and stability compared to existing state-of-the-art algorithms. 展开更多
关键词 Photovoltaic model parameter identification cooperation search algorithm adaptive multiple learning chaotic grouping reflection
在线阅读 下载PDF
Intelligent approach for mucky soil identification during shield tunnelling by enhanced YOLO model
5
作者 Wei-Wei Zhao Shui-Long Shen +1 位作者 Tao Yan Annan Zhou 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第6期3327-3338,共12页
An efficient determination of the geological characteristics and soil-rock type ahead of a tunnel face is critical for adjusting construction parameters during shield tunnelling.In general,operational engineers rely o... An efficient determination of the geological characteristics and soil-rock type ahead of a tunnel face is critical for adjusting construction parameters during shield tunnelling.In general,operational engineers rely on visual observations of mucky soil types from belt conveyors.This results in shield halting and involves both time and cost implications.This paper proposes a deep learning approach designed to identify mucky soil by monitoring a video installed on the strut of a belt conveyer.The proposed approach comprises four steps:(1)image acquisition,(2)enhanced you-only-look-once(YOLO)modelling,(3)model performance evaluation,and(4)soil identification based on an optimal analysis.The enhanced YOLO model is a deep image detection algorithm.It was introduced by integrating two innovative strategies:data augmentation and imbalance learning.This enhancement accelerates the speed of image identification and improves the overall classification performance.A case study of shield tunnelling in the soil-rock mixed strata of the GuangzhoueFoshan intercity railway line was conducted to validate the proposed approach.The results indicate that the enhanced YOLO model achieves a classification performance comparable to that of the highly optimised AlexNet and GoogleNet.Additionally,the proposed approach more effectively detects the muck soil content than manual observation.This demonstrates its potential for real-time applications in shield tunnelling operations. 展开更多
关键词 Mucky soil identification Data augmentation Imbalanced learning Shield tunnelling Enhanced you-only-look-once(YOLO) model
在线阅读 下载PDF
Research and Practice of Blended Teaching of Identification of Chinese Materia Medica under TfU Model : A Case Study of the Lesson "Authentic Medicinal Materials and Quality of Traditional Chinese Medicine"
6
作者 Ya GAO Xiaohua WANG +2 位作者 Lunli LAN Deqing HUANG Wenjuan XIE 《Agricultural Biotechnology》 2025年第3期67-70,共4页
In order to improve the traditional teaching model of traditional Chinese medicine identification course for graduate students of pharmacy,this paper described the research on constructing and practicing the blended t... In order to improve the traditional teaching model of traditional Chinese medicine identification course for graduate students of pharmacy,this paper described the research on constructing and practicing the blended teaching model of"online+offline"based on the teaching concept of TfU by taking the course of"Authentic Medicinal Materials and Quality of Traditional Chinese Medicine"as an example.In the preparatory phase,through resource integration and course content decomposition,it identifies"generative topics"to engage students in pre-class online discussions.During the instructional phase,"comprehension-oriented objectives"are established based on learning analytics,followed by the implementation of"understanding-focused activities"for guided inquiry in offline classrooms.The post-class phase employs online extended materials to conduct"sustained assessment"through evaluations and summaries,thereby continuously optimizing subsequent teaching practices.This pedagogical framework not only effectively cultivates investigative research thinking among graduate students but also enhances standardized management and scientific development of the teaching team.The practical research outcomes and experiences derived from this model can provide valuable references for analogous course reforms. 展开更多
关键词 TfU teaching model identification of Chinese materia medica Blended teaching
在线阅读 下载PDF
Automatic identification of discontinuities and refined modeling of rock blocks from 3D point cloud data of rock surfaces
7
作者 Yaopeng Ji Shengyuan Song +5 位作者 Jianping Chen Jingyu Xue Jianhua Yan Yansong Zhang Di Sun Qing Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第5期3093-3106,共14页
