期刊文献+
共找到1,215篇文章
< 1 2 61 >
每页显示 20 50 100
Database Encoding and A New Algorithm for Association Rules Mining
1
作者 Tong Wang Pilian He 《通讯和计算机(中英文版)》 2006年第3期77-81,共5页
在线阅读 下载PDF
The Books Recommend Service System Based on Improved Algorithm for Mining Association Rules
2
作者 王萍 《魅力中国》 2009年第29期164-166,共3页
The Apriori algorithm is a classical method of association rules mining.Based on analysis of this theory,the paper provides an improved Apriori algorithm.The paper puts foward with algorithm combines HASH table techni... The Apriori algorithm is a classical method of association rules mining.Based on analysis of this theory,the paper provides an improved Apriori algorithm.The paper puts foward with algorithm combines HASH table technique and reduction of candidate item sets to enhance the usage efficiency of resources as well as the individualized service of the data library. 展开更多
关键词 association rules data mining algorithm Recommend BOOKS SERVICE Model
在线阅读 下载PDF
Spatial Multidimensional Association Rules Mining in Forest Fire Data
3
作者 Imas Sukaesih Sitanggang 《Journal of Data Analysis and Information Processing》 2013年第4期90-96,共7页
Hotspots (active fires) indicate spatial distribution of fires. A study on determining influence factors for hotspot occurrence is essential so that fire events can be predicted based on characteristics of a certain a... Hotspots (active fires) indicate spatial distribution of fires. A study on determining influence factors for hotspot occurrence is essential so that fire events can be predicted based on characteristics of a certain area. This study discovers the possible influence factors on the occurrence of fire events using the association rule algorithm namely Apriori in the study area of Rokan Hilir Riau Province Indonesia. The Apriori algorithm was applied on a forest fire dataset which containeddata on physical environment (land cover, river, road and city center), socio-economic (income source, population, and number of school), weather (precipitation, wind speed, and screen temperature), and peatlands. The experiment results revealed 324 multidimensional association rules indicating relationships between hotspots occurrence and other factors.The association among hotspots occurrence with other geographical objects was discovered for the minimum support of 10% and the minimum confidence of 80%. The results show that strong relations between hotspots occurrence and influence factors are found for the support about 12.42%, the confidence of 1, and the lift of 2.26. These factors are precipitation greater than or equal to 3 mm/day, wind speed in [1m/s, 2m/s), non peatland area, screen temperature in [297K, 298K), the number of school in 1 km2 less than or equal to 0.1, and the distance of each hotspot to the nearest road less than or equal to 2.5 km. 展开更多
关键词 data mining SPATIAL association Rule HOTSPOT OCCURRENCE APRIORI algorithm
暂未订购
Ethics Lines and Machine Learning: A Design and Simulation of an Association Rules Algorithm for Exploiting the Data
4
作者 Patrici Calvo Rebeca Egea-Moreno 《Journal of Computer and Communications》 2021年第12期17-37,共21页
Data mining techniques offer great opportunities for developing ethics lines whose main aim is to ensure improvements and compliance with the values, conduct and commitments making up the code of ethics. The aim of th... Data mining techniques offer great opportunities for developing ethics lines whose main aim is to ensure improvements and compliance with the values, conduct and commitments making up the code of ethics. The aim of this study is to suggest a process for exploiting the data generated by the data generated and collected from an ethics line by extracting rules of association and applying the Apriori algorithm. This makes it possible to identify anomalies and behaviour patterns requiring action to review, correct, promote or expand them, as appropriate. 展开更多
关键词 data mining Ethics Lines association rules Apriori algorithm COMPANY
在线阅读 下载PDF
AN EVALUATION APPROACH FOR THE PROGRAM OF ASSOCIATION RULES ALGORITHM BASED ON METAMORPHIC RELATIONS 被引量:1
5
作者 Zhang Jing Hu Xuegang Zhang Bin 《Journal of Electronics(China)》 2011年第4期623-631,共9页
