With the rapid expansion of multimedia data,protecting digital information has become increasingly critical.Reversible data hiding offers an effective solution by allowing sensitive information to be embedded in multi...With the rapid expansion of multimedia data,protecting digital information has become increasingly critical.Reversible data hiding offers an effective solution by allowing sensitive information to be embedded in multimedia files while enabling full recovery of the original data after extraction.Audio,as a vital medium in communication,entertainment,and information sharing,demands the same level of security as images.However,embedding data in encrypted audio poses unique challenges due to the trade-offs between security,data integrity,and embedding capacity.This paper presents a novel interpolation-based reversible data hiding algorithm for encrypted audio that achieves scalable embedding capacity.By increasing sample density through interpolation,embedding opportunities are significantly enhanced while maintaining encryption throughout the process.The method further integrates multiple most significant bit(multi-MSB)prediction and Huffman coding to optimize compression and embedding efficiency.Experimental results on standard audio datasets demonstrate the proposed algorithm’s ability to embed up to 12.47 bits per sample with over 9.26 bits per sample available for pure embedding capacity,while preserving full reversibility.These results confirm the method’s suitability for secure applications that demand high embedding capacity and perfect reconstruction of original audio.This work advances reversible data hiding in encrypted audio by offering a secure,efficient,and fully reversible data hiding framework.展开更多
Data hiding methods involve embedding secret messages into cover objects to enable covert communication in a way that is difficult to detect.In data hiding methods based on image interpolation,the image size is reduce...Data hiding methods involve embedding secret messages into cover objects to enable covert communication in a way that is difficult to detect.In data hiding methods based on image interpolation,the image size is reduced and then enlarged through interpolation,followed by the embedding of secret data into the newly generated pixels.A general improving approach for embedding secret messages is proposed.The approach may be regarded a general model for enhancing the data embedding capacity of various existing image interpolation-based data hiding methods.This enhancement is achieved by expanding the range of pixel values available for embedding secret messages,removing the limitations of many existing methods,where the range is restricted to powers of two to facilitate the direct embedding of bit-based messages.This improvement is accomplished through the application of multiple-based number conversion to the secret message data.The method converts the message bits into a multiple-based number and uses an algorithm to embed each digit of this number into an individual pixel,thereby enhancing the message embedding efficiency,as proved by a theorem derived in this study.The proposed improvement method has been tested through experiments on three well-known image interpolation-based data hiding methods.The results show that the proposed method can enhance the three data embedding rates by approximately 14%,13%,and 10%,respectively,create stego-images with good quality,and resist RS steganalysis attacks.These experimental results indicate that the use of the multiple-based number conversion technique to improve the three interpolation-based methods for embedding secret messages increases the number of message bits embedded in the images.For many image interpolation-based data hiding methods,which use power-of-two pixel-value ranges for message embedding,other than the three tested ones,the proposed improvement method is also expected to be effective for enhancing their data embedding capabilities.展开更多
This study introduces an Edge-Based Data Hiding and Extraction Algorithm(EBDHEA)to address the problem of data embedding in images while preserving robust security and high image quality.The algorithm produces three c...This study introduces an Edge-Based Data Hiding and Extraction Algorithm(EBDHEA)to address the problem of data embedding in images while preserving robust security and high image quality.The algorithm produces three classes of pixels from the pixels in the cover image:edges found by the Canny edge detection method,pixels arising from the expansion of neighboring edge pixels,and pixels that are neither edges nor components of the neighboring edge pixels.The number of Least Significant Bits(LSBs)that are used to hide data depends on these classifications.Furthermore,the lossless compression method,Huffman coding,improves image data capacity.To increase the security of the steganographic process,secret messages are encrypted using the XOR encryption technique before being embedded.Metrics such as the Mean Squared Error(MSE),Peak Signal-to-Noise Ratio(PSNR),and Structural Similarity Index Measure(SSIM)are used to assess the efficacy of this algorithm and are compared to previous methods.The findings demonstrate that the suggested approach achieves high similarity between the original and modified images with a maximum PSNR of 60.7 dB for a payload of 18,750 bytes,a maximum SSIM of 0.999 for a payload of 314,572.8 bytes,and a maximum Video Information Fidelity(VIF)of 0.95 for a payload of 23,592 bytes.Normalized Cross-Correlation(NCC)values are very close to 1.In addition,the performance of EBDHEA is implemented on Secure Medical Image Transmission as a real-world example,and the performance is tested against three types of attacks:RS Steganalysis,Chi-square attack,and visual attack,and compared with two deep learning models,such as SRNet and XuNet.展开更多