The spatial distribution of discontinuities and the size of rock blocks are the key indicators for rock mass quality evaluation and rockfall risk assessment.Traditional manual measurement is often dangerous or unreach... The spatial distribution of discontinuities and the size of rock blocks are the key indicators for rock mass quality evaluation and rockfall risk assessment.Traditional manual measurement is often dangerous or unreachable at some high-steep rock slopes.In contrast,unmanned aerial vehicle(UAV)photogrammetry is not limited by terrain conditions,and can efficiently collect high-precision three-dimensional(3D)point clouds of rock masses through all-round and multiangle photography for rock mass characterization.In this paper,a new method based on a 3D point cloud is proposed for discontinuity identification and refined rock block modeling.The method is based on four steps:(1)Establish a point cloud spatial topology,and calculate the point cloud normal vector and average point spacing based on several machine learning algorithms;(2)Extract discontinuities using the density-based spatial clustering of applications with noise(DBSCAN)algorithm and fit the discontinuity plane by combining principal component analysis(PCA)with the natural breaks(NB)method;(3)Propose a method of inserting points in the line segment to generate an embedded discontinuity point cloud;and(4)Adopt a Poisson reconstruction method for refined rock block modeling.The proposed method was applied to an outcrop of an ultrahigh steep rock slope and compared with the results of previous studies and manual surveys.The results show that the method can eliminate the influence of discontinuity undulations on the orientation measurement and describe the local concave-convex characteristics on the modeling of rock blocks.The calculation results are accurate and reliable,which can meet the practical requirements of engineering. 展开更多
关键词 Three-dimensional(3D)point cloud Rock mass Automatic identification Refined modeling Unmanned aerial vehicle(UAV)
在线阅读 下载PDF
An integrated method of data-driven and mechanism models for formation evaluation with logs 被引量:1
8
作者 Meng-Lu Kang Jun Zhou +4 位作者 Juan Zhang Li-Zhi Xiao Guang-Zhi Liao Rong-Bo Shao Gang Luo 《Petroleum Science》 2025年第3期1110-1124,共15页
We propose an integrated method of data-driven and mechanism models for well logging formation evaluation,explicitly focusing on predicting reservoir parameters,such as porosity and water saturation.Accurately interpr... We propose an integrated method of data-driven and mechanism models for well logging formation evaluation,explicitly focusing on predicting reservoir parameters,such as porosity and water saturation.Accurately interpreting these parameters is crucial for effectively exploring and developing oil and gas.However,with the increasing complexity of geological conditions in this industry,there is a growing demand for improved accuracy in reservoir parameter prediction,leading to higher costs associated with manual interpretation.The conventional logging interpretation methods rely on empirical relationships between logging data and reservoir parameters,which suffer from low interpretation efficiency,intense subjectivity,and suitability for ideal conditions.The application of artificial intelligence in the interpretation of logging data provides a new solution to the problems existing in traditional methods.It is expected to improve the accuracy and efficiency of the interpretation.If large and high-quality datasets exist,data-driven models can reveal relationships of arbitrary complexity.Nevertheless,constructing sufficiently large logging datasets with reliable labels remains challenging,making it difficult to apply data-driven models effectively in logging data interpretation.Furthermore,data-driven models often act as“black boxes”without explaining their predictions or ensuring compliance with primary physical constraints.This paper proposes a machine learning method with strong physical constraints by integrating mechanism and data-driven models.Prior knowledge of logging data interpretation is embedded into machine learning regarding network structure,loss function,and optimization algorithm.We employ the Physically Informed Auto-Encoder(PIAE)to predict porosity and water saturation,which can be trained without labeled reservoir parameters using self-supervised learning techniques.This approach effectively achieves automated interpretation and facilitates generalization across diverse datasets. 展开更多
关键词 Well log Reservoir evaluation Label scarcity Mechanism model data-driven model Physically informed model Self-supervised learning Machine learning
原文传递
Machine learning-based grayscale analyses for lithofacies identification of the Shahejie formation,Bohai Bay Basin,China 被引量:1
9
作者 Yu-Fan Wang Shang Xu +4 位作者 Fang Hao Hui-Min Liu Qin-Hong Hu Ke-Lai Xi Dong Yang 《Petroleum Science》 2025年第1期42-54,共13页