As data mining more and more popular applied in computer system,the quality as-surance test of its software would be get more and more attention.However,because of the ex-istence of the 'oracle' problem,the tr... As data mining more and more popular applied in computer system,the quality as-surance test of its software would be get more and more attention.However,because of the ex-istence of the 'oracle' problem,the traditional test method is not ease fit for the application program in the field of the data mining.In this paper,based on metamorphic testing,a software testing method is proposed in the field of the data mining,makes an association rules algorithm as the specific case,and constructs the metamorphic relation on the algorithm.Experiences show that the method can achieve the testing target and is feasible to apply to other domain. 展开更多
关键词 data mining Metamorphic relation association rule ’Oracle’ problem
在线阅读 下载PDF
A New Hybrid Algorithm for Association Rule Mining 被引量:1
6
作者 张敏聪 燕存良 朱开玉 《Journal of Donghua University(English Edition)》 EI CAS 2007年第5期598-603,共6页
HA (hashing array), a new algorithm, for mining frequent itemsets of large database is proposed. It employs a structure hash array, ltemArray ( ) to store the information of database and then uses it instead of da... HA (hashing array), a new algorithm, for mining frequent itemsets of large database is proposed. It employs a structure hash array, ltemArray ( ) to store the information of database and then uses it instead of database in later iteration. By this improvement, only twice scanning of the whole database is necessary, thereby the computational cost can be reduced significantly. To overcome the performance bottleneck of frequent 2-itemsets mining, a modified algorithm of HA, DHA (directaddressing hashing and array) is proposed, which combines HA with direct-addressing hashing technique. The new hybrid algorithm, DHA, not only overcomes the performance bottleneck but also inherits the advantages of HA. Extensive simulations are conducted in this paper to evaluate the performance of the proposed new algorithm, and the results prove the new algorithm is more efficient and reasonable. 展开更多
关键词 association rule data mining HASHING database analysis
在线阅读 下载PDF
Quantum Algorithm for Mining Frequent Patterns for Association Rule Mining 被引量:1
7
作者 Abdirahman Alasow Marek Perkowski 《Journal of Quantum Information Science》 CAS 2023年第1期1-23,共23页
Maximum frequent pattern generation from a large database of transactions and items for association rule mining is an important research topic in data mining. Association rule mining aims to discover interesting corre... Maximum frequent pattern generation from a large database of transactions and items for association rule mining is an important research topic in data mining. Association rule mining aims to discover interesting correlations, frequent patterns, associations, or causal structures between items hidden in a large database. By exploiting quantum computing, we propose an efficient quantum search algorithm design to discover the maximum frequent patterns. We modified Grover’s search algorithm so that a subspace of arbitrary symmetric states is used instead of the whole search space. We presented a novel quantum oracle design that employs a quantum counter to count the maximum frequent items and a quantum comparator to check with a minimum support threshold. The proposed derived algorithm increases the rate of the correct solutions since the search is only in a subspace. Furthermore, our algorithm significantly scales and optimizes the required number of qubits in design, which directly reflected positively on the performance. Our proposed design can accommodate more transactions and items and still have a good performance with a small number of qubits. 展开更多
关键词 data mining association Rule mining Frequent Pattern Apriori algorithm Quantum Counter Quantum Comparator Grover’s Search algorithm
在线阅读 下载PDF
A Fast Distributed Algorithm for Association Rule Mining Based on Binary Coding Mapping Relation
8
作者 CHEN Geng NI Wei-wei +1 位作者 ZHU Yu-quan SUN Zhi-hui 《Wuhan University Journal of Natural Sciences》 EI CAS 2006年第1期27-30,共4页
