The big data generated by tunnel boring machines(TBMs)are widely used to reveal complex rock-machine interactions by machine learning(ML)algorithms.Data preprocessing plays a crucial role in improving ML accuracy.For ...The big data generated by tunnel boring machines(TBMs)are widely used to reveal complex rock-machine interactions by machine learning(ML)algorithms.Data preprocessing plays a crucial role in improving ML accuracy.For this,a TBM big data preprocessing method in ML was proposed in the present study.It emphasized the accurate division of TBM tunneling cycle and the optimization method of feature extraction.Based on the data collected from a TBM water conveyance tunnel in China,its effectiveness was demonstrated by application in predicting TBM performance.Firstly,the Score-Kneedle(S-K)method was proposed to divide a TBM tunneling cycle into five phases.Conducted on 500 TBM tunneling cycles,the S-K method accurately divided all five phases in 458 cycles(accuracy of 91.6%),which is superior to the conventional duration division method(accuracy of 74.2%).Additionally,the S-K method accurately divided the stable phase in 493 cycles(accuracy of 98.6%),which is superior to two state-of-the-art division methods,namely the histogram discriminant method(accuracy of 94.6%)and the cumulative sum change point detection method(accuracy of 92.8%).Secondly,features were extracted from the divided phases.Specifically,TBM tunneling resistances were extracted from the free rotating phase and free advancing phase.The resistances were subtracted from the total forces to represent the true rock-fragmentation forces.The secant slope and the mean value were extracted as features of the increasing phase and stable phase,respectively.Finally,an ML model integrating a deep neural network and genetic algorithm(GA-DNN)was established to learn the preprocessed data.The GA-DNN used 6 secant slope features extracted from the increasing phase to predict the mean field penetration index(FPI)and torque penetration index(TPI)in the stable phase,guiding TBM drivers to make better decisions in advance.The results indicate that the proposed TBM big data preprocessing method can improve prediction accuracy significantly(improving R2s of TPI and FPI on the test dataset from 0.7716 to 0.9178 and from 0.7479 to 0.8842,respectively).展开更多
In order to reduce the risk of non-performing loans, losses, and improve the loan approval efficiency, it is necessary to establish an intelligent loan risk and approval prediction system. A hybrid deep learning model...In order to reduce the risk of non-performing loans, losses, and improve the loan approval efficiency, it is necessary to establish an intelligent loan risk and approval prediction system. A hybrid deep learning model with 1DCNN-attention network and the enhanced preprocessing techniques is proposed for loan approval prediction. Our proposed model consists of the enhanced data preprocessing and stacking of multiple hybrid modules. Initially, the enhanced data preprocessing techniques using a combination of methods such as standardization, SMOTE oversampling, feature construction, recursive feature elimination (RFE), information value (IV) and principal component analysis (PCA), which not only eliminates the effects of data jitter and non-equilibrium, but also removes redundant features while improving the representation of features. Subsequently, a hybrid module that combines a 1DCNN with an attention mechanism is proposed to extract local and global spatio-temporal features. Finally, the comprehensive experiments conducted validate that the proposed model surpasses state-of-the-art baseline models across various performance metrics, including accuracy, precision, recall, F1 score, and AUC. Our proposed model helps to automate the loan approval process and provides scientific guidance to financial institutions for loan risk control.展开更多
The Moon-based Ultraviolet Telescope (MUVT) is one of the payloads on the Chang'e-3 (CE-3) lunar lander. Because of the advantages of having no at- mospheric disturbances and the slow rotation of the Moon, we can...The Moon-based Ultraviolet Telescope (MUVT) is one of the payloads on the Chang'e-3 (CE-3) lunar lander. Because of the advantages of having no at- mospheric disturbances and the slow rotation of the Moon, we can make long-term continuous observations of a series of important celestial objects in the near ultra- violet band (245-340 nm), and perform a sky survey of selected areas, which can- not be completed on Earth. We can find characteristic changes in celestial brightness with time by analyzing image data from the MUVT, and deduce the radiation mech- anism and physical properties of these celestial objects after comparing with a phys- ical model. In order to explain the scientific purposes of MUVT, this article analyzes the preprocessing of MUVT image data and makes a preliminary evaluation of data quality. The results demonstrate that the methods used for data collection and prepro- cessing are effective, and the Level 2A and 2B image data satisfy the requirements of follow-up scientific researches.展开更多