It is of great significance to accurately and rapidly identify shale lithofacies in relation to the evaluation and prediction of sweet spots for shale oil and gas reservoirs.To address the problem of low resolution in... It is of great significance to accurately and rapidly identify shale lithofacies in relation to the evaluation and prediction of sweet spots for shale oil and gas reservoirs.To address the problem of low resolution in logging curves,this study establishes a grayscale-phase model based on high-resolution grayscale curves using clustering analysis algorithms for shale lithofacies identification,working with the Shahejie For-mation,Bohai Bay Basin,China.The grayscale phase is defined as the sum of absolute grayscale and relative amplitude as well as their features.The absolute grayscale is the absolute magnitude of the gray values and is utilized for evaluating the material composition(mineral composition+total organic carbon)of shale,while the relative amplitude is the difference between adjacent gray values and is used to identify the shale structure type.The research results show that the grayscale phase model can identify shale lithofacies well,and the accuracy and applicability of this model were verified by the fitting relationship between absolute grayscale and shale mineral composition,as well as corresponding re-lationships between relative amplitudes and laminae development in shales.Four lithofacies are iden-tified in the target layer of the study area:massive mixed shale,laminated mixed shale,massive calcareous shale and laminated calcareous shale.This method can not only effectively characterize the material composition of shale,but also numerically characterize the development degree of shale laminae,and solve the problem that difficult to identify millimeter-scale laminae based on logging curves,which can provide technical support for shale lithofacies identification,sweet spot evaluation and prediction of complex continental lacustrine basins. 展开更多
关键词 SHALE Machine learning Absolute grayscale Relative amplitude Grayscale phase model Lithofacies identification
原文传递
Dynamics Modeling and Parameter Identification for a Coupled-Drive Dual-Arm Nursing Robot 被引量:1
10
作者 Hao Lu Zhiqiang Yang +2 位作者 Deliang Zhu Fei Deng Shijie Guo 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第4期243-257,共15页
A dual-arm nursing robot can gently lift patients and transfer them between a bed and a wheelchair.With its lightweight design,high load-bearing capacity,and smooth surface,the coupled-drive joint is particularly well... A dual-arm nursing robot can gently lift patients and transfer them between a bed and a wheelchair.With its lightweight design,high load-bearing capacity,and smooth surface,the coupled-drive joint is particularly well suited for these robots.However,the coupled nature of the joint disrupts the direct linear relationship between the input and output torques,posing challenges for dynamic modeling and practical applications.This study investigated the transmission mechanism of this joint and employed the Lagrangian method to construct a dynamic model of its internal dynamics.Building on this foundation,the Newton-Euler method was used to develop a dynamic model for the entire robotic arm.A continuously differentiable friction model was incorporated to reduce the vibrations caused by speed transitions to zero.An experimental method was designed to compensate for gravity,inertia,and modeling errors to identify the parameters of the friction model.This method establishes a mapping relationship between the friction force and motor current.In addition,a Fourier series-based excitation trajectory was developed to facilitate the identification of the dynamic model parameters of the robotic arm.Trajectory tracking experiments were conducted during the experimental validation phase,demonstrating the high accuracy of the dynamic model and the parameter identification method for the robotic arm.This study presents a dynamic modeling and parameter identification method for coupled-drive joint robotic arms,thereby establishing a foundation for motion control in humanoid nursing robots. 展开更多
关键词 Nursing-care robot Coupled-drive joint Dynamic modeling Parameter identification
在线阅读 下载PDF
Quantitative Identification of Delamination Damage in Composite Structure Based on Distributed Optical Fiber Sensors and Model Updating 被引量:1
11
作者 Hao Xu Jing Wang +3 位作者 Rubin Zhu Alfred Strauss Maosen Cao Zhanjun Wu 《Structural Durability & Health Monitoring》 EI 2024年第6期785-803,共19页
