The accelerated advancement of the Internet of Things(IoT)has generated substantial data,including sensitive and private information.Consequently,it is imperative to guarantee the security of data sharing.While facili...The accelerated advancement of the Internet of Things(IoT)has generated substantial data,including sensitive and private information.Consequently,it is imperative to guarantee the security of data sharing.While facilitating fine-grained access control,Ciphertext Policy Attribute-Based Encryption(CP-ABE)can effectively ensure the confidentiality of shared data.Nevertheless,the conventional centralized CP-ABE scheme is plagued by the issues of keymisuse,key escrow,and large computation,which will result in security risks.This paper suggests a lightweight IoT data security sharing scheme that integrates blockchain technology and CP-ABE to address the abovementioned issues.The integrity and traceability of shared data are guaranteed by the use of blockchain technology to store and verify access transactions.The encryption and decryption operations of the CP-ABE algorithm have been implemented using elliptic curve scalarmultiplication to accommodate lightweight IoT devices,as opposed to themore arithmetic bilinear pairing found in the traditional CP-ABE algorithm.Additionally,a portion of the computation is delegated to the edge nodes to alleviate the computational burden on users.A distributed key management method is proposed to address the issues of key escrow andmisuse.Thismethod employs the edge blockchain to facilitate the storage and distribution of attribute private keys.Meanwhile,data security sharing is enhanced by combining off-chain and on-chain ciphertext storage.The security and performance analysis indicates that the proposed scheme is more efficient and secure.展开更多
【Objective】Medical imaging data has great value,but it contains a significant amount of sensitive information about patients.At present,laws and regulations regarding to the de-identification of medical imaging data...【Objective】Medical imaging data has great value,but it contains a significant amount of sensitive information about patients.At present,laws and regulations regarding to the de-identification of medical imaging data are not clearly defined around the world.This study aims to develop a tool that meets compliance-driven desensitization requirements tailored to diverse research needs.【Methods】To enhance the security of medical image data,we designed and implemented a DICOM format medical image de-identification system on the Windows operating system.【Results】Our custom de-identification system is adaptable to the legal standards of different countries and can accommodate specific research demands.The system offers both web-based online and desktop offline de-identification capabilities,enabling customization of de-identification rules and facilitating batch processing to improve efficiency.【Conclusions】This medical image de-identification system robustly strengthens the stewardship of sensitive medical data,aligning with data security protection requirements while facilitating the sharing and utilization of medical image data.This approach unlocks the intrinsic value inherent in such datasets.展开更多
With the rapid development of web3.0 applications,the volume of data sharing is increasing,the inefficiency of big data file sharing and the problem of data privacy leakage are becoming more and more prominent,and the...With the rapid development of web3.0 applications,the volume of data sharing is increasing,the inefficiency of big data file sharing and the problem of data privacy leakage are becoming more and more prominent,and the existing data sharing schemes have been difficult to meet the growing demand for data sharing,this paper aims at exploring a secure,efficient and privacy-protecting data sharing scheme under web3.0 applications.Specifically,this paper adopts interplanetary file system(IPFS)technology to realize the storage of large data files to solve the problem of blockchain storage capacity limitation,and utilizes ciphertext policy attribute-based encryption(CP-ABE)and proxy re-encryption(PRE)technology to realize secure multi-party sharing and finegrained access control of data.This paper provides the detailed algorithm design and implementation of data sharing phases and processes,and analyzes the algorithms from the perspectives of security,privacy protection,and performance.展开更多
Photonuclear data are increasingly used in fundamental nuclear research and technological applications.These data are generated using advanced γ-ray sources.The Shanghai laser electron gamma source(SLEGS)is a new las...Photonuclear data are increasingly used in fundamental nuclear research and technological applications.These data are generated using advanced γ-ray sources.The Shanghai laser electron gamma source(SLEGS)is a new laser Compton scattering γ-ray source at the Shanghai Synchrotron Radiation Facility.It delivers energy-tunable,quasi-monoenergetic gamma beams for high-precision photonuclear measurements.This paper presents the flat-efficiency detector(FED)array at SLEGS and its application in photoneutron cross-section measurements.Systematic uncertainties of the FED array were determined to be 3.02%through calibration with a ^(252)Cf neutron source.Using ^(197)Au and ^(159)Tb as representative nuclei,we demonstrate the format and processing methodology for raw photoneutron data.The results validate SLEGS’capability for high-precision photoneutron measurements.展开更多
Data space,as an innovative data management and sharing model,is emerging in the medical and health sectors.This study expounds on the conceptual connotation of data space and delineates its key technologies,including...Data space,as an innovative data management and sharing model,is emerging in the medical and health sectors.This study expounds on the conceptual connotation of data space and delineates its key technologies,including distributed data storage,standardization and interoperability of data sharing,data security and privacy protection,data analysis and mining,and data space assessment.By analyzing the real-world cases of data spaces within medicine and health,this study compares the similarities and differences across various dimensions such as purpose,architecture,data interoperability,and privacy protection.Meanwhile,data spaces in these fields are challenged by the limited computing resources,the complexities of data integration,and the need for optimized algorithms.Additionally,legal and ethical issues such as unclear data ownership,undefined usage rights,risks associated with privacy protection need to be addressed.The study notes organizational and management difficulties,calling for enhancements in governance framework,data sharing mechanisms,and value assessment systems.In the future,technological innovation,sound regulations,and optimized management will help the development of the medical and health data space.These developments will enable the secure and efficient utilization of data,propelling the medical industry into an era characterized by precision,intelligence,and personalization.展开更多