Medical image segmentation,i.e.,labeling structures of interest in medical images,is crucial for disease diagnosis and treatment in radiology.In reversible data hiding in medical images(RDHMI),segmentation consists of...Medical image segmentation,i.e.,labeling structures of interest in medical images,is crucial for disease diagnosis and treatment in radiology.In reversible data hiding in medical images(RDHMI),segmentation consists of only two regions:the focal and nonfocal regions.The focal region mainly contains information for diagnosis,while the nonfocal region serves as the monochrome background.The current traditional segmentation methods utilized in RDHMI are inaccurate for complex medical images,and manual segmentation is time-consuming,poorly reproducible,and operator-dependent.Implementing state-of-the-art deep learning(DL)models will facilitate key benefits,but the lack of domain-specific labels for existing medical datasets makes it impossible.To address this problem,this study provides labels of existing medical datasets based on a hybrid segmentation approach to facilitate the implementation of DL segmentation models in this domain.First,an initial segmentation based on a 33 kernel is performed to analyze×identified contour pixels before classifying pixels into focal and nonfocal regions.Then,several human expert raters evaluate and classify the generated labels into accurate and inaccurate labels.The inaccurate labels undergo manual segmentation by medical practitioners and are scored based on a hierarchical voting scheme before being assigned to the proposed dataset.To ensure reliability and integrity in the proposed dataset,we evaluate the accurate automated labels with manually segmented labels by medical practitioners using five assessment metrics:dice coefficient,Jaccard index,precision,recall,and accuracy.The experimental results show labels in the proposed dataset are consistent with the subjective judgment of human experts,with an average accuracy score of 94%and dice coefficient scores between 90%-99%.The study further proposes a ResNet-UNet with concatenated spatial and channel squeeze and excitation(scSE)architecture for semantic segmentation to validate and illustrate the usefulness of the proposed dataset.The results demonstrate the superior performance of the proposed architecture in accurately separating the focal and nonfocal regions compared to state-of-the-art architectures.Dataset information is released under the following URL:https://www.kaggle.com/lordamoah/datasets(accessed on 31 March 2025).展开更多
With the rapid advancement of cloud computing technology,reversible data hiding algorithms in encrypted images(RDH-EI)have developed into an important field of study concentrated on safeguarding privacy in distributed...With the rapid advancement of cloud computing technology,reversible data hiding algorithms in encrypted images(RDH-EI)have developed into an important field of study concentrated on safeguarding privacy in distributed cloud environments.However,existing algorithms often suffer from low embedding capacities and are inadequate for complex data access scenarios.To address these challenges,this paper proposes a novel reversible data hiding algorithm in encrypted images based on adaptive median edge detection(AMED)and ciphertext-policy attributebased encryption(CP-ABE).This proposed algorithm enhances the conventional median edge detection(MED)by incorporating dynamic variables to improve pixel prediction accuracy.The carrier image is subsequently reconstructed using the Huffman coding technique.Encrypted image generation is then achieved by encrypting the image based on system user attributes and data access rights,with the hierarchical embedding of the group’s secret data seamlessly integrated during the encryption process using the CP-ABE scheme.Ultimately,the encrypted image is transmitted to the data hider,enabling independent embedding of the secret data and resulting in the creation of the marked encrypted image.This approach allows only the receiver to extract the authorized group’s secret data,thereby enabling fine-grained,controlled access.Test results indicate that,in contrast to current algorithms,the method introduced here considerably improves the embedding rate while preserving lossless image recovery.Specifically,the average maximum embedding rates for the(3,4)-threshold and(6,6)-threshold schemes reach 5.7853 bits per pixel(bpp)and 7.7781 bpp,respectively,across the BOSSbase,BOW-2,and USD databases.Furthermore,the algorithm facilitates permission-granting and joint-decryption capabilities.Additionally,this paper conducts a comprehensive examination of the algorithm’s robustness using metrics such as image correlation,information entropy,and number of pixel change rate(NPCR),confirming its high level of security.Overall,the algorithm can be applied in a multi-user and multi-level cloud service environment to realize the secure storage of carrier images and secret data.展开更多
Reversible data hiding is a confidential communication technique that takes advantage of image file characteristics,which allows us to hide sensitive data in image files.In this paper,we propose a novel high-fidelity ...Reversible data hiding is a confidential communication technique that takes advantage of image file characteristics,which allows us to hide sensitive data in image files.In this paper,we propose a novel high-fidelity reversible data hiding scheme.Based on the advantage of the multipredictor mechanism,we combine two effective prediction schemes to improve prediction accuracy.In addition,the multihistogram technique is utilized to further improve the image quality of the stego image.Moreover,a model of the grouped knapsack problem is used to speed up the search for the suitable embedding bin in each sub-histogram.Experimental results show that the quality of the stego image of our scheme outperforms state-of-the-art schemes in most cases.展开更多
Contrast enhancement in medical images has been vitalsince the prevalence of image representationsin healthcare.In this research,the PRDHMCE(pairwise reversible data hiding for medical images with contrast enhancement...Contrast enhancement in medical images has been vitalsince the prevalence of image representationsin healthcare.In this research,the PRDHMCE(pairwise reversible data hiding for medical images with contrast enhancement)algorithm is proposed as an automatic contrast enhancement(CE)method for medical images based on region ofinterest(ROI)and non-region of interest(NROI).The PRDHMCE algorithm strategically enhances the ROI aftersegmentation using histogram stretching and data embedding.An initial histogram evaluation compares histogrambins with their neighbours to select the bin with the maximum pixel count.The selected bin is set as the point forcontrast stretching with enhancement and secret data embedding in the ROI.The remaining data is embedded inthe NROIwhile reducing image distortions.Experimentalresultsshowthe effectiveness of PRDHMCE in optimallyimproving image contrast and increasing embedding capacity comparedwith existing methods based on qualitativeand objective metricssuch as peak signal-to-noise ratio(PSNR),structuralsimilarity index(SSIM),relative contrasterror(RCE),relative mean brightness error(RMBE)and mean opinion score(MOS).Additionally,PRDHMCErecovers medical images fully without data loss.展开更多