Delamination is a prevalent type of damage in composite laminate structures.Its accumulation degrades structural performance and threatens the safety and integrity of aircraft.This study presents a method for the quan... Delamination is a prevalent type of damage in composite laminate structures.Its accumulation degrades structural performance and threatens the safety and integrity of aircraft.This study presents a method for the quantitative identification of delamination identification in composite materials,leveraging distributed optical fiber sensors and a model updating approach.Initially,a numerical analysis is performed to establish a parameterized finite element model of the composite plate.Then,this model subsequently generates a database of strain responses corresponding to damage of varying sizes and locations.The radial basis function neural network surrogate model is then constructed based on the numerical simulation results and strain responses captured from the distributed fiber optic sensors.Finally,a multi-island genetic algorithm is employed for global optimization to identify the size and location of the damage.The efficacy of the proposed method is validated through numerical examples and experiment studies,examining the correlations between damage location,damage size,and strain responses.The findings confirm that the model updating technique,in conjunction with distributed fiber optic sensors,can precisely identify delamination in composite structures. 展开更多
关键词 Composite structures fiber optic sensor damage identification model updating surrogate model
在线阅读 下载PDF
Review and Comparative Analysis of System Identification Methods for Perturbed Motorized Systems
12
作者 Helen Shin Huey Wee Nur Syazreen Ahmad 《Computer Modeling in Engineering & Sciences》 2025年第5期1301-1354,共54页
This paper reviews recent advancements in system identification methods for perturbed motorized systems,focusing on brushed DC motors,brushless DC motors,and permanent magnet synchronous motors.It examines data acquis... This paper reviews recent advancements in system identification methods for perturbed motorized systems,focusing on brushed DC motors,brushless DC motors,and permanent magnet synchronous motors.It examines data acquisition setups and evaluates conventional and metaheuristic optimization algorithms,highlighting their advantages,limitations,and applications.The paper explores emerging trends in model structures and parameter optimization techniques that address specific perturbations such as varying loads,noise,and friction.A comparative performance analysis is also included to assess several widely used optimization methods,including least squares(LS),particle swarm optimization(PSO),grey wolf optimizer(GWO),bat algorithm(BA),genetic algorithm(GA)and neural network for system identification of a specific case of a perturbed DC motor in both open-loop(OL)and closed-loop(CL)settings.Results show that GWO achieves the lowest error overall,excelling in OL scenarios,while PSO performs best in CL due to its synergy with feedback control.LS proves efficient in CL settings,whereas GA and BA rely heavily on feedback for improved performance.The paper also outlines potential research directions aimed at advancing motor modeling techniques,including integration of advanced machine learning methods,hybrid learning-based methods,and adaptive modeling techniques.These insights offer a foundation for advancing motor modeling techniques in real-world applications. 展开更多
关键词 Motor modeling data-driven modeling particle swarm optimization genetic algorithm grey wolf optimization
在线阅读 下载PDF
Parameter Estimation of a Tumor Growth Model under Data-driven Approach and Its Numerical Solution in Matlab
13
作者 Zhuo Chen Yihan Zeng +3 位作者 Wei Chen Ruixian Zheng Zejun Du Meibao Ge 《Journal of Clinical and Nursing Research》 2025年第4期50-56,共7页
This paper focuses on the numerical solution of a tumor growth model under a data-driven approach.Based on the inherent laws of the data and reasonable assumptions,an ordinary differential equation model for tumor gro... This paper focuses on the numerical solution of a tumor growth model under a data-driven approach.Based on the inherent laws of the data and reasonable assumptions,an ordinary differential equation model for tumor growth is established.Nonlinear fitting is employed to obtain the optimal parameter estimation of the mathematical model,and the numerical solution is carried out using the Matlab software.By comparing the clinical data with the simulation results,a good agreement is achieved,which verifies the rationality and feasibility of the model. 展开更多
关键词 MATLAB Tumor growth model data-driven approach Ordinary differential equation
暂未订购
Overview of Data-Driven Models for Wind Turbine Wake Flows
14
作者 Maokun Ye Min Li +2 位作者 Mingqiu Liu Chengjiang Xiao Decheng Wan 《哈尔滨工程大学学报(英文版)》 2025年第1期1-20,共20页