With the rapid development of medical data sharing,issues of privacy and ownership have become prominent,which have limited the scale of data sharing.To address the above challenges,we propose a blockchainbased data-s...With the rapid development of medical data sharing,issues of privacy and ownership have become prominent,which have limited the scale of data sharing.To address the above challenges,we propose a blockchainbased data-sharing framework to ensure data security and encourage data owners to actively participate in sharing.We introduce a reliable attribute-based searchable encryption scheme that enables fine-grained access control of encrypted data and ensures secure and efficient data sharing.The revenue distribution model is constructed based on Shapley value to motivate participants.Additionally,by integrating the smart contract technology of blockchain,the search operation and incentive mechanism are automatically executed.Through revenue distribution analysis,the incentive effect and rationality of the proposed scheme are verified.Performance evaluation shows that,compared with traditional data-sharing models,our proposed framework not only meets data security requirements but also incentivizes more participants to actively participate in data sharing.展开更多
The advent of the digital age has consistently provided impetus for facilitating global trade,as evidenced by the numerous customs clearance documents and participants involved in the international trade process,inclu...The advent of the digital age has consistently provided impetus for facilitating global trade,as evidenced by the numerous customs clearance documents and participants involved in the international trade process,including enterprises,agents,and government departments.However,the urgent issue that requires immediate attention is how to achieve secure and efficient cross-border data sharing among these government departments and enterprises in complex trade processes.In addressing this need,this paper proposes a data exchange architecture employing Multi-Authority Attribute-Based Encryption(MA-ABE)in combination with blockchain technology.This scheme supports proxy decryption,attribute revocation,and policy update,while allowing each participating entity to manage their keys autonomously,ensuring system security and enhancing trust among participants.In order to enhance system decentralization,a mechanism has been designed in the architecture where multiple institutions interact with smart contracts and jointly participate in the generation of public parameters.Integration with the multi-party process execution engine Caterpillar has been shown to boost the transparency of cross-border information flow and cooperation between different organizations.The scheme ensures the auditability of data access control information and the visualization of on-chain data sharing.The MA-ABE scheme is statically secure under the q-Decisional Parallel Bilinear Diffie-Hellman Exponent(q-DPBDHE2)assumption in the random oracle model,and can resist ciphertext rollback attacks to achieve true backward and forward security.Theoretical analysis and experimental results demonstrate the appropriateness of the scheme for cross-border data collaboration between different institutions.展开更多
As the integration of medical big data and artificial intelligence advances,the secure sharing of medical data has become a key driving force for advancing disease research and clinical diagnosis.Federated learning,a ...As the integration of medical big data and artificial intelligence advances,the secure sharing of medical data has become a key driving force for advancing disease research and clinical diagnosis.Federated learning,a distributed approach enabling collaborative data processing without sharing raw data,offers promising solutions to challenges in multi-center medical data sharing.This review summarizes the progress of federated learning in multi-center medical data processing,analyzed from four perspectives:system architectures,data distribution strategies,clinical tasks,and algorithmic models.At the same time,this paper explores the challenges in practical applications,such as data heterogeneity,communication overhead,and privacy concerns.It proposes driving future research development by optimizing algorithms,strengthening privacy protection mechanisms,and enhancing computational efficiency.展开更多
The scientific goal of the Anninghe seismic array is to investigate the detailed geometry of the Anninghe fault and the velocity structure of the fault zone.This 2D seismic array is composed of 161 stations forming su...The scientific goal of the Anninghe seismic array is to investigate the detailed geometry of the Anninghe fault and the velocity structure of the fault zone.This 2D seismic array is composed of 161 stations forming sub-rectangular geometry along the Anninghe fault,which covers 50 km and 150 km in the fault normal and strike directions,respectively,with~5 km intervals.The data were collected between June 2020 and June 2021,with some level of temporal gaps.Two types of instruments,i.e.QS-05A and SmartSolo,are used in this array.Data quality and examples of seismograms are provided in this paper.After the data protection period ends(expected in June 2024),researchers can request a dataset from the National Earthquake Science Data Center.展开更多
For the goals of security and privacy preservation,we propose a blind batch encryption-and public ledger-based data sharing protocol that allows the integrity of sensitive data to be audited by a public ledger and all...For the goals of security and privacy preservation,we propose a blind batch encryption-and public ledger-based data sharing protocol that allows the integrity of sensitive data to be audited by a public ledger and allows privacy information to be preserved.Data owners can tightly manage their data with efficient revocation and only grant one-time adaptive access for the fulfillment of the requester.We prove that our protocol is semanticallly secure,blind,and secure against oblivious requesters and malicious file keepers.We also provide security analysis in the context of four typical attacks.展开更多