Advanced cloud computing technology provides cost saving and flexibility of services for users.With the explosion of multimedia data,more and more data owners would outsource their personal multimedia data on the clou...Advanced cloud computing technology provides cost saving and flexibility of services for users.With the explosion of multimedia data,more and more data owners would outsource their personal multimedia data on the cloud.In the meantime,some computationally expensive tasks are also undertaken by cloud servers.However,the outsourced multimedia data and its applications may reveal the data owner’s private information because the data owners lose the control of their data.Recently,this thought has aroused new research interest on privacy-preserving reversible data hiding over outsourced multimedia data.In this paper,two reversible data hiding schemes are proposed for encrypted image data in cloud computing:reversible data hiding by homomorphic encryption and reversible data hiding in encrypted domain.The former is that additional bits are extracted after decryption and the latter is that extracted before decryption.Meanwhile,a combined scheme is also designed.This paper proposes the privacy-preserving outsourcing scheme of reversible data hiding over encrypted image data in cloud computing,which not only ensures multimedia data security without relying on the trustworthiness of cloud servers,but also guarantees that reversible data hiding can be operated over encrypted images at the different stages.Theoretical analysis confirms the correctness of the proposed encryption model and justifies the security of the proposed scheme.The computation cost of the proposed scheme is acceptable and adjusts to different security levels.展开更多
This paper proposes a lossless and high payload data hiding scheme for JPEG images by histogram modification.The most in JPEG bitstream consists of a sequence of VLCs(variable length codes)and the appended bits.Each V...This paper proposes a lossless and high payload data hiding scheme for JPEG images by histogram modification.The most in JPEG bitstream consists of a sequence of VLCs(variable length codes)and the appended bits.Each VLC has a corresponding RLV(run/length value)to record the AC/DC coefficients.To achieve lossless data hiding with high payload,we shift the histogram of VLCs and modify the DHT segment to embed data.Since we sort the histogram of VLCs in descending order,the filesize expansion is limited.The paper’s key contribution includes:Lossless data hiding,less filesize expansion in identical pay-load and higher embedding efficiency.展开更多
Recently,reversible data hiding in encrypted image(RDHEI)has attracted extensive attention,which can be used in secure cloud computing and privacy protection effectively.In this paper,a novel RDHEI scheme based on blo...Recently,reversible data hiding in encrypted image(RDHEI)has attracted extensive attention,which can be used in secure cloud computing and privacy protection effectively.In this paper,a novel RDHEI scheme based on block classification and permutation is proposed.Content owner first divides original image into non-overlapping blocks and then set a threshold to classify these blocks into smooth and non-smooth blocks respectively.After block classification,content owner utilizes a specific encryption method,including stream cipher encryption and block permutation to protect image content securely.For the encrypted image,data hider embeds additional secret information in the most significant bits(MSB)of the encrypted pixels in smooth blocks and the final marked image can be obtained.At the receiver side,secret data will be extracted correctly with data-hiding key.When receiver only has encryption key,after stream cipher decryption,block scrambling decryption and MSB error prediction with threshold,decrypted image will be achieved.When data hiding key and encryption key are both obtained,receiver can find the smooth and non-smooth blocks correctly and MSB in smooth blocks will be predicted correctly,hence,receiver can recover marked image losslessly.Experimental results demonstrate that our scheme can achieve better rate-distortion performance than some of state-of-the-art schemes.展开更多
A novel local binary pattern-based reversible data hiding(LBP-RDH)technique has been suggested to maintain a fair symmetry between the perceptual transparency and hiding capacity.During embedding,the image is divided ...A novel local binary pattern-based reversible data hiding(LBP-RDH)technique has been suggested to maintain a fair symmetry between the perceptual transparency and hiding capacity.During embedding,the image is divided into various 3×3 blocks.Then,using the LBP-based image descriptor,the LBP codes for each block are computed.Next,the obtained LBP codes are XORed with the embedding bits and are concealed in the respective blocks using the proposed pixel readjustment process.Further,each cover image(CI)pixel produces two different stego-image pixels.Likewise,during extraction,the CI pixels are restored without the loss of a single bit of information.The outcome of the proposed technique with respect to perceptual transparency measures,such as peak signal-to-noise ratio and structural similarity index,is found to be superior to that of some of the recent and state-of-the-art techniques.In addition,the proposed technique has shown excellent resilience to various stego-attacks,such as pixel difference histogram as well as regular and singular analysis.Besides,the out-off boundary pixel problem,which endures in most of the contemporary data hiding techniques,has been successfully addressed.展开更多
Rapid advancements of the Industrial Internet of Things(IIoT)and artificial intelligence(AI)pose serious security issues by revealing secret data.Therefore,security data becomes a crucial issue in IIoT communication w...Rapid advancements of the Industrial Internet of Things(IIoT)and artificial intelligence(AI)pose serious security issues by revealing secret data.Therefore,security data becomes a crucial issue in IIoT communication where secrecy needs to be guaranteed in real time.Practically,AI techniques can be utilized to design image steganographic techniques in IIoT.In addition,encryption techniques act as an important role to save the actual information generated from the IIoT devices to avoid unauthorized access.In order to accomplish secure data transmission in IIoT environment,this study presents novel encryption with image steganography based data hiding technique(EISDHT)for IIoT environment.The proposed EIS-DHT technique involves a new quantum black widow optimization(QBWO)to competently choose the pixel values for hiding secrete data in the cover image.In addition,the multi-level discrete wavelet transform(DWT)based transformation process takes place.Besides,the secret image is divided into three R,G,and B bands which are then individually encrypted using Blowfish,Twofish,and Lorenz Hyperchaotic System.At last,the stego image gets generated by placing the encrypted images into the optimum pixel locations of the cover image.In order to validate the enhanced data hiding performance of the EIS-DHT technique,a set of simulation analyses take place and the results are inspected interms of different measures.The experimental outcomes stated the supremacy of the EIS-DHT technique over the other existing techniques and ensure maximum security.展开更多