Association rule mining is an important issue in data mining. The paper proposed an binary system based method to generate candidate frequent itemsets and corresponding supporting counts efficiently, which needs only ... Association rule mining is an important issue in data mining. The paper proposed an binary system based method to generate candidate frequent itemsets and corresponding supporting counts efficiently, which needs only some operations such as "and", "or" and "xor". Applying this idea in the existed distributed association rule mining al gorithm FDM, the improved algorithm BFDM is proposed. The theoretical analysis and experiment testify that BFDM is effective and efficient. 展开更多
关键词 frequent itemsets distributed association rule mining relation of itemsets-binary data
在线阅读 下载PDF
Fast Algorithms of Mining Probability Functional Dependency Rules in Relational Database 被引量:1
9
作者 陶晓鹏 周傲英 胡运发 《Journal of Computer Science & Technology》 SCIE EI CSCD 2000年第3期261-270,共10页
This paper defines a new kind of rule, probability functional dependency rule. The functional dependency degree can be depicted by this kind of rule. Five algorithms, from the simple to the complex, are presefited to ... This paper defines a new kind of rule, probability functional dependency rule. The functional dependency degree can be depicted by this kind of rule. Five algorithms, from the simple to the complex, are presefited to mine this kind of rule in different condition. The related theorems are proved to ensure the high efficiency and the correctness of the above algorithms. 展开更多
关键词 data mining functional dependency relationship (FD) probability functional dependency rule (PFDR) relational database
原文传递
Chimp Optimization Algorithm Based Feature Selection with Machine Learning for Medical Data Classification
10
作者 Firas Abedi Hayder M.A.Ghanimi +6 位作者 Abeer D.Algarni Naglaa F.Soliman Walid El-Shafai Ali Hashim Abbas Zahraa H.Kareem Hussein Muhi Hariz Ahmed Alkhayyat 《Computer Systems Science & Engineering》 SCIE EI 2023年第12期2791-2814,共24页
Datamining plays a crucial role in extractingmeaningful knowledge fromlarge-scale data repositories,such as data warehouses and databases.Association rule mining,a fundamental process in data mining,involves discoveri... Datamining plays a crucial role in extractingmeaningful knowledge fromlarge-scale data repositories,such as data warehouses and databases.Association rule mining,a fundamental process in data mining,involves discovering correlations,patterns,and causal structures within datasets.In the healthcare domain,association rules offer valuable opportunities for building knowledge bases,enabling intelligent diagnoses,and extracting invaluable information rapidly.This paper presents a novel approach called the Machine Learning based Association Rule Mining and Classification for Healthcare Data Management System(MLARMC-HDMS).The MLARMC-HDMS technique integrates classification and association rule mining(ARM)processes.Initially,the chimp optimization algorithm-based feature selection(COAFS)technique is employed within MLARMC-HDMS to select relevant attributes.Inspired by the foraging behavior of chimpanzees,the COA algorithm mimics their search strategy for food.Subsequently,the classification process utilizes stochastic gradient descent with a multilayer perceptron(SGD-MLP)model,while the Apriori algorithm determines attribute relationships.We propose a COA-based feature selection approach for medical data classification using machine learning techniques.This approach involves selecting pertinent features from medical datasets through COA and training machine learning models using the reduced feature set.We evaluate the performance of our approach on various medical datasets employing diverse machine learning classifiers.Experimental results demonstrate that our proposed approach surpasses alternative feature selection methods,achieving higher accuracy and precision rates in medical data classification tasks.The study showcases the effectiveness and efficiency of the COA-based feature selection approach in identifying relevant features,thereby enhancing the diagnosis and treatment of various diseases.To provide further validation,we conduct detailed experiments on a benchmark medical dataset,revealing the superiority of the MLARMCHDMS model over other methods,with a maximum accuracy of 99.75%.Therefore,this research contributes to the advancement of feature selection techniques in medical data classification and highlights the potential for improving healthcare outcomes through accurate and efficient data analysis.The presented MLARMC-HDMS framework and COA-based feature selection approach offer valuable insights for researchers and practitioners working in the field of healthcare data mining and machine learning. 展开更多