Sharing of personal health records(PHR)in cloud computing is an essential functionality in the healthcare system.However,how to securely,efficiently and flexibly share PHRs data of the patient in a multi-receiver sett...Sharing of personal health records(PHR)in cloud computing is an essential functionality in the healthcare system.However,how to securely,efficiently and flexibly share PHRs data of the patient in a multi-receiver setting has not been well addressed.For instance,since the trust domain of the cloud server is not identical to the data owner or data user,the semi-trust cloud service provider may intentionally destroy or tamper shared PHRs data of user or only transform partial ciphertext of the shared PHRs or even return wrong computation results to save its storage and computation resource,to pursue maximum economic interest or other malicious purposes.Thus,the PHRs data storing or sharing via the cloud server should be performed with consistency and integrity verification.Fortunately,the emergence of blockchain technology provides new ideas and prospects for ensuring the consistency and integrity of shared PHRs data.To this end,in this work,we leverage the consortiumblockchain technology to enhance the trustworthiness of each participant and propose a blockchain-based patient-centric data sharing scheme for PHRs in cloud computing(BC-PC-Share).Different from the state-of-art schemes,our proposal can achieve the following desired properties:(1)Realizing patient-centric PHRs sharing with a public verification function,i.e.,which can ensure that the returned shared data is consistent with the requested shared data and the integrity of the shared data is not compromised.(2)Supporting scalable and fine-grained access control and sharing of PHRs data with multiple domain users,such as hospitals,medical research institutes,and medical insurance companies.(3)Achieving efficient user decryption by leveraging the transformation key technique and efficient user revocation by introducing time-controlled access.The security analysis and simulation experiment demonstrate that the proposed BC-PC-Share scheme is a feasible and promising solution for PHRs data sharing via consortium blockchain.展开更多
With the development of technology,the connected vehicle has been upgraded from a traditional transport vehicle to an information terminal and energy storage terminal.The data of ICV(intelligent connected vehicles)is ...With the development of technology,the connected vehicle has been upgraded from a traditional transport vehicle to an information terminal and energy storage terminal.The data of ICV(intelligent connected vehicles)is the key to organically maximizing their efficiency.However,in the context of increasingly strict global data security supervision and compliance,numerous problems,including complex types of connected vehicle data,poor data collaboration between the IT(information technology)domain and OT(operation technology)domain,different data format standards,lack of shared trust sources,difficulty in ensuring the quality of shared data,lack of data control rights,as well as difficulty in defining data ownership,make vehicle data sharing face a lot of problems,and data islands are widespread.This study proposes FADSF(Fuzzy Anonymous Data Share Frame),an automobile data sharing scheme based on blockchain.The data holder publishes the shared data information and forms the corresponding label storage on the blockchain.The data demander browses the data directory information to select and purchase data assets and verify them.The data demander selects and purchases data assets and verifies them by browsing the data directory information.Meanwhile,this paper designs a data structure Data Discrimination Bloom Filter(DDBF),making complaints about illegal data.When the number of data complaints reaches the threshold,the audit traceability contract is triggered to punish the illegal data publisher,aiming to improve the data quality and maintain a good data sharing ecology.In this paper,based on Ethereum,the above scheme is tested to demonstrate its feasibility,efficiency and security.展开更多
Traditional Io T systems suffer from high equipment management costs and difficulty in trustworthy data sharing caused by centralization.Blockchain provides a feasible research direction to solve these problems. The m...Traditional Io T systems suffer from high equipment management costs and difficulty in trustworthy data sharing caused by centralization.Blockchain provides a feasible research direction to solve these problems. The main challenge at this stage is to integrate the blockchain from the resourceconstrained Io T devices and ensure the data of Io T system is credible. We provide a general framework for intelligent Io T data acquisition and sharing in an untrusted environment based on the blockchain, where gateways become Oracles. A distributed Oracle network based on Byzantine Fault Tolerant algorithm is used to provide trusted data for the blockchain to make intelligent Io T data trustworthy. An aggregation contract is deployed to collect data from various Oracle and share the credible data to all on-chain users. We also propose a gateway data aggregation scheme based on the REST API event publishing/subscribing mechanism which uses SQL to achieve flexible data aggregation. The experimental results show that the proposed scheme can alleviate the problem of limited performance of Io T equipment, make data reliable, and meet the diverse data needs on the chain.展开更多
Sharing data while protecting privacy in the industrial Internet is a significant challenge.Traditional machine learning methods require a combination of all data for training;however,this approach can be limited by d...Sharing data while protecting privacy in the industrial Internet is a significant challenge.Traditional machine learning methods require a combination of all data for training;however,this approach can be limited by data availability and privacy concerns.Federated learning(FL)has gained considerable attention because it allows for decentralized training on multiple local datasets.However,the training data collected by data providers are often non-independent and identically distributed(non-IID),resulting in poor FL performance.This paper proposes a privacy-preserving approach for sharing non-IID data in the industrial Internet using an FL approach based on blockchain technology.To overcome the problem of non-IID data leading to poor training accuracy,we propose dynamically updating the local model based on the divergence of the global and local models.This approach can significantly improve the accuracy of FL training when there is relatively large dispersion.In addition,we design a dynamic gradient clipping algorithm to alleviate the influence of noise on the model accuracy to reduce potential privacy leakage caused by sharing model parameters.Finally,we evaluate the performance of the proposed scheme using commonly used open-source image datasets.The simulation results demonstrate that our method can significantly enhance the accuracy while protecting privacy and maintaining efficiency,thereby providing a new solution to data-sharing and privacy-protection challenges in the industrial Internet.展开更多