With the rapid advancement of machine learning technology and its growing adoption in research and engineering applications,an increasing number of studies have embraced data-driven approaches for modeling wind turbin... With the rapid advancement of machine learning technology and its growing adoption in research and engineering applications,an increasing number of studies have embraced data-driven approaches for modeling wind turbine wakes.These models leverage the ability to capture complex,high-dimensional characteristics of wind turbine wakes while offering significantly greater efficiency in the prediction process than physics-driven models.As a result,data-driven wind turbine wake models are regarded as powerful and effective tools for predicting wake behavior and turbine power output.This paper aims to provide a concise yet comprehensive review of existing studies on wind turbine wake modeling that employ data-driven approaches.It begins by defining and classifying machine learning methods to facilitate a clearer understanding of the reviewed literature.Subsequently,the related studies are categorized into four key areas:wind turbine power prediction,data-driven analytic wake models,wake field reconstruction,and the incorporation of explicit physical constraints.The accuracy of data-driven models is influenced by two primary factors:the quality of the training data and the performance of the model itself.Accordingly,both data accuracy and model structure are discussed in detail within the review. 展开更多
关键词 data-driven Machine learning Artificial neural networks Wind turbine wake Wake models
在线阅读 下载PDF
Kinematic Calibration of a 5-DoF Parallel Machining Robot with a Novel Adaptive and Weighted Identification Method Based on Generalized Cross Validation
15
作者 Lefeng Gu Fugui Xie 《Chinese Journal of Mechanical Engineering》 2025年第2期262-278,共17页
Accurate kinematic calibration is the very foundation for robots'application in industry demanding high precision such as machining.Considering the complex error characteristic and severe ill-posed identification ... Accurate kinematic calibration is the very foundation for robots'application in industry demanding high precision such as machining.Considering the complex error characteristic and severe ill-posed identification issues of a 5-DoF parallel machining robot,this paper proposes an adaptive and weighted identification method to achieve high-precision kinematic calibration while maintaining reliable stability.First,a kinematic error propagation mechanism model considering the non-ideal constraints and the screw self-rotation is formulated by incorporating the intricate structure of multiple chains and a unique driven screw arrangement of the robot.To address the challenge of accurately identifying such a sophisticated error model,a novel adaptive and weighted identification method based on generalized cross validation(GCV)is proposed.Specifically,this approach innovatively introduces Gauss-Markov estimation into the GCV algorithm and utilizes prior physical information to construct both a weighted identification model and a weighted cross-validation function,thus eliminating the inaccuracy caused by significant differences in dimensional magnitudes of pose errors and achieving accurate identification with flexible numerical stability.Finally,the kinematic calibration experiment is conducted.The comparative experimental results demonstrate that the presented approach is effective and has enhanced accuracy performance over typical least squares methods,with maximum position and orientation errors reduced from 2.279 mm to 0.028 mm and from 0.206°to 0.017°,respectively. 展开更多
关键词 Parallel machining robot Accurate kinematic calibration Weighted identification model Adaptive identification algorithm
在线阅读 下载PDF
A Seismic Multi-Attribute Sandbody Identification Method Based on the LightGBMRFECV Coupling Algorithm
16
作者 Teng-fei Ren Zhi-bing Feng +6 位作者 Ying Zhang Xiang Zhang Li Jiang Yuan-li Ning Jing-yi Wang Jian Ding Zeng-shuo Qi 《Applied Geophysics》 2025年第3期757-769,895,共14页
Seismic attributes encapsulate substantial reservoir characterization information and can effectively support reservoir prediction.Given the high-dimensional nonlinear between sandbodies and seismic attributes,this st... Seismic attributes encapsulate substantial reservoir characterization information and can effectively support reservoir prediction.Given the high-dimensional nonlinear between sandbodies and seismic attributes,this study employs the RFECV method for seismic attribute selection,inputting the optimized attributes into a LightGBM model to enhance spatial delineation of sandbody identification.By constructing training datasets based on optimized seismic attributes and well logs,followed by class imbalance correction as input variables for machine learning models,with sandbody probability as the output variable,and employing grid search to optimize model parameters,a high-precision sandbody prediction model was established.Taking the 3D seismic data of Block F3 in the North Sea of Holland as an example,this method successfully depicted the three-dimensional spatial distribution of target formation sandstones.The results indicate that even under strong noise conditions,the multi-attribute sandbody identification method based on LightGBM effectively characterizes the distribution features of sandbodies.Compared to unselected attributes,the prediction results using selected attributes have higher vertical resolution and inter-well conformity,with the prediction accuracy for single wells reaching 80.77%,significantly improving the accuracy of sandbody boundary delineation. 展开更多