Reversible data hiding in encrypted images(RDH-EI)technology is widely used in cloud storage for image privacy protection.In order to improve the embedding capacity of the RDH-EI algorithm and the security of the encr...Reversible data hiding in encrypted images(RDH-EI)technology is widely used in cloud storage for image privacy protection.In order to improve the embedding capacity of the RDH-EI algorithm and the security of the encrypted images,we proposed a reversible data hiding algorithm for encrypted images based on prediction and adaptive classification scrambling.First,the prediction error image is obtained by a novel prediction method before encryption.Then,the image pixel values are divided into two categories by the threshold range,which is selected adaptively according to the image content.Multiple high-significant bits of pixels within the threshold range are used for embedding data and pixel values outside the threshold range remain unchanged.The optimal threshold selected adaptively ensures the maximum embedding capacity of the algorithm.Moreover,the security of encrypted images can be improved by the combination of XOR encryption and classification scrambling encryption since the embedded data is independent of the pixel position.Experiment results demonstrate that the proposed method has higher embedding capacity compared with the current state-of-the-art methods for images with different texture complexity.展开更多
Protecting the security of sensitive information has become a matter of great concern to everyone. Data hiding technique solves the problem to some extent, but still, some shortcomings remain for researching. To impro...Protecting the security of sensitive information has become a matter of great concern to everyone. Data hiding technique solves the problem to some extent, but still, some shortcomings remain for researching. To improve the capability of hiding huge data file in disk with high efficiency. In this paper, we propose a novel approach called CryptFS, which is achieved by utilizing the file access mechanism and modifying the cluster chain structure to hide data. CryptFS can quickly hide data file with G bytes size in less than 0.1s. The time used for hiding and recovering data is irrelevant to the size of data file, and the reliability of the hidden file is high, which will not be overlaid by new created file and disk defragment.展开更多
With the reversible data hiding method based on pixel-value-ordering,data are embedded through the modification of the maximum and minimum values of a block.A significant relationship exists between the embedding perf...With the reversible data hiding method based on pixel-value-ordering,data are embedded through the modification of the maximum and minimum values of a block.A significant relationship exists between the embedding performance and the block size.Traditional pixel-value-ordering methods utilize pixel blocks with a fixed size to embed data;the smaller the pixel blocks,greater is the embedding capacity.However,it tends to result in the deterioration of the quality of the marked image.Herein,a novel reversible data hiding method is proposed by incorporating a block merging strategy into Li et al.’s pixel-value-ordering method,which realizes the dynamic control of block size by considering the image texture.First,the cover image is divided into non-overlapping 2×2 pixel blocks.Subsequently,according to their complexity,similarity and thresholds,these blocks are employed for data embedding through the pixel-value-ordering method directly or after being emerged into 2×4,4×2,or 4×4 sized blocks.Hence,smaller blocks can be used in the smooth region to create a high embedding capacity and larger blocks in the texture region to maintain a high peak signal-to-noise ratio.Experimental results prove that the proposed method is superior to the other three advanced methods.It achieves a high embedding capacity while maintaining low distortion and improves the embedding performance of the pixel-value-ordering algorithm.展开更多
To measure the security for hot searched reversible data hiding(RDH)technique,especially for the common-used histogram-shifting based RDH(denoted as HS-RDH),several steganalysis schemes are designed to detect whether ...To measure the security for hot searched reversible data hiding(RDH)technique,especially for the common-used histogram-shifting based RDH(denoted as HS-RDH),several steganalysis schemes are designed to detect whether some secret data has been hidden in a normal-looking image.However,conventional steganalysis schemes focused on the previous RDH algorithms,i.e.,some early spatial/pixel domain-based histogram-shifting(HS)schemes,which might cause great changes in statistical characteristics and thus be easy to be detected.For recent improved methods,such as some adaptive prediction error(PE)based embedding schemes,those conventional schemes might be invalid,since those adaptive embedding mechanism would effectively reduce the embedding trace and thus increase the difficulty of steganalysis.Therefore,a novel steganalysis method is proposed in this paper to detect recent adaptive RDH schemes and provide a more effective detection tool for RDH.The contributions of this paper could be summarized as follows.(1)By analyzing the characteristics for those adaptive HS-RDH,an effective“flat ground”based detection method is designed to fast identify whether the given image is used to hide secret data;(2)According to the empirical statistical model,double check mechanism is provided to improve the detection accuracy;(3)In addition,to further improve detection ability,some detailed information for secret data,i.e.,its content and embedding location are further estimated.Compared with conventional steganalysis methods,experimental results indicate that our proposed algorithm could achieve a better detection accuracy and meanwhile acquire more detailed information on secret data.展开更多
This paper proposes a novel reversible data hiding scheme for encrypted images with high payload based on homomorphic encryption. In this algorithm, each pixel of the original image is firstly divided into five parts,...This paper proposes a novel reversible data hiding scheme for encrypted images with high payload based on homomorphic encryption. In this algorithm, each pixel of the original image is firstly divided into five parts, which are to be encrypted by applying the homomorphic application based on the Paillier algorithm. Then a serial of operations are carried out in the encrypted domain so as to embed the additional data into the encrypted image. Finally, the embedded additional data can be perfectly extracted, and the host image can be recovered without error when the marked image is decrypted directly. Security analysis, extensive experiment results and comparisons illustrate that it has high security, and the original image recovery is free of any error. Meanwhile, the embedding capacity of this algorithm is enhanced when compared with other literatures.展开更多