Data trading enables data owners and data requesters to sell and purchase data.With the emergence of blockchain technology,research on blockchain-based data trading systems is receiving a lot of attention.Particularly...Data trading enables data owners and data requesters to sell and purchase data.With the emergence of blockchain technology,research on blockchain-based data trading systems is receiving a lot of attention.Particularly,to reduce the on-chain storage cost,a novel paradigm of blockchain and cloud fusion has been widely considered as a promising data trading platform.Moreover,the fact that data can be used for commercial purposes will encourage users and organizations from various fields to participate in the data marketplace.In the data marketplace,it is a challenge how to trade the data securely outsourced to the external cloud in a way that restricts access to the data only to authorized users across multiple domains.In this paper,we propose a cross-domain bilateral access control protocol for blockchain-cloud based data trading systems.We consider a system model that consists of domain authorities,data senders,data receivers,a blockchain layer,and a cloud provider.The proposed protocol enables access control and source identification of the outsourced data by leveraging identity-based cryptographic techniques.In the proposed protocol,the outsourced data of the sender is encrypted under the target receiver’s identity,and the cloud provider performs policy-match verification on the authorization tags of the sender and receiver generated by the identity-based signature scheme.Therefore,data trading can be achieved only if the identities of the data sender and receiver simultaneously meet the policies specified by each other.To demonstrate efficiency,we evaluate the performance of the proposed protocol and compare it with existing studies.展开更多
The dynamic landscape of the Internet of Things(IoT)is set to revolutionize the pace of interaction among entities,ushering in a proliferation of applications characterized by heightened quality and diversity.Among th...The dynamic landscape of the Internet of Things(IoT)is set to revolutionize the pace of interaction among entities,ushering in a proliferation of applications characterized by heightened quality and diversity.Among the pivotal applications within the realm of IoT,as a significant example,the Smart Grid(SG)evolves into intricate networks of energy deployment marked by data integration.This evolution concurrently entails data interchange with other IoT entities.However,there are also several challenges including data-sharing overheads and the intricate establishment of trusted centers in the IoT ecosystem.In this paper,we introduce a hierarchical secure data-sharing platform empowered by cloud-fog integration.Furthermore,we propose a novel non-interactive zero-knowledge proof-based group authentication and key agreement protocol that supports one-to-many sharing sets of IoT data,especially SG data.The security formal verification tool shows that the proposed scheme can achieve mutual authentication and secure data sharing while protecting the privacy of data providers.Compared with previous IoT data sharing schemes,the proposed scheme has advantages in both computational and transmission efficiency,and has more superiority with the increasing volume of shared data or increasing number of participants.展开更多
In this paper,a variety of classical convolutional neural networks are trained on two different datasets using transfer learning method.We demonstrated that the training dataset has a significant impact on the trainin...In this paper,a variety of classical convolutional neural networks are trained on two different datasets using transfer learning method.We demonstrated that the training dataset has a significant impact on the training results,in addition to the optimization achieved through the model structure.However,the lack of open-source agricultural data,combined with the absence of a comprehensive open-source data sharing platform,remains a substantial obstacle.This issue is closely related to the difficulty and high cost of obtaining high-quality agricultural data,the low level of education of most employees,underdeveloped distributed training systems and unsecured data security.To address these challenges,this paper proposes a novel idea of constructing an agricultural data sharing platform based on a federated learning(FL)framework,aiming to overcome the deficiency of high-quality data in agricultural field training.展开更多
文摘The accelerated advancement of the Internet of Things(IoT)has generated substantial data,including sensitive and private information.Consequently,it is imperative to guarantee the security of data sharing.While facilitating fine-grained access control,Ciphertext Policy Attribute-Based Encryption(CP-ABE)can effectively ensure the confidentiality of shared data.Nevertheless,the conventional centralized CP-ABE scheme is plagued by the issues of keymisuse,key escrow,and large computation,which will result in security risks.This paper suggests a lightweight IoT data security sharing scheme that integrates blockchain technology and CP-ABE to address the abovementioned issues.The integrity and traceability of shared data are guaranteed by the use of blockchain technology to store and verify access transactions.The encryption and decryption operations of the CP-ABE algorithm have been implemented using elliptic curve scalarmultiplication to accommodate lightweight IoT devices,as opposed to themore arithmetic bilinear pairing found in the traditional CP-ABE algorithm.Additionally,a portion of the computation is delegated to the edge nodes to alleviate the computational burden on users.A distributed key management method is proposed to address the issues of key escrow andmisuse.Thismethod employs the edge blockchain to facilitate the storage and distribution of attribute private keys.Meanwhile,data security sharing is enhanced by combining off-chain and on-chain ciphertext storage.The security and performance analysis indicates that the proposed scheme is more efficient and secure.