关键词 Sandbody identification Seismic attributes LightGBM model RFECV method
在线阅读 下载PDF
Mineral identification in thin sections using a lightweight and attention mechanism
17
作者 Xin Zhang Wei Dang +4 位作者 Jun Liu Zijuan Yin Guichao Du Yawen He Yankai Xue 《Natural Gas Industry B》 2025年第2期135-146,共12页
Mineral identification is foundational to geological survey research,mineral resource exploration,and mining engineering.Considering the diversity of mineral types and the challenge of achieving high recognition accur... Mineral identification is foundational to geological survey research,mineral resource exploration,and mining engineering.Considering the diversity of mineral types and the challenge of achieving high recognition accuracy for similar features,this study introduces a mineral detection method based on YOLOv8-SBI.This work enhances feature extraction by integrating spatial pyramid pooling-fast(SPPF)with the simplified self-attention module(SimAM),significantly improving the precision of mineral feature detection.In the feature fusion network,a weighted bidirectional feature pyramid network is employed for advanced cross-channel feature integration,effectively reducing feature redundancy.Additionally,Inner-Intersection Over Union(InnerIOU)is used as the loss function to improve the average quality localization performance of anchor boxes.Experimental results show that the YOLOv8-SBI model achieves an accuracy of 67.9%,a recall of 74.3%,a mAP@0.5 of 75.8%,and a mAP@0.5:0.95 of 56.7%,with a real-time detection speed of 244.2 frames per second.Compared to YOLOv8,YOLOv8-SBI demonstrates a significant improvement with 15.4%increase in accuracy,28.5%increase in recall,and increases of 28.1%and 20.9%in mAP@0.5 and mAP@0.5:0.95,respectively.Furthermore,relative to other models,such as YOLOv3,YOLOv5,YOLOv6,YOLOv8,YOLOv9,and YOLOv10,YOLOv8-SBI has a smaller parameter size of only 3.01×10^(6).This highlights the optimal balance between detection accuracy and speed,thereby offering robust technical support for intelligent mineral classification. 展开更多
关键词 Deep learning Neural networks Lightweight models Attention mechanisms Mineral identification
在线阅读 下载PDF
A systematic data-driven modelling framework for nonlinear distillation processes incorporating data intervals clustering and new integrated learning algorithm
18
作者 Zhe Wang Renchu He Jian Long 《Chinese Journal of Chemical Engineering》 2025年第5期182-199,共18页
The distillation process is an important chemical process,and the application of data-driven modelling approach has the potential to reduce model complexity compared to mechanistic modelling,thus improving the efficie... The distillation process is an important chemical process,and the application of data-driven modelling approach has the potential to reduce model complexity compared to mechanistic modelling,thus improving the efficiency of process optimization or monitoring studies.However,the distillation process is highly nonlinear and has multiple uncertainty perturbation intervals,which brings challenges to accurate data-driven modelling of distillation processes.This paper proposes a systematic data-driven modelling framework to solve these problems.Firstly,data segment variance was introduced into the K-means algorithm to form K-means data interval(KMDI)clustering in order to cluster the data into perturbed and steady state intervals for steady-state data extraction.Secondly,maximal information coefficient(MIC)was employed to calculate the nonlinear correlation between variables for removing redundant features.Finally,extreme gradient boosting(XGBoost)was integrated as the basic learner into adaptive boosting(AdaBoost)with the error threshold(ET)set to improve weights update strategy to construct the new integrated learning algorithm,XGBoost-AdaBoost-ET.The superiority of the proposed framework is verified by applying this data-driven modelling framework to a real industrial process of propylene distillation. 展开更多
关键词 Integrated learning algorithm Data intervals clustering Feature selection Application of artificial intelligence in distillation industry data-driven modelling
在线阅读 下载PDF
Model Predictive Control Method Based on Data-Driven Approach for Permanent Magnet Synchronous Motor Control System
19
作者 LI Songyang CHEN Wenbo WAN Heng 《Journal of Shanghai Jiaotong university(Science)》 2025年第2期270-279,共10页