Quantum Machine Learning(QML)techniques have been recently attracting massive interest.However reported applications usually employ synthetic or well-known datasets.One of these techniques based on using a hybrid appr...Quantum Machine Learning(QML)techniques have been recently attracting massive interest.However reported applications usually employ synthetic or well-known datasets.One of these techniques based on using a hybrid approach combining quantum and classic devices is the Variational Quantum Classifier(VQC),which development seems promising.Albeit being largely studied,VQC implementations for“real-world”datasets are still challenging on Noisy Intermediate Scale Quantum devices(NISQ).In this paper we propose a preprocessing pipeline based on Stokes parameters for data mapping.This pipeline enhances the prediction rates when applying VQC techniques,improving the feasibility of solving classification problems using NISQ devices.By including feature selection techniques and geometrical transformations,enhanced quantum state preparation is achieved.Also,a representation based on the Stokes parameters in the PoincaréSphere is possible for visualizing the data.Our results show that by using the proposed techniques we improve the classification score for the incidence of acute comorbid diseases in Type 2 Diabetes Mellitus patients.We used the implemented version of VQC available on IBM’s framework Qiskit,and obtained with two and three qubits an accuracy of 70%and 72%respectively.展开更多
Due to the frequent changes of wind speed and wind direction,the accuracy of wind turbine(WT)power prediction using traditional data preprocessing method is low.This paper proposes a data preprocessing method which co...Due to the frequent changes of wind speed and wind direction,the accuracy of wind turbine(WT)power prediction using traditional data preprocessing method is low.This paper proposes a data preprocessing method which combines POT with DBSCAN(POT-DBSCAN)to improve the prediction efficiency of wind power prediction model.Firstly,according to the data of WT in the normal operation condition,the power prediction model ofWT is established based on the Particle Swarm Optimization(PSO)Arithmetic which is combined with the BP Neural Network(PSO-BP).Secondly,the wind-power data obtained from the supervisory control and data acquisition(SCADA)system is preprocessed by the POT-DBSCAN method.Then,the power prediction of the preprocessed data is carried out by PSO-BP model.Finally,the necessity of preprocessing is verified by the indexes.This case analysis shows that the prediction result of POT-DBSCAN preprocessing is better than that of the Quartile method.Therefore,the accuracy of data and prediction model can be improved by using this method.展开更多
Many classifiers and methods are proposed to deal with letter recognition problem. Among them, clustering is a widely used method. But only one time for clustering is not adequately. Here, we adopt data preprocessing ...Many classifiers and methods are proposed to deal with letter recognition problem. Among them, clustering is a widely used method. But only one time for clustering is not adequately. Here, we adopt data preprocessing and a re kernel clustering method to tackle the letter recognition problem. In order to validate effectiveness and efficiency of proposed method, we introduce re kernel clustering into Kernel Nearest Neighbor classification(KNN), Radial Basis Function Neural Network(RBFNN), and Support Vector Machine(SVM). Furthermore, we compare the difference between re kernel clustering and one time kernel clustering which is denoted as kernel clustering for short. Experimental results validate that re kernel clustering forms fewer and more feasible kernels and attain higher classification accuracy.展开更多
In this study, we propose a data preprocessing algorithm called D-IMPACT inspired by the IMPACT clustering algorithm. D-IMPACT iteratively moves data points based on attraction and density to detect and remove noise a...In this study, we propose a data preprocessing algorithm called D-IMPACT inspired by the IMPACT clustering algorithm. D-IMPACT iteratively moves data points based on attraction and density to detect and remove noise and outliers, and separate clusters. Our experimental results on two-dimensional datasets and practical datasets show that this algorithm can produce new datasets such that the performance of the clustering algorithm is improved.展开更多
The futures trading market is an important part of the financial markets and soybeans are one of the most strategically important crops in the world.How to predict soybean future price is a challenging topic being stu...The futures trading market is an important part of the financial markets and soybeans are one of the most strategically important crops in the world.How to predict soybean future price is a challenging topic being studied by many researchers.This paper proposes a novel hybrid soybean future price prediction model which includes two stages of data preprocessing and deep learning prediction.In the data preprocessing stage,futures price series are decomposed into subsequences using the ICEEMDAN(improved complete ensemble empirical mode decomposition with adaptive noise)method.The Lempel-Ziv complexity determination method was then used to identify and reconstruct high-frequency subsequences.Finally,the high frequency component is decomposed secondarily using variational mode decomposition optimized by beluga whale optimization algorithm.In the deep learning prediction stage,a deep extreme learning machine optimized by the sparrow search algorithm was used to obtain the prediction results of all subseries and reconstructs them to obtain the final soybean future price prediction results.Based on the experimental results of soybean future price markets in China,Italy,and the United States,it was found that the hybrid method proposed provides superior performance in terms of prediction accuracy and robustness.展开更多