基金CAMS Innovation Fund for Medical Sciences(CIFMS):“Construction of an Intelligent Management and Efficient Utilization Technology System for Big Data in Population Health Science.”(2021-I2M-1-057)Key Projects of the Innovation Fund of the National Clinical Research Center for Orthopedics and Sports Rehabilitation:“National Orthopedics and Sports Rehabilitation Real-World Research Platform System Construction”(23-NCRC-CXJJ-ZD4)。
文摘【Objective】Medical imaging data has great value,but it contains a significant amount of sensitive information about patients.At present,laws and regulations regarding to the de-identification of medical imaging data are not clearly defined around the world.This study aims to develop a tool that meets compliance-driven desensitization requirements tailored to diverse research needs.【Methods】To enhance the security of medical image data,we designed and implemented a DICOM format medical image de-identification system on the Windows operating system.【Results】Our custom de-identification system is adaptable to the legal standards of different countries and can accommodate specific research demands.The system offers both web-based online and desktop offline de-identification capabilities,enabling customization of de-identification rules and facilitating batch processing to improve efficiency.【Conclusions】This medical image de-identification system robustly strengthens the stewardship of sensitive medical data,aligning with data security protection requirements while facilitating the sharing and utilization of medical image data.This approach unlocks the intrinsic value inherent in such datasets.
基金supported by the National Natural Science Foundation of China(Grant No.U24B20146)the National Key Research and Development Plan in China(Grant No.2020YFB1005500)Beijing Natural Science Foundation Project(No.M21034).
文摘With the rapid development of web3.0 applications,the volume of data sharing is increasing,the inefficiency of big data file sharing and the problem of data privacy leakage are becoming more and more prominent,and the existing data sharing schemes have been difficult to meet the growing demand for data sharing,this paper aims at exploring a secure,efficient and privacy-protecting data sharing scheme under web3.0 applications.Specifically,this paper adopts interplanetary file system(IPFS)technology to realize the storage of large data files to solve the problem of blockchain storage capacity limitation,and utilizes ciphertext policy attribute-based encryption(CP-ABE)and proxy re-encryption(PRE)technology to realize secure multi-party sharing and finegrained access control of data.This paper provides the detailed algorithm design and implementation of data sharing phases and processes,and analyzes the algorithms from the perspectives of security,privacy protection,and performance.
基金supported by National Key Research and Development Program of China(Nos.2022YFA1602404 and 2023YFA1606901)the National Natural Science Foundation of China(Nos.12275338,12388102,and U2441221)the Key Laboratory of Nuclear Data Foundation(JCKY2022201C152).
文摘Photonuclear data are increasingly used in fundamental nuclear research and technological applications.These data are generated using advanced γ-ray sources.The Shanghai laser electron gamma source(SLEGS)is a new laser Compton scattering γ-ray source at the Shanghai Synchrotron Radiation Facility.It delivers energy-tunable,quasi-monoenergetic gamma beams for high-precision photonuclear measurements.This paper presents the flat-efficiency detector(FED)array at SLEGS and its application in photoneutron cross-section measurements.Systematic uncertainties of the FED array were determined to be 3.02%through calibration with a ^(252)Cf neutron source.Using ^(197)Au and ^(159)Tb as representative nuclei,we demonstrate the format and processing methodology for raw photoneutron data.The results validate SLEGS’capability for high-precision photoneutron measurements.