Permanent magnet synchronous motor(PMSM)is widely used in alternating current servo systems as it provides high eficiency,high power density,and a wide speed regulation range.The servo system is placing higher demands... Permanent magnet synchronous motor(PMSM)is widely used in alternating current servo systems as it provides high eficiency,high power density,and a wide speed regulation range.The servo system is placing higher demands on its control performance.The model predictive control(MPC)algorithm is emerging as a potential high-performance motor control algorithm due to its capability of handling multiple-input and multipleoutput variables and imposed constraints.For the MPC used in the PMSM control process,there is a nonlinear disturbance caused by the change of electromagnetic parameters or load disturbance that may lead to a mismatch between the nominal model and the controlled object,which causes the prediction error and thus affects the dynamic stability of the control system.This paper proposes a data-driven MPC strategy in which the historical data in an appropriate range are utilized to eliminate the impact of parameter mismatch and further improve the control performance.The stability of the proposed algorithm is proved as the simulation demonstrates the feasibility.Compared with the classical MPC strategy,the superiority of the algorithm has also been verified. 展开更多
关键词 permanent magnet synchronous motor(PMSM) model predictive control(MPC) data-driven model predictive control(DDMPC)
原文传递
Mechanical response identification of local interconnections in board- level packaging structures under projectile penetration using Bayesian regularization
20
作者 Xu Long Yuntao Hu Irfan Ali 《Defence Technology(防务技术)》 2025年第7期79-95,共17页
Modern warfare demands weapons capable of penetrating substantial structures,which presents sig-nificant challenges to the reliability of the electronic devices that are crucial to the weapon's perfor-mance.Due to... Modern warfare demands weapons capable of penetrating substantial structures,which presents sig-nificant challenges to the reliability of the electronic devices that are crucial to the weapon's perfor-mance.Due to miniaturization of electronic components,it is challenging to directly measure or numerically predict the mechanical response of small-sized critical interconnections in board-level packaging structures to ensure the mechanical reliability of electronic devices in projectiles under harsh working conditions.To address this issue,an indirect measurement method using the Bayesian regularization-based load identification was proposed in this study based on finite element(FE)pre-dictions to estimate the load applied on critical interconnections of board-level packaging structures during the process of projectile penetration.For predicting the high-strain-rate penetration process,an FE model was established with elasto-plastic constitutive models of the representative packaging ma-terials(that is,solder material and epoxy molding compound)in which material constitutive parameters were calibrated against the experimental results by using the split-Hopkinson pressure bar.As the impact-induced dynamic bending of the printed circuit board resulted in an alternating tensile-compressive loading on the solder joints during penetration,the corner solder joints in the edge re-gions experience the highest S11 and strain,making them more prone to failure.Based on FE predictions at different structural scales,an improved Bayesian method based on augmented Tikhonov regulariza-tion was theoretically proposed to address the issues of ill-posed matrix inversion and noise sensitivity in the load identification at the critical solder joints.By incorporating a wavelet thresholding technique,the method resolves the problem of poor load identification accuracy at high noise levels.The proposed method achieves satisfactorily small relative errors and high correlation coefficients in identifying the mechanical response of local interconnections in board-level packaging structures,while significantly balancing the smoothness of response curves with the accuracy of peak identification.At medium and low noise levels,the relative error is less than 6%,while it is less than 10%at high noise levels.The proposed method provides an effective indirect approach for the boundary conditions of localized solder joints during the projectile penetration process,and its philosophy can be readily extended to other scenarios of multiscale analysis for highly nonlinear materials and structures under extreme loading conditions. 展开更多
关键词 Board-level packaging structure High strain-rate constitutive model Load identification Bayesian regularization Wavelet thresholding method
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部