This study examines the Big Data Collection and Preprocessing course at Anhui Institute of Information Engineering,implementing a hybrid teaching reform using the Bosi Smart Learning Platform.The proposed hybrid model...This study examines the Big Data Collection and Preprocessing course at Anhui Institute of Information Engineering,implementing a hybrid teaching reform using the Bosi Smart Learning Platform.The proposed hybrid model follows a“three-stage”and“two-subject”framework,incorporating a structured design for teaching content and assessment methods before,during,and after class.Practical results indicate that this approach significantly enhances teaching effectiveness and improves students’learning autonomy.展开更多
Substantial advancements have been achieved in Tunnel Boring Machine(TBM)technology and monitoring systems,yet the presence of missing data impedes accurate analysis and interpretation of TBM monitoring results.This s...Substantial advancements have been achieved in Tunnel Boring Machine(TBM)technology and monitoring systems,yet the presence of missing data impedes accurate analysis and interpretation of TBM monitoring results.This study aims to investigate the issue of missing data in extensive TBM datasets.Through a comprehensive literature review,we analyze the mechanism of missing TBM data and compare different imputation methods,including statistical analysis and machine learning algorithms.We also examine the impact of various missing patterns and rates on the efficacy of these methods.Finally,we propose a dynamic interpolation strategy tailored for TBM engineering sites.The research results show that K-Nearest Neighbors(KNN)and Random Forest(RF)algorithms can achieve good interpolation results;As the missing rate increases,the interpolation effect of different methods will decrease;The interpolation effect of block missing is poor,followed by mixed missing,and the interpolation effect of sporadic missing is the best.On-site application results validate the proposed interpolation strategy's capability to achieve robust missing value interpolation effects,applicable in ML scenarios such as parameter optimization,attitude warning,and pressure prediction.These findings contribute to enhancing the efficiency of TBM missing data processing,offering more effective support for large-scale TBM monitoring datasets.展开更多
Liquid chromatography–mass spectrometry(LC–MS)has enabled the detection of thousands of metabolite features from a single biological sample that produces large and complex datasets.One of the key issues in LC–MS-ba...Liquid chromatography–mass spectrometry(LC–MS)has enabled the detection of thousands of metabolite features from a single biological sample that produces large and complex datasets.One of the key issues in LC–MS-based metabolomics is comprehensive and accurate analysis of enormous amount of data.Many free data preprocessing tools,such as XCMS,MZmine,MAVEN,and MetaboAnalyst,as well as commercial software,have been developed to facilitate data processing.However,researchers are challenged by the inevitable and unconquerable yields of numerous false-positive peaks,and human errors while manually removing such false peaks.Even with continuous improvements of data processing tools,there can still be many mistakes generated during data preprocessing.In addition,many data preprocessing software exist,and every tool has its own advantages and disadvantages.Thereby,a researcher needs to judge what kind of software or tools to choose that most suit their vendor proprietary formats and goal of downstream analysis.Here,we provided a brief introduction of the general steps of raw MS data processing,and properties of automated data processing tools.Then,characteristics of mainly free data preprocessing software were summarized for researchers’consideration in conducting metabolomics study.展开更多
短期预测在智能电网建设中扮演着重要角色,深刻影响电网发输变配用各个环节的智能化改造。短期预测一般基于系统实测数据,而传感器故障,数据传输错误等原因会导致数据质量下降,严重影响短期预测的精确性。为建立数据质量受损情况下的精...短期预测在智能电网建设中扮演着重要角色,深刻影响电网发输变配用各个环节的智能化改造。短期预测一般基于系统实测数据,而传感器故障,数据传输错误等原因会导致数据质量下降,严重影响短期预测的精确性。为建立数据质量受损情况下的精确短期预测模型,提出了结合数据预处理和双向长短期记忆(bi-directional long short-term memory,Bi-LSTM)的短期预测框架Bi-LSTM-DP(bi-directional long short-term memory data preprocessing)。在Bi-LSTM-DP中,采集的数据首先通过均值填补缺失值,进而基于Savitzky-Golay滤波器对数据降噪,最后采用Bi-LSTM提取时间序列的信息,实现短期预测。为了评估所提方法的性能,文中使用实测的公开数据集分别预测风电发电量和负荷需求,与其他参考方法对比表明了所述方法的有效性和鲁棒性。展开更多
基金The support provided by the Natural Science Foundation of Hubei Province(Grant No.2021CFA081)the National Natural Science Foundation of China(Grant No.42277160)the fellowship of China Postdoctoral Science Foundation(Grant No.2022TQ0241)is gratefully acknowledged.