文摘Data space,as an innovative data management and sharing model,is emerging in the medical and health sectors.This study expounds on the conceptual connotation of data space and delineates its key technologies,including distributed data storage,standardization and interoperability of data sharing,data security and privacy protection,data analysis and mining,and data space assessment.By analyzing the real-world cases of data spaces within medicine and health,this study compares the similarities and differences across various dimensions such as purpose,architecture,data interoperability,and privacy protection.Meanwhile,data spaces in these fields are challenged by the limited computing resources,the complexities of data integration,and the need for optimized algorithms.Additionally,legal and ethical issues such as unclear data ownership,undefined usage rights,risks associated with privacy protection need to be addressed.The study notes organizational and management difficulties,calling for enhancements in governance framework,data sharing mechanisms,and value assessment systems.In the future,technological innovation,sound regulations,and optimized management will help the development of the medical and health data space.These developments will enable the secure and efficient utilization of data,propelling the medical industry into an era characterized by precision,intelligence,and personalization.
基金supported by the Natural Science Foundation of Hebei Province of China(F2021201052).
文摘With the rapid development of medical data sharing,issues of privacy and ownership have become prominent,which have limited the scale of data sharing.To address the above challenges,we propose a blockchainbased data-sharing framework to ensure data security and encourage data owners to actively participate in sharing.We introduce a reliable attribute-based searchable encryption scheme that enables fine-grained access control of encrypted data and ensures secure and efficient data sharing.The revenue distribution model is constructed based on Shapley value to motivate participants.Additionally,by integrating the smart contract technology of blockchain,the search operation and incentive mechanism are automatically executed.Through revenue distribution analysis,the incentive effect and rationality of the proposed scheme are verified.Performance evaluation shows that,compared with traditional data-sharing models,our proposed framework not only meets data security requirements but also incentivizes more participants to actively participate in data sharing.
基金supported by Hainan Provincial Natural Science Foundation of China Nos.622RC617,624RC485Open Foundation of State Key Laboratory of Networking and Switching Technology(Beijing University of Posts and Telecommunications)(SKLNST-2023-1-07).
文摘The advent of the digital age has consistently provided impetus for facilitating global trade,as evidenced by the numerous customs clearance documents and participants involved in the international trade process,including enterprises,agents,and government departments.However,the urgent issue that requires immediate attention is how to achieve secure and efficient cross-border data sharing among these government departments and enterprises in complex trade processes.In addressing this need,this paper proposes a data exchange architecture employing Multi-Authority Attribute-Based Encryption(MA-ABE)in combination with blockchain technology.This scheme supports proxy decryption,attribute revocation,and policy update,while allowing each participating entity to manage their keys autonomously,ensuring system security and enhancing trust among participants.In order to enhance system decentralization,a mechanism has been designed in the architecture where multiple institutions interact with smart contracts and jointly participate in the generation of public parameters.Integration with the multi-party process execution engine Caterpillar has been shown to boost the transparency of cross-border information flow and cooperation between different organizations.The scheme ensures the auditability of data access control information and the visualization of on-chain data sharing.The MA-ABE scheme is statically secure under the q-Decisional Parallel Bilinear Diffie-Hellman Exponent(q-DPBDHE2)assumption in the random oracle model,and can resist ciphertext rollback attacks to achieve true backward and forward security.Theoretical analysis and experimental results demonstrate the appropriateness of the scheme for cross-border data collaboration between different institutions.
基金supported and funded by the National Natural Science Foundation of China(82101079)the Key R&D Program of Jiangsu Province(BE2023836)the National Key Research and Development Program of China(SQ2023YFC2400025).
文摘As the integration of medical big data and artificial intelligence advances,the secure sharing of medical data has become a key driving force for advancing disease research and clinical diagnosis.Federated learning,a distributed approach enabling collaborative data processing without sharing raw data,offers promising solutions to challenges in multi-center medical data sharing.This review summarizes the progress of federated learning in multi-center medical data processing,analyzed from four perspectives:system architectures,data distribution strategies,clinical tasks,and algorithmic models.At the same time,this paper explores the challenges in practical applications,such as data heterogeneity,communication overhead,and privacy concerns.It proposes driving future research development by optimizing algorithms,strengthening privacy protection mechanisms,and enhancing computational efficiency.
基金supported by the National Key Research and Development Program of China(No.2018YFC1503401).
文摘The scientific goal of the Anninghe seismic array is to investigate the detailed geometry of the Anninghe fault and the velocity structure of the fault zone.This 2D seismic array is composed of 161 stations forming sub-rectangular geometry along the Anninghe fault,which covers 50 km and 150 km in the fault normal and strike directions,respectively,with~5 km intervals.The data were collected between June 2020 and June 2021,with some level of temporal gaps.Two types of instruments,i.e.QS-05A and SmartSolo,are used in this array.Data quality and examples of seismograms are provided in this paper.After the data protection period ends(expected in June 2024),researchers can request a dataset from the National Earthquake Science Data Center.