The authenticity and integrity of healthcare is the primary objective.Numerous reversible watermarking schemes have been developed to improve the primary objective but increasing the quantity of embedding data leads t...The authenticity and integrity of healthcare is the primary objective.Numerous reversible watermarking schemes have been developed to improve the primary objective but increasing the quantity of embedding data leads to covering image distortion and visual quality resulting in data security detection.A trade-off between robustness,imperceptibility,and embedded capacity is difficult to achieve with current algorithms due to limitations in their ability.Keeping this purpose insight,an improved reversibility watermarking methodology is proposed to maximize data embedding capacity and imperceptibility while maintaining data security as a primary concern.A key is generated by a random path with minimum bit flipping is selected in the 4 × 4 block to gain access to the data embedding patterns.The random path's complex structure ensures data security.Data of various sizes(8 KB,16 KB,32 KB)are used to analyze image imperceptibility and evaluate quality factors.The proposed reversible watermarking methodology performance is tested under standard structures PSNR,SSIM,and MSE.The results revealed that the MRI watermarked images are imperceptible,like the cover image when LSB is 3 bits plane.Our proposed reversible watermarking methodology outperforms other related techniques in terms of average PSNR(49.29).Experiment results show that the suggested reversible watermarking method improves data embedding capacity and imperceptibility compared to existing state-of-the-art approaches.展开更多
A novel image reversible data-hiding scheme based on primitive and varying radix numerical model is presented in this article.Using varying radix,variable sum of data may be embedded in various pixels of images.This s...A novel image reversible data-hiding scheme based on primitive and varying radix numerical model is presented in this article.Using varying radix,variable sum of data may be embedded in various pixels of images.This scheme is made adaptive using the correlation of the neighboring pixels.Messages are embedded as blocks of non-uniform length in the high-frequency regions of the rhombus mean interpolated image.A higher amount of data is embedded in the high-frequency regions and lesser data in the low-frequency regions of the image.The size of the embedded data depends on the statistics of the pixel distribution in the cover image.One of the major issues in reversible data embedding,the location map,is minimized because of the interpolation process.This technique,which is actually LSB matching,embeds only the residuals of modulo radix into the LSBs of each pixel.No attacks on this RDH technique will be able to decode the hidden content in the marked image.The proposed scheme delivers a prominent visual quality despite high embedding capacity.Experimental tests carried out on over 100 natural image data sets and medical images show an improvement in results compared to the existing schemes.Since the algorithm is based on the variable radix number system,it is more resistant to most of the steganographic attacks.The results were compared with a higher embedding capacity of up to 1.5 bpp reversible schemes for parameters like Peak Signal-to-Noise Ratio(PSNR),Embedding Capacity(EC)and Structural Similarity Index Metric(SSIM).展开更多
Reversible data hiding in encrypted image(RDHEI)is a widely used technique for privacy protection,which has been developed in many applications that require high confidentiality,authentication and integrity.Proposed R...Reversible data hiding in encrypted image(RDHEI)is a widely used technique for privacy protection,which has been developed in many applications that require high confidentiality,authentication and integrity.Proposed RDHEI methods do not allow high embedding rate while ensuring losslessly recover the original image.Moreover,the ciphertext form of encrypted image in RDHEI framework is easy to cause the attention of attackers.This paper proposes a reversible data hiding algorithm based on image camouflage encryption and bit plane compression.A camouflage encryption algorithm is used to transform a secret image into another meaningful target image,which can cover both secret image and encryption behavior based on“plaintext to plaintext”transformation.An edge optimization method based on prediction algorithm is designed to improve the image camouflage encryption quality.The reversible data hiding based bit-plane level compression,which can improve the redundancy of the bit plane by Gray coding,is used to embed watermark in the camouflage image.The experimental results also show the superior performance of the method in terms of embedding capacity and image quality.展开更多
基金funded by theNational Science and Technology Council of Taiwan under the grant number NSTC 113-2221-E-035-058.
文摘With the rapid expansion of multimedia data,protecting digital information has become increasingly critical.Reversible data hiding offers an effective solution by allowing sensitive information to be embedded in multimedia files while enabling full recovery of the original data after extraction.Audio,as a vital medium in communication,entertainment,and information sharing,demands the same level of security as images.However,embedding data in encrypted audio poses unique challenges due to the trade-offs between security,data integrity,and embedding capacity.This paper presents a novel interpolation-based reversible data hiding algorithm for encrypted audio that achieves scalable embedding capacity.By increasing sample density through interpolation,embedding opportunities are significantly enhanced while maintaining encryption throughout the process.The method further integrates multiple most significant bit(multi-MSB)prediction and Huffman coding to optimize compression and embedding efficiency.Experimental results on standard audio datasets demonstrate the proposed algorithm’s ability to embed up to 12.47 bits per sample with over 9.26 bits per sample available for pure embedding capacity,while preserving full reversibility.These results confirm the method’s suitability for secure applications that demand high embedding capacity and perfect reconstruction of original audio.This work advances reversible data hiding in encrypted audio by offering a secure,efficient,and fully reversible data hiding framework.