文摘The big data generated by tunnel boring machines(TBMs)are widely used to reveal complex rock-machine interactions by machine learning(ML)algorithms.Data preprocessing plays a crucial role in improving ML accuracy.For this,a TBM big data preprocessing method in ML was proposed in the present study.It emphasized the accurate division of TBM tunneling cycle and the optimization method of feature extraction.Based on the data collected from a TBM water conveyance tunnel in China,its effectiveness was demonstrated by application in predicting TBM performance.Firstly,the Score-Kneedle(S-K)method was proposed to divide a TBM tunneling cycle into five phases.Conducted on 500 TBM tunneling cycles,the S-K method accurately divided all five phases in 458 cycles(accuracy of 91.6%),which is superior to the conventional duration division method(accuracy of 74.2%).Additionally,the S-K method accurately divided the stable phase in 493 cycles(accuracy of 98.6%),which is superior to two state-of-the-art division methods,namely the histogram discriminant method(accuracy of 94.6%)and the cumulative sum change point detection method(accuracy of 92.8%).Secondly,features were extracted from the divided phases.Specifically,TBM tunneling resistances were extracted from the free rotating phase and free advancing phase.The resistances were subtracted from the total forces to represent the true rock-fragmentation forces.The secant slope and the mean value were extracted as features of the increasing phase and stable phase,respectively.Finally,an ML model integrating a deep neural network and genetic algorithm(GA-DNN)was established to learn the preprocessed data.The GA-DNN used 6 secant slope features extracted from the increasing phase to predict the mean field penetration index(FPI)and torque penetration index(TPI)in the stable phase,guiding TBM drivers to make better decisions in advance.The results indicate that the proposed TBM big data preprocessing method can improve prediction accuracy significantly(improving R2s of TPI and FPI on the test dataset from 0.7716 to 0.9178 and from 0.7479 to 0.8842,respectively).
文摘In order to reduce the risk of non-performing loans, losses, and improve the loan approval efficiency, it is necessary to establish an intelligent loan risk and approval prediction system. A hybrid deep learning model with 1DCNN-attention network and the enhanced preprocessing techniques is proposed for loan approval prediction. Our proposed model consists of the enhanced data preprocessing and stacking of multiple hybrid modules. Initially, the enhanced data preprocessing techniques using a combination of methods such as standardization, SMOTE oversampling, feature construction, recursive feature elimination (RFE), information value (IV) and principal component analysis (PCA), which not only eliminates the effects of data jitter and non-equilibrium, but also removes redundant features while improving the representation of features. Subsequently, a hybrid module that combines a 1DCNN with an attention mechanism is proposed to extract local and global spatio-temporal features. Finally, the comprehensive experiments conducted validate that the proposed model surpasses state-of-the-art baseline models across various performance metrics, including accuracy, precision, recall, F1 score, and AUC. Our proposed model helps to automate the loan approval process and provides scientific guidance to financial institutions for loan risk control.
文摘The Moon-based Ultraviolet Telescope (MUVT) is one of the payloads on the Chang'e-3 (CE-3) lunar lander. Because of the advantages of having no at- mospheric disturbances and the slow rotation of the Moon, we can make long-term continuous observations of a series of important celestial objects in the near ultra- violet band (245-340 nm), and perform a sky survey of selected areas, which can- not be completed on Earth. We can find characteristic changes in celestial brightness with time by analyzing image data from the MUVT, and deduce the radiation mech- anism and physical properties of these celestial objects after comparing with a phys- ical model. In order to explain the scientific purposes of MUVT, this article analyzes the preprocessing of MUVT image data and makes a preliminary evaluation of data quality. The results demonstrate that the methods used for data collection and prepro- cessing are effective, and the Level 2A and 2B image data satisfy the requirements of follow-up scientific researches.