基金partially supported by the National Natural Science Foundation of China under grant no.62372245the Foundation of Yunnan Key Laboratory of Blockchain Application Technology under Grant 202105AG070005+1 种基金in part by the Foundation of State Key Laboratory of Public Big Datain part by the Foundation of Key Laboratory of Computational Science and Application of Hainan Province under Grant JSKX202202。
文摘For the goals of security and privacy preservation,we propose a blind batch encryption-and public ledger-based data sharing protocol that allows the integrity of sensitive data to be audited by a public ledger and allows privacy information to be preserved.Data owners can tightly manage their data with efficient revocation and only grant one-time adaptive access for the fulfillment of the requester.We prove that our protocol is semanticallly secure,blind,and secure against oblivious requesters and malicious file keepers.We also provide security analysis in the context of four typical attacks.
基金supported by the Youth Doctoral Foundation of Gansu Education Committee under Grant No.2022QB-176.
文摘Sharing of personal health records(PHR)in cloud computing is an essential functionality in the healthcare system.However,how to securely,efficiently and flexibly share PHRs data of the patient in a multi-receiver setting has not been well addressed.For instance,since the trust domain of the cloud server is not identical to the data owner or data user,the semi-trust cloud service provider may intentionally destroy or tamper shared PHRs data of user or only transform partial ciphertext of the shared PHRs or even return wrong computation results to save its storage and computation resource,to pursue maximum economic interest or other malicious purposes.Thus,the PHRs data storing or sharing via the cloud server should be performed with consistency and integrity verification.Fortunately,the emergence of blockchain technology provides new ideas and prospects for ensuring the consistency and integrity of shared PHRs data.To this end,in this work,we leverage the consortiumblockchain technology to enhance the trustworthiness of each participant and propose a blockchain-based patient-centric data sharing scheme for PHRs in cloud computing(BC-PC-Share).Different from the state-of-art schemes,our proposal can achieve the following desired properties:(1)Realizing patient-centric PHRs sharing with a public verification function,i.e.,which can ensure that the returned shared data is consistent with the requested shared data and the integrity of the shared data is not compromised.(2)Supporting scalable and fine-grained access control and sharing of PHRs data with multiple domain users,such as hospitals,medical research institutes,and medical insurance companies.(3)Achieving efficient user decryption by leveraging the transformation key technique and efficient user revocation by introducing time-controlled access.The security analysis and simulation experiment demonstrate that the proposed BC-PC-Share scheme is a feasible and promising solution for PHRs data sharing via consortium blockchain.
基金This work was financially supported by the National Key Research and Development Program of China(2022YFB3103200).
文摘With the development of technology,the connected vehicle has been upgraded from a traditional transport vehicle to an information terminal and energy storage terminal.The data of ICV(intelligent connected vehicles)is the key to organically maximizing their efficiency.However,in the context of increasingly strict global data security supervision and compliance,numerous problems,including complex types of connected vehicle data,poor data collaboration between the IT(information technology)domain and OT(operation technology)domain,different data format standards,lack of shared trust sources,difficulty in ensuring the quality of shared data,lack of data control rights,as well as difficulty in defining data ownership,make vehicle data sharing face a lot of problems,and data islands are widespread.This study proposes FADSF(Fuzzy Anonymous Data Share Frame),an automobile data sharing scheme based on blockchain.The data holder publishes the shared data information and forms the corresponding label storage on the blockchain.The data demander browses the data directory information to select and purchase data assets and verify them.The data demander selects and purchases data assets and verifies them by browsing the data directory information.Meanwhile,this paper designs a data structure Data Discrimination Bloom Filter(DDBF),making complaints about illegal data.When the number of data complaints reaches the threshold,the audit traceability contract is triggered to punish the illegal data publisher,aiming to improve the data quality and maintain a good data sharing ecology.In this paper,based on Ethereum,the above scheme is tested to demonstrate its feasibility,efficiency and security.
基金supported by the open research fund of Key Lab of Broadband Wireless Communication and Sensor Network Technology(Nanjing University of Posts and Telecommunications),Ministry of Education(No.JZNY202114)Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX210734).
文摘Traditional Io T systems suffer from high equipment management costs and difficulty in trustworthy data sharing caused by centralization.Blockchain provides a feasible research direction to solve these problems. The main challenge at this stage is to integrate the blockchain from the resourceconstrained Io T devices and ensure the data of Io T system is credible. We provide a general framework for intelligent Io T data acquisition and sharing in an untrusted environment based on the blockchain, where gateways become Oracles. A distributed Oracle network based on Byzantine Fault Tolerant algorithm is used to provide trusted data for the blockchain to make intelligent Io T data trustworthy. An aggregation contract is deployed to collect data from various Oracle and share the credible data to all on-chain users. We also propose a gateway data aggregation scheme based on the REST API event publishing/subscribing mechanism which uses SQL to achieve flexible data aggregation. The experimental results show that the proposed scheme can alleviate the problem of limited performance of Io T equipment, make data reliable, and meet the diverse data needs on the chain.
