Application-specific data processing units (DPUs) are commonly adopted for operational control and data processing in space missions. To overcome the limitations of traditional radiation-hardened or fully commercial d...Application-specific data processing units (DPUs) are commonly adopted for operational control and data processing in space missions. To overcome the limitations of traditional radiation-hardened or fully commercial design approaches, a reconfigurable-system-on-chip (RSoC) solution based on state-of-the-art FPGA is introduced. The flexibility and reliability of this approach are outlined, and the requirements for an enhanced RSoC design with in-flight reconfigurability for space applications are presented. This design has been demonstrated as an on-board computer prototype, providing an in-flight reconfigurable DPU design approach using integrated hardwired processors.展开更多
Emergence of new hardware,including persistent memory and smart network interface card(SmartNIC),has brought new opportunities to file system design.In this paper,we design and implement a new file system named NICFS ...Emergence of new hardware,including persistent memory and smart network interface card(SmartNIC),has brought new opportunities to file system design.In this paper,we design and implement a new file system named NICFS based on persistent memory and SmartNIC.We divide the file system into two parts:the front end and the back end.In the front end,data writes are appended to the persistent memory in a log-structured way,leveraging the fast persistence advantage of persistent memory.In the back end,the data in logs are fetched,processed,and patched to files in the background,leveraging the processing capacity of SmartNIC.Evaluation results show that NICFS outperforms Ext4 by about 21%/10%and about 19%/50%on large and small reads/writes,respectively.展开更多
基金Supported by Innovative Program of the Chinese Academy of Sciences (No. KGCY-SYW-407-02)Grand International Cooperation Foundation of Shanghai Science and Technology Commission (No. 052207046)
文摘Application-specific data processing units (DPUs) are commonly adopted for operational control and data processing in space missions. To overcome the limitations of traditional radiation-hardened or fully commercial design approaches, a reconfigurable-system-on-chip (RSoC) solution based on state-of-the-art FPGA is introduced. The flexibility and reliability of this approach are outlined, and the requirements for an enhanced RSoC design with in-flight reconfigurability for space applications are presented. This design has been demonstrated as an on-board computer prototype, providing an in-flight reconfigurable DPU design approach using integrated hardwired processors.
基金Project supported by the National Key R&D Program of China(No.2021YFB0300500)the National Natural Science Foundation of China(No.62022051)。
文摘Emergence of new hardware,including persistent memory and smart network interface card(SmartNIC),has brought new opportunities to file system design.In this paper,we design and implement a new file system named NICFS based on persistent memory and SmartNIC.We divide the file system into two parts:the front end and the back end.In the front end,data writes are appended to the persistent memory in a log-structured way,leveraging the fast persistence advantage of persistent memory.In the back end,the data in logs are fetched,processed,and patched to files in the background,leveraging the processing capacity of SmartNIC.Evaluation results show that NICFS outperforms Ext4 by about 21%/10%and about 19%/50%on large and small reads/writes,respectively.