基金funded by eVIDA Research group IT-905-16 from Basque Government.
文摘Quantum Machine Learning(QML)techniques have been recently attracting massive interest.However reported applications usually employ synthetic or well-known datasets.One of these techniques based on using a hybrid approach combining quantum and classic devices is the Variational Quantum Classifier(VQC),which development seems promising.Albeit being largely studied,VQC implementations for“real-world”datasets are still challenging on Noisy Intermediate Scale Quantum devices(NISQ).In this paper we propose a preprocessing pipeline based on Stokes parameters for data mapping.This pipeline enhances the prediction rates when applying VQC techniques,improving the feasibility of solving classification problems using NISQ devices.By including feature selection techniques and geometrical transformations,enhanced quantum state preparation is achieved.Also,a representation based on the Stokes parameters in the PoincaréSphere is possible for visualizing the data.Our results show that by using the proposed techniques we improve the classification score for the incidence of acute comorbid diseases in Type 2 Diabetes Mellitus patients.We used the implemented version of VQC available on IBM’s framework Qiskit,and obtained with two and three qubits an accuracy of 70%and 72%respectively.
基金National Natural Science Foundation of China(Nos.51875199 and 51905165)Hunan Natural Science Fund Project(2019JJ50186)the Ke7y Research and Development Program of Hunan Province(No.2018GK2073).
文摘Due to the frequent changes of wind speed and wind direction,the accuracy of wind turbine(WT)power prediction using traditional data preprocessing method is low.This paper proposes a data preprocessing method which combines POT with DBSCAN(POT-DBSCAN)to improve the prediction efficiency of wind power prediction model.Firstly,according to the data of WT in the normal operation condition,the power prediction model ofWT is established based on the Particle Swarm Optimization(PSO)Arithmetic which is combined with the BP Neural Network(PSO-BP).Secondly,the wind-power data obtained from the supervisory control and data acquisition(SCADA)system is preprocessed by the POT-DBSCAN method.Then,the power prediction of the preprocessed data is carried out by PSO-BP model.Finally,the necessity of preprocessing is verified by the indexes.This case analysis shows that the prediction result of POT-DBSCAN preprocessing is better than that of the Quartile method.Therefore,the accuracy of data and prediction model can be improved by using this method.
基金Supported by the National Science Foundation(No.IIS-9988642)the Multidisciplinary Research Program
文摘Many classifiers and methods are proposed to deal with letter recognition problem. Among them, clustering is a widely used method. But only one time for clustering is not adequately. Here, we adopt data preprocessing and a re kernel clustering method to tackle the letter recognition problem. In order to validate effectiveness and efficiency of proposed method, we introduce re kernel clustering into Kernel Nearest Neighbor classification(KNN), Radial Basis Function Neural Network(RBFNN), and Support Vector Machine(SVM). Furthermore, we compare the difference between re kernel clustering and one time kernel clustering which is denoted as kernel clustering for short. Experimental results validate that re kernel clustering forms fewer and more feasible kernels and attain higher classification accuracy.
文摘In this study, we propose a data preprocessing algorithm called D-IMPACT inspired by the IMPACT clustering algorithm. D-IMPACT iteratively moves data points based on attraction and density to detect and remove noise and outliers, and separate clusters. Our experimental results on two-dimensional datasets and practical datasets show that this algorithm can produce new datasets such that the performance of the clustering algorithm is improved.
基金fully supported by the National Natural Science Foundation of China(52072412)。
文摘The futures trading market is an important part of the financial markets and soybeans are one of the most strategically important crops in the world.How to predict soybean future price is a challenging topic being studied by many researchers.This paper proposes a novel hybrid soybean future price prediction model which includes two stages of data preprocessing and deep learning prediction.In the data preprocessing stage,futures price series are decomposed into subsequences using the ICEEMDAN(improved complete ensemble empirical mode decomposition with adaptive noise)method.The Lempel-Ziv complexity determination method was then used to identify and reconstruct high-frequency subsequences.Finally,the high frequency component is decomposed secondarily using variational mode decomposition optimized by beluga whale optimization algorithm.In the deep learning prediction stage,a deep extreme learning machine optimized by the sparrow search algorithm was used to obtain the prediction results of all subseries and reconstructs them to obtain the final soybean future price prediction results.Based on the experimental results of soybean future price markets in China,Italy,and the United States,it was found that the hybrid method proposed provides superior performance in terms of prediction accuracy and robustness.