文摘Data hiding methods involve embedding secret messages into cover objects to enable covert communication in a way that is difficult to detect.In data hiding methods based on image interpolation,the image size is reduced and then enlarged through interpolation,followed by the embedding of secret data into the newly generated pixels.A general improving approach for embedding secret messages is proposed.The approach may be regarded a general model for enhancing the data embedding capacity of various existing image interpolation-based data hiding methods.This enhancement is achieved by expanding the range of pixel values available for embedding secret messages,removing the limitations of many existing methods,where the range is restricted to powers of two to facilitate the direct embedding of bit-based messages.This improvement is accomplished through the application of multiple-based number conversion to the secret message data.The method converts the message bits into a multiple-based number and uses an algorithm to embed each digit of this number into an individual pixel,thereby enhancing the message embedding efficiency,as proved by a theorem derived in this study.The proposed improvement method has been tested through experiments on three well-known image interpolation-based data hiding methods.The results show that the proposed method can enhance the three data embedding rates by approximately 14%,13%,and 10%,respectively,create stego-images with good quality,and resist RS steganalysis attacks.These experimental results indicate that the use of the multiple-based number conversion technique to improve the three interpolation-based methods for embedding secret messages increases the number of message bits embedded in the images.For many image interpolation-based data hiding methods,which use power-of-two pixel-value ranges for message embedding,other than the three tested ones,the proposed improvement method is also expected to be effective for enhancing their data embedding capabilities.
文摘This study introduces an Edge-Based Data Hiding and Extraction Algorithm(EBDHEA)to address the problem of data embedding in images while preserving robust security and high image quality.The algorithm produces three classes of pixels from the pixels in the cover image:edges found by the Canny edge detection method,pixels arising from the expansion of neighboring edge pixels,and pixels that are neither edges nor components of the neighboring edge pixels.The number of Least Significant Bits(LSBs)that are used to hide data depends on these classifications.Furthermore,the lossless compression method,Huffman coding,improves image data capacity.To increase the security of the steganographic process,secret messages are encrypted using the XOR encryption technique before being embedded.Metrics such as the Mean Squared Error(MSE),Peak Signal-to-Noise Ratio(PSNR),and Structural Similarity Index Measure(SSIM)are used to assess the efficacy of this algorithm and are compared to previous methods.The findings demonstrate that the suggested approach achieves high similarity between the original and modified images with a maximum PSNR of 60.7 dB for a payload of 18,750 bytes,a maximum SSIM of 0.999 for a payload of 314,572.8 bytes,and a maximum Video Information Fidelity(VIF)of 0.95 for a payload of 23,592 bytes.Normalized Cross-Correlation(NCC)values are very close to 1.In addition,the performance of EBDHEA is implemented on Secure Medical Image Transmission as a real-world example,and the performance is tested against three types of attacks:RS Steganalysis,Chi-square attack,and visual attack,and compared with two deep learning models,such as SRNet and XuNet.
基金supported by the National Natural Science Foundation of China(Grant Nos.62072250,61772281,61702235,U1636117,U1804263,62172435,61872203 and 61802212)the Zhongyuan Science and Technology Innovation Leading Talent Project of China(Grant No.214200510019)+3 种基金the Suqian Municipal Science and Technology Plan Project in 2020(S202015)the Plan for Scientific Talent of Henan Province(Grant No.2018JR0018)the Opening Project of Guangdong Provincial Key Laboratory of Information Security Technology(Grant No.2020B1212060078)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)Fund.
文摘Medical image segmentation,i.e.,labeling structures of interest in medical images,is crucial for disease diagnosis and treatment in radiology.In reversible data hiding in medical images(RDHMI),segmentation consists of only two regions:the focal and nonfocal regions.The focal region mainly contains information for diagnosis,while the nonfocal region serves as the monochrome background.The current traditional segmentation methods utilized in RDHMI are inaccurate for complex medical images,and manual segmentation is time-consuming,poorly reproducible,and operator-dependent.Implementing state-of-the-art deep learning(DL)models will facilitate key benefits,but the lack of domain-specific labels for existing medical datasets makes it impossible.To address this problem,this study provides labels of existing medical datasets based on a hybrid segmentation approach to facilitate the implementation of DL segmentation models in this domain.First,an initial segmentation based on a 33 kernel is performed to analyze×identified contour pixels before classifying pixels into focal and nonfocal regions.Then,several human expert raters evaluate and classify the generated labels into accurate and inaccurate labels.The inaccurate labels undergo manual segmentation by medical practitioners and are scored based on a hierarchical voting scheme before being assigned to the proposed dataset.To ensure reliability and integrity in the proposed dataset,we evaluate the accurate automated labels with manually segmented labels by medical practitioners using five assessment metrics:dice coefficient,Jaccard index,precision,recall,and accuracy.The experimental results show labels in the proposed dataset are consistent with the subjective judgment of human experts,with an average accuracy score of 94%and dice coefficient scores between 90%-99%.The study further proposes a ResNet-UNet with concatenated spatial and channel squeeze and excitation(scSE)architecture for semantic segmentation to validate and illustrate the usefulness of the proposed dataset.The results demonstrate the superior performance of the proposed architecture in accurately separating the focal and nonfocal regions compared to state-of-the-art architectures.Dataset information is released under the following URL:https://www.kaggle.com/lordamoah/datasets(accessed on 31 March 2025).
基金the National Natural Science Foundation of China(Grant Numbers 622724786210245062102451).