关键词 association rule mining data classification healthcare data machine learning parameter tuning data mining feature selection MLARMC-HDMS COA stochastic gradient descent Apriori algorithm
在线阅读 下载PDF
Effective Diagnosis of Lung Cancer via Various Data-Mining Techniques
11
作者 Subramanian Kanageswari D.Gladis +2 位作者 Irshad Hussain Sultan S.Alshamrani Abdullah Alshehri 《Intelligent Automation & Soft Computing》 SCIE 2023年第4期415-428,共14页
One of the leading cancers for both genders worldwide is lung cancer.The occurrence of lung cancer has fully augmented since the early 19th century.In this manuscript,we have discussed various data mining techniques t... One of the leading cancers for both genders worldwide is lung cancer.The occurrence of lung cancer has fully augmented since the early 19th century.In this manuscript,we have discussed various data mining techniques that have been employed for cancer diagnosis.Exposure to air pollution has been related to various adverse health effects.This work is subject to analysis of various air pollutants and associated health hazards and intends to evaluate the impact of air pollution caused by lung cancer.We have introduced data mining in lung cancer to air pollution,and our approach includes preprocessing,data mining,testing and evaluation,and knowledge discovery.Initially,we will eradicate the noise and irrelevant data,and following that,we will join the multiple informed sources into a common source.From that source,we will designate the information relevant to our investigation to be regained from that assortment.Following that,we will convert the designated data into a suitable mining process.The patterns are abstracted by utilizing a relational suggestion rule mining process.These patterns have revealed information,and this information is categorized with the help of an Auto Associative Neural Network classification method(AANN).The proposed method is compared with the existing method in various factors.In conclusion,the projected Auto associative neural network and relational suggestion rule mining methods accomplish a high accuracy status. 展开更多
关键词 relational association rule mining auto associative neural network PREPROCESSING data mining biological neural network
在线阅读 下载PDF
Research on Employment Data Mining for Higher Vocational Graduates
12
作者 Feng Lin 《International Journal of Technology Management》 2014年第7期78-80,共3页
In order to make effective use a large amount of graduate data in colleges and universities that accumulate by teaching management of work, the paper study the data mining for higher vocational graduates database usin... In order to make effective use a large amount of graduate data in colleges and universities that accumulate by teaching management of work, the paper study the data mining for higher vocational graduates database using the data mining technology. Using a variety of data preprocessing methods for the original data, and the paper put forward to mining algorithm based on commonly association rule Apriori algorithm, then according to the actual needs of the design and implementation of association rule mining system, has been beneficial to the employment guidance of college teaching management decision and graduates of the mining results. 展开更多
关键词 Improved Apriori algorithm data mining Graduates database association rules
在线阅读 下载PDF
A Fast Algorithm for Mining Association Rules 被引量:18
13
作者 黄刘生 陈华平 +1 位作者 王洵 陈国良 《Journal of Computer Science & Technology》 SCIE EI CSCD 2000年第6期619-624,共6页
In this paper, the problem of discovering association rules between items in a large database of sales transactions is discussed, and a novel algorithm, BitMatrix, is proposed. The proposed algorithm is fundamentally ... In this paper, the problem of discovering association rules between items in a large database of sales transactions is discussed, and a novel algorithm, BitMatrix, is proposed. The proposed algorithm is fundamentally different from the known algorithms Apriori and AprioriTid. Empirical evaluation shows that the algorithm outperforms the known ones for large databases. Scale-up experiments show that the algorithm scales linearly with the number of transactions. 展开更多