基金This work was supported by the National Key R&D Program of China under Grant 2023YFB2703802the Hunan Province Innovation and Entrepreneurship Training Program for College Students S202311528073.
文摘Sharing data while protecting privacy in the industrial Internet is a significant challenge.Traditional machine learning methods require a combination of all data for training;however,this approach can be limited by data availability and privacy concerns.Federated learning(FL)has gained considerable attention because it allows for decentralized training on multiple local datasets.However,the training data collected by data providers are often non-independent and identically distributed(non-IID),resulting in poor FL performance.This paper proposes a privacy-preserving approach for sharing non-IID data in the industrial Internet using an FL approach based on blockchain technology.To overcome the problem of non-IID data leading to poor training accuracy,we propose dynamically updating the local model based on the divergence of the global and local models.This approach can significantly improve the accuracy of FL training when there is relatively large dispersion.In addition,we design a dynamic gradient clipping algorithm to alleviate the influence of noise on the model accuracy to reduce potential privacy leakage caused by sharing model parameters.Finally,we evaluate the performance of the proposed scheme using commonly used open-source image datasets.The simulation results demonstrate that our method can significantly enhance the accuracy while protecting privacy and maintaining efficiency,thereby providing a new solution to data-sharing and privacy-protection challenges in the industrial Internet.
基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(No.2022R1I1A3063257)supported by the MSIT(Ministry of Science and ICT),Korea,under the Special R&D Zone Development Project(R&D)—Development of R&D Innovation Valley Support Program(2023-DD-RD-0152)supervised by the Innovation Foundation.
文摘Data trading enables data owners and data requesters to sell and purchase data.With the emergence of blockchain technology,research on blockchain-based data trading systems is receiving a lot of attention.Particularly,to reduce the on-chain storage cost,a novel paradigm of blockchain and cloud fusion has been widely considered as a promising data trading platform.Moreover,the fact that data can be used for commercial purposes will encourage users and organizations from various fields to participate in the data marketplace.In the data marketplace,it is a challenge how to trade the data securely outsourced to the external cloud in a way that restricts access to the data only to authorized users across multiple domains.In this paper,we propose a cross-domain bilateral access control protocol for blockchain-cloud based data trading systems.We consider a system model that consists of domain authorities,data senders,data receivers,a blockchain layer,and a cloud provider.The proposed protocol enables access control and source identification of the outsourced data by leveraging identity-based cryptographic techniques.In the proposed protocol,the outsourced data of the sender is encrypted under the target receiver’s identity,and the cloud provider performs policy-match verification on the authorization tags of the sender and receiver generated by the identity-based signature scheme.Therefore,data trading can be achieved only if the identities of the data sender and receiver simultaneously meet the policies specified by each other.To demonstrate efficiency,we evaluate the performance of the proposed protocol and compare it with existing studies.
基金supported by the National Key R&D Program of China(No.2022YFB3103400)the National Natural Science Foundation of China under Grants 61932015 and 62172317.
文摘The dynamic landscape of the Internet of Things(IoT)is set to revolutionize the pace of interaction among entities,ushering in a proliferation of applications characterized by heightened quality and diversity.Among the pivotal applications within the realm of IoT,as a significant example,the Smart Grid(SG)evolves into intricate networks of energy deployment marked by data integration.This evolution concurrently entails data interchange with other IoT entities.However,there are also several challenges including data-sharing overheads and the intricate establishment of trusted centers in the IoT ecosystem.In this paper,we introduce a hierarchical secure data-sharing platform empowered by cloud-fog integration.Furthermore,we propose a novel non-interactive zero-knowledge proof-based group authentication and key agreement protocol that supports one-to-many sharing sets of IoT data,especially SG data.The security formal verification tool shows that the proposed scheme can achieve mutual authentication and secure data sharing while protecting the privacy of data providers.Compared with previous IoT data sharing schemes,the proposed scheme has advantages in both computational and transmission efficiency,and has more superiority with the increasing volume of shared data or increasing number of participants.
基金National Key Research and Development Program of China(2021ZD0113704).
文摘In this paper,a variety of classical convolutional neural networks are trained on two different datasets using transfer learning method.We demonstrated that the training dataset has a significant impact on the training results,in addition to the optimization achieved through the model structure.However,the lack of open-source agricultural data,combined with the absence of a comprehensive open-source data sharing platform,remains a substantial obstacle.This issue is closely related to the difficulty and high cost of obtaining high-quality agricultural data,the low level of education of most employees,underdeveloped distributed training systems and unsecured data security.To address these challenges,this paper proposes a novel idea of constructing an agricultural data sharing platform based on a federated learning(FL)framework,aiming to overcome the deficiency of high-quality data in agricultural field training.