文摘With the rapid advancement of cloud computing technology,reversible data hiding algorithms in encrypted images(RDH-EI)have developed into an important field of study concentrated on safeguarding privacy in distributed cloud environments.However,existing algorithms often suffer from low embedding capacities and are inadequate for complex data access scenarios.To address these challenges,this paper proposes a novel reversible data hiding algorithm in encrypted images based on adaptive median edge detection(AMED)and ciphertext-policy attributebased encryption(CP-ABE).This proposed algorithm enhances the conventional median edge detection(MED)by incorporating dynamic variables to improve pixel prediction accuracy.The carrier image is subsequently reconstructed using the Huffman coding technique.Encrypted image generation is then achieved by encrypting the image based on system user attributes and data access rights,with the hierarchical embedding of the group’s secret data seamlessly integrated during the encryption process using the CP-ABE scheme.Ultimately,the encrypted image is transmitted to the data hider,enabling independent embedding of the secret data and resulting in the creation of the marked encrypted image.This approach allows only the receiver to extract the authorized group’s secret data,thereby enabling fine-grained,controlled access.Test results indicate that,in contrast to current algorithms,the method introduced here considerably improves the embedding rate while preserving lossless image recovery.Specifically,the average maximum embedding rates for the(3,4)-threshold and(6,6)-threshold schemes reach 5.7853 bits per pixel(bpp)and 7.7781 bpp,respectively,across the BOSSbase,BOW-2,and USD databases.Furthermore,the algorithm facilitates permission-granting and joint-decryption capabilities.Additionally,this paper conducts a comprehensive examination of the algorithm’s robustness using metrics such as image correlation,information entropy,and number of pixel change rate(NPCR),confirming its high level of security.Overall,the algorithm can be applied in a multi-user and multi-level cloud service environment to realize the secure storage of carrier images and secret data.
基金funded by National Science Council,Taiwan,the Grant Number is NSC 111-2410-H-167-005-MY2.
文摘Reversible data hiding is a confidential communication technique that takes advantage of image file characteristics,which allows us to hide sensitive data in image files.In this paper,we propose a novel high-fidelity reversible data hiding scheme.Based on the advantage of the multipredictor mechanism,we combine two effective prediction schemes to improve prediction accuracy.In addition,the multihistogram technique is utilized to further improve the image quality of the stego image.Moreover,a model of the grouped knapsack problem is used to speed up the search for the suitable embedding bin in each sub-histogram.Experimental results show that the quality of the stego image of our scheme outperforms state-of-the-art schemes in most cases.
基金supported in part by the National Natural Science Foundation of China under Grant No.61662039in part by the Jiangxi Key Natural Science Foundation under No.20192ACBL20031+1 种基金in part by the Startup Foundation for Introducing Talent of Nanjing University of Information Science and Technology(NUIST)under Grant No.2019r070in part by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)Fund.
文摘Contrast enhancement in medical images has been vitalsince the prevalence of image representationsin healthcare.In this research,the PRDHMCE(pairwise reversible data hiding for medical images with contrast enhancement)algorithm is proposed as an automatic contrast enhancement(CE)method for medical images based on region ofinterest(ROI)and non-region of interest(NROI).The PRDHMCE algorithm strategically enhances the ROI aftersegmentation using histogram stretching and data embedding.An initial histogram evaluation compares histogrambins with their neighbours to select the bin with the maximum pixel count.The selected bin is set as the point forcontrast stretching with enhancement and secret data embedding in the ROI.The remaining data is embedded inthe NROIwhile reducing image distortions.Experimentalresultsshowthe effectiveness of PRDHMCE in optimallyimproving image contrast and increasing embedding capacity comparedwith existing methods based on qualitativeand objective metricssuch as peak signal-to-noise ratio(PSNR),structuralsimilarity index(SSIM),relative contrasterror(RCE),relative mean brightness error(RMBE)and mean opinion score(MOS).Additionally,PRDHMCErecovers medical images fully without data loss.
基金This work was supported by the National Natural Science Foundation of China(No.61702276)the Startup Foundation for Introducing Talent of Nanjing University of Information Science and Technology under Grant 2016r055 and the Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions.The authors are grateful for the anonymous reviewers who made constructive comments and improvements.
文摘Advanced cloud computing technology provides cost saving and flexibility of services for users.With the explosion of multimedia data,more and more data owners would outsource their personal multimedia data on the cloud.In the meantime,some computationally expensive tasks are also undertaken by cloud servers.However,the outsourced multimedia data and its applications may reveal the data owner’s private information because the data owners lose the control of their data.Recently,this thought has aroused new research interest on privacy-preserving reversible data hiding over outsourced multimedia data.In this paper,two reversible data hiding schemes are proposed for encrypted image data in cloud computing:reversible data hiding by homomorphic encryption and reversible data hiding in encrypted domain.The former is that additional bits are extracted after decryption and the latter is that extracted before decryption.Meanwhile,a combined scheme is also designed.This paper proposes the privacy-preserving outsourcing scheme of reversible data hiding over encrypted image data in cloud computing,which not only ensures multimedia data security without relying on the trustworthiness of cloud servers,but also guarantees that reversible data hiding can be operated over encrypted images at the different stages.Theoretical analysis confirms the correctness of the proposed encryption model and justifies the security of the proposed scheme.The computation cost of the proposed scheme is acceptable and adjusts to different security levels.
基金This research work is partly supported by National Natural Science Foundation of China(61502009,61525203,61472235,U1636206,61572308)CSC Postdoctoral Project(201706505004)+2 种基金Anhui Provincial Natural Science Foundation(1508085SQF216)Key Program for Excellent Young Talents in Colleges and Universities of Anhui Province(gxyqZD2016011)Anhui university research and innovation training project for undergraduate students.