关键词 database data mining large itemset association rule minimum support minimum confidence
原文传递
Design and Implementation of Book Recommendation Management System Based on Improved Apriori Algorithm 被引量:2
14
作者 Yingwei Zhou 《Intelligent Information Management》 2020年第3期75-87,共13页
The traditional Apriori applied in books management system causes slow system operation due to frequent scanning of database and excessive quantity of candidate item-sets, so an information recommendation book managem... The traditional Apriori applied in books management system causes slow system operation due to frequent scanning of database and excessive quantity of candidate item-sets, so an information recommendation book management system based on improved Apriori data mining algorithm is designed, in which the C/S (client/server) architecture and B/S (browser/server) architecture are integrated, so as to open the book information to library staff and borrowers. The related information data of the borrowers and books can be extracted from books lending database by the data preprocessing sub-module in the system function module. After the data is cleaned, converted and integrated, the association rule mining sub-module is used to mine the strong association rules with support degree greater than minimum support degree threshold and confidence coefficient greater than minimum confidence coefficient threshold according to the processed data and by means of the improved Apriori data mining algorithm to generate association rule database. The association matching is performed by the personalized recommendation sub-module according to the borrower and his selected books in the association rule database. The book information associated with the books read by borrower is recommended to him to realize personalized recommendation of the book information. The experimental results show that the system can effectively recommend book related information, and its CPU occupation rate is only 6.47% under the condition that 50 clients are running it at the same time. Anyway, it has good performance. 展开更多
关键词 Information RECOMMENDATION BOOK Management APRIORI algorithm data mining association RULE PERSONALIZED RECOMMENDATION
在线阅读 下载PDF
Association rule mining algorithm based on Spark for pesticide transaction data analyses
15
作者 Xiaoning Bai Jingdun Jia +3 位作者 Qiwen Wei Shuaiqi Huang Weicheng Du Wanlin Gao 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2019年第5期162-166,共5页
With the development of smart agriculture,the accumulation of data in the field of pesticide regulation has a certain scale.The pesticide transaction data collected by the Pesticide National Data Center alone produces... With the development of smart agriculture,the accumulation of data in the field of pesticide regulation has a certain scale.The pesticide transaction data collected by the Pesticide National Data Center alone produces more than 10 million records daily.However,due to the backward technical means,the existing pesticide supervision data lack deep mining and usage.The Apriori algorithm is one of the classic algorithms in association rule mining,but it needs to traverse the transaction database multiple times,which will cause an extra IO burden.Spark is an emerging big data parallel computing framework with advantages such as memory computing and flexible distributed data sets.Compared with the Hadoop MapReduce computing framework,IO performance was greatly improved.Therefore,this paper proposed an improved Apriori algorithm based on Spark framework,ICAMA.The MapReduce process was used to support the candidate set and then to generate the candidate set.After experimental comparison,when the data volume exceeds 250 Mb,the performance of Spark-based Apriori algorithm was 20%higher than that of the traditional Hadoop-based Apriori algorithm,and with the increase of data volume,the performance improvement was more obvious. 展开更多
关键词 SPARK association rule mining ICAMA algorithm big data pesticide regulation MAPREDUCE
原文传递
Mining φ-Frequent Itemset Using FP-Tree
16
作者 李天瑞 《Journal of Modern Transportation》 2001年第1期67-74,共8页