基金2024 Anqing Normal University University-Level Key Project(ZK2024062D)。
文摘This study examines the Big Data Collection and Preprocessing course at Anhui Institute of Information Engineering,implementing a hybrid teaching reform using the Bosi Smart Learning Platform.The proposed hybrid model follows a“three-stage”and“two-subject”framework,incorporating a structured design for teaching content and assessment methods before,during,and after class.Practical results indicate that this approach significantly enhances teaching effectiveness and improves students’learning autonomy.
基金supported by the National Natural Science Foundation of China(Grant No.52409151)the Programme of Shenzhen Key Laboratory of Green,Efficient and Intelligent Construction of Underground Metro Station(Programme No.ZDSYS20200923105200001)the Science and Technology Major Project of Xizang Autonomous Region of China(XZ202201ZD0003G).
文摘Substantial advancements have been achieved in Tunnel Boring Machine(TBM)technology and monitoring systems,yet the presence of missing data impedes accurate analysis and interpretation of TBM monitoring results.This study aims to investigate the issue of missing data in extensive TBM datasets.Through a comprehensive literature review,we analyze the mechanism of missing TBM data and compare different imputation methods,including statistical analysis and machine learning algorithms.We also examine the impact of various missing patterns and rates on the efficacy of these methods.Finally,we propose a dynamic interpolation strategy tailored for TBM engineering sites.The research results show that K-Nearest Neighbors(KNN)and Random Forest(RF)algorithms can achieve good interpolation results;As the missing rate increases,the interpolation effect of different methods will decrease;The interpolation effect of block missing is poor,followed by mixed missing,and the interpolation effect of sporadic missing is the best.On-site application results validate the proposed interpolation strategy's capability to achieve robust missing value interpolation effects,applicable in ML scenarios such as parameter optimization,attitude warning,and pressure prediction.These findings contribute to enhancing the efficiency of TBM missing data processing,offering more effective support for large-scale TBM monitoring datasets.
基金National Natural Science Foundation of China(31371515,31671226)。
文摘Liquid chromatography–mass spectrometry(LC–MS)has enabled the detection of thousands of metabolite features from a single biological sample that produces large and complex datasets.One of the key issues in LC–MS-based metabolomics is comprehensive and accurate analysis of enormous amount of data.Many free data preprocessing tools,such as XCMS,MZmine,MAVEN,and MetaboAnalyst,as well as commercial software,have been developed to facilitate data processing.However,researchers are challenged by the inevitable and unconquerable yields of numerous false-positive peaks,and human errors while manually removing such false peaks.Even with continuous improvements of data processing tools,there can still be many mistakes generated during data preprocessing.In addition,many data preprocessing software exist,and every tool has its own advantages and disadvantages.Thereby,a researcher needs to judge what kind of software or tools to choose that most suit their vendor proprietary formats and goal of downstream analysis.Here,we provided a brief introduction of the general steps of raw MS data processing,and properties of automated data processing tools.Then,characteristics of mainly free data preprocessing software were summarized for researchers’consideration in conducting metabolomics study.
文摘短期预测在智能电网建设中扮演着重要角色,深刻影响电网发输变配用各个环节的智能化改造。短期预测一般基于系统实测数据,而传感器故障,数据传输错误等原因会导致数据质量下降,严重影响短期预测的精确性。为建立数据质量受损情况下的精确短期预测模型,提出了结合数据预处理和双向长短期记忆(bi-directional long short-term memory,Bi-LSTM)的短期预测框架Bi-LSTM-DP(bi-directional long short-term memory data preprocessing)。在Bi-LSTM-DP中,采集的数据首先通过均值填补缺失值,进而基于Savitzky-Golay滤波器对数据降噪,最后采用Bi-LSTM提取时间序列的信息,实现短期预测。为了评估所提方法的性能,文中使用实测的公开数据集分别预测风电发电量和负荷需求,与其他参考方法对比表明了所述方法的有效性和鲁棒性。