The problem of association rule mining has gained considerable prominence in the data mining community for its use as an important tool of knowledge discovery from large scale databases. And there has been a spurt of... The problem of association rule mining has gained considerable prominence in the data mining community for its use as an important tool of knowledge discovery from large scale databases. And there has been a spurt of research activities around this problem. However, traditional association rule mining may often derive many rules in which people are uninterested. This paper reports a generalization of association rule mining called φ association rule mining. It allows people to have different interests on different itemsets that arethe need of real application. Also, it can help to derive interesting rules and substantially reduce the amount of rules. An algorithm based on FP tree for mining φ frequent itemset is presented. It is shown by experiments that the proposed methodis efficient and scalable over large databases. 展开更多
关键词 data processing databaseS φ association rule mining φ frequent itemset FP tree data mining
在线阅读 下载PDF
Enhancing Network Intrusion Detection Model Using Machine Learning Algorithms
17
作者 Nancy Awadallah Awad 《Computers, Materials & Continua》 SCIE EI 2021年第4期979-990,共12页
After the digital revolution,large quantities of data have been generated with time through various networks.The networks have made the process of data analysis very difficult by detecting attacks using suitable techn... After the digital revolution,large quantities of data have been generated with time through various networks.The networks have made the process of data analysis very difficult by detecting attacks using suitable techniques.While Intrusion Detection Systems(IDSs)secure resources against threats,they still face challenges in improving detection accuracy,reducing false alarm rates,and detecting the unknown ones.This paper presents a framework to integrate data mining classification algorithms and association rules to implement network intrusion detection.Several experiments have been performed and evaluated to assess various machine learning classifiers based on the KDD99 intrusion dataset.Our study focuses on several data mining algorithms such as;naïve Bayes,decision trees,support vector machines,decision tables,k-nearest neighbor algorithms,and artificial neural networks.Moreover,this paper is concerned with the association process in creating attack rules to identify those in the network audit data,by utilizing a KDD99 dataset anomaly detection.The focus is on false negative and false positive performance metrics to enhance the detection rate of the intrusion detection system.The implemented experiments compare the results of each algorithm and demonstrate that the decision tree is the most powerful algorithm as it has the highest accuracy(0.992)and the lowest false positive rate(0.009). 展开更多
关键词 Intrusion detection association rule data mining algorithms KDD99
在线阅读 下载PDF
Research on an improved wireless network intrusion detection algorithm
18
作者 YE Chang-guo SANG Sheng-ju FENG Ling 《通讯和计算机(中英文版)》 2009年第9期67-70,共4页
关键词 网络入侵检测 无线网络 测算法 APRIORI算法 入侵检测方法 关联规则挖掘 模糊关联规则 数据挖掘
在线阅读 下载PDF
利用模糊关联规则挖掘和遗传算法的工业产品设计优化方法
19
作者 张晴 李丛 高广银 《西南大学学报(自然科学版)》 北大核心 2025年第7期207-218,共12页
在工业产品开发流程的初始阶段,需要处理大量的多维度工业数据。然而,这个过程中的复杂性和不确定性容易导致模糊前端(FFE)问题,增加产品设计的难度。为解决这一问题,避免产品设计中的缺陷,提出一种多层人工智能产品设计方法,该方法结... 在工业产品开发流程的初始阶段,需要处理大量的多维度工业数据。然而,这个过程中的复杂性和不确定性容易导致模糊前端(FFE)问题,增加产品设计的难度。为解决这一问题,避免产品设计中的缺陷,提出一种多层人工智能产品设计方法,该方法结合了多层人工智能技术:大数据分析、基于递归关联规则的模糊推理系统(RAFIS)以及Mamdani模糊推理系统。所提出的方法通过将模糊关联规则挖掘(FARM)和遗传算法(GA)纳入RAFIS,以缩小客户属性和设计参数之间的差距。首先,在FFE阶段,组织数据收集和管理,然后将数据集输入FARM和GA以获取最佳模糊规则和隶属函数。随后,利用这些结果建立用于定制产品设计特征的Mamdani模糊推理系统。通过优化Mamdani推理系统中的参数(包括隶属函数的类型、分区和范围),实现产品定制设计。实验以电动滑板车为例进行应用分析,并采用模糊综合评价方法评估设计方案。结果表明两种设计方案均获得较高满意度,验证了该方法的有效性和可行性。 展开更多
关键词 人工智能 产品设计 模糊关联规则挖掘 遗传算法 大数据分析
原文传递
基于Apriori算法的供电公司营销数据挖掘系统设计
20
作者 张剑 刘畅 +3 位作者 杨逸 魏昕喆 张浩 王旭 《兵工自动化》 北大核心 2025年第7期97-101,共5页
为解决供电公司营销数据量大,影响数据频繁项集处理效率的问题,设计一种基于Apriori算法的供电公司营销数据挖掘系统。硬件设计通过营销数据挖掘系统物理架构部署,搭建系统硬件环境,实现数据库信息的同步;软件方面设计电力营销数据仓库... 为解决供电公司营销数据量大,影响数据频繁项集处理效率的问题,设计一种基于Apriori算法的供电公司营销数据挖掘系统。硬件设计通过营销数据挖掘系统物理架构部署,搭建系统硬件环境,实现数据库信息的同步;软件方面设计电力营销数据仓库,采用Apriori算法通过映射剪枝处理频繁项集,挖掘关联规则,建立多维数据挖掘模型,实现系统的数据挖掘功能。经实验论证分析,结果表明:该系统在电力负荷预测应用中的预测结果与实际值相差较小,在最小支持度和事务数据量条件下,数据挖掘执行时间分别在2和10 s以下,具有较高的执行效率,说明该系统是可行的。 展开更多
关键词 APRIORI算法 供电公司 服务器 营销数据挖掘系统 关联规则 数据仓库
在线阅读 下载PDF
上一页 1 2 61 下一页 到第
使用帮助 返回顶部