文摘This paper proposes a lossless and high payload data hiding scheme for JPEG images by histogram modification.The most in JPEG bitstream consists of a sequence of VLCs(variable length codes)and the appended bits.Each VLC has a corresponding RLV(run/length value)to record the AC/DC coefficients.To achieve lossless data hiding with high payload,we shift the histogram of VLCs and modify the DHT segment to embed data.Since we sort the histogram of VLCs in descending order,the filesize expansion is limited.The paper’s key contribution includes:Lossless data hiding,less filesize expansion in identical pay-load and higher embedding efficiency.
基金This work was supported by the National Natural Science Foundation of China(61672354,61702332).
文摘Recently,reversible data hiding in encrypted image(RDHEI)has attracted extensive attention,which can be used in secure cloud computing and privacy protection effectively.In this paper,a novel RDHEI scheme based on block classification and permutation is proposed.Content owner first divides original image into non-overlapping blocks and then set a threshold to classify these blocks into smooth and non-smooth blocks respectively.After block classification,content owner utilizes a specific encryption method,including stream cipher encryption and block permutation to protect image content securely.For the encrypted image,data hider embeds additional secret information in the most significant bits(MSB)of the encrypted pixels in smooth blocks and the final marked image can be obtained.At the receiver side,secret data will be extracted correctly with data-hiding key.When receiver only has encryption key,after stream cipher decryption,block scrambling decryption and MSB error prediction with threshold,decrypted image will be achieved.When data hiding key and encryption key are both obtained,receiver can find the smooth and non-smooth blocks correctly and MSB in smooth blocks will be predicted correctly,hence,receiver can recover marked image losslessly.Experimental results demonstrate that our scheme can achieve better rate-distortion performance than some of state-of-the-art schemes.
文摘A novel local binary pattern-based reversible data hiding(LBP-RDH)technique has been suggested to maintain a fair symmetry between the perceptual transparency and hiding capacity.During embedding,the image is divided into various 3×3 blocks.Then,using the LBP-based image descriptor,the LBP codes for each block are computed.Next,the obtained LBP codes are XORed with the embedding bits and are concealed in the respective blocks using the proposed pixel readjustment process.Further,each cover image(CI)pixel produces two different stego-image pixels.Likewise,during extraction,the CI pixels are restored without the loss of a single bit of information.The outcome of the proposed technique with respect to perceptual transparency measures,such as peak signal-to-noise ratio and structural similarity index,is found to be superior to that of some of the recent and state-of-the-art techniques.In addition,the proposed technique has shown excellent resilience to various stego-attacks,such as pixel difference histogram as well as regular and singular analysis.Besides,the out-off boundary pixel problem,which endures in most of the contemporary data hiding techniques,has been successfully addressed.
基金This research work was funded by Institution Fund projects under Grant No.(IFPRC-215-249-2020)Therefore,authors gratefully acknowledge technical and financial support from the Ministry of Education and King Abdulaziz University,DSR,Jeddah,Saudi Arabia.
文摘Rapid advancements of the Industrial Internet of Things(IIoT)and artificial intelligence(AI)pose serious security issues by revealing secret data.Therefore,security data becomes a crucial issue in IIoT communication where secrecy needs to be guaranteed in real time.Practically,AI techniques can be utilized to design image steganographic techniques in IIoT.In addition,encryption techniques act as an important role to save the actual information generated from the IIoT devices to avoid unauthorized access.In order to accomplish secure data transmission in IIoT environment,this study presents novel encryption with image steganography based data hiding technique(EISDHT)for IIoT environment.The proposed EIS-DHT technique involves a new quantum black widow optimization(QBWO)to competently choose the pixel values for hiding secrete data in the cover image.In addition,the multi-level discrete wavelet transform(DWT)based transformation process takes place.Besides,the secret image is divided into three R,G,and B bands which are then individually encrypted using Blowfish,Twofish,and Lorenz Hyperchaotic System.At last,the stego image gets generated by placing the encrypted images into the optimum pixel locations of the cover image.In order to validate the enhanced data hiding performance of the EIS-DHT technique,a set of simulation analyses take place and the results are inspected interms of different measures.The experimental outcomes stated the supremacy of the EIS-DHT technique over the other existing techniques and ensure maximum security.
基金supported by the National Natural Science Foundation of China(61872303,U1936113)the Science and Technology Innovation Talents Program of Sichuan Science and Technology Department(2018RZ0143)the Key Project of Sichuan Science and Technology Innovation Pioneering Miaozi Project(19MZGC0163).
文摘Reversible data hiding in encrypted images(RDH-EI)technology is widely used in cloud storage for image privacy protection.In order to improve the embedding capacity of the RDH-EI algorithm and the security of the encrypted images,we proposed a reversible data hiding algorithm for encrypted images based on prediction and adaptive classification scrambling.First,the prediction error image is obtained by a novel prediction method before encryption.Then,the image pixel values are divided into two categories by the threshold range,which is selected adaptively according to the image content.Multiple high-significant bits of pixels within the threshold range are used for embedding data and pixel values outside the threshold range remain unchanged.The optimal threshold selected adaptively ensures the maximum embedding capacity of the algorithm.Moreover,the security of encrypted images can be improved by the combination of XOR encryption and classification scrambling encryption since the embedded data is independent of the pixel position.Experiment results demonstrate that the proposed method has higher embedding capacity compared with the current state-of-the-art methods for images with different texture complexity.
基金Supported by the National High Technology Research and Development Program of China (863 Program) (2009AA01Z434)the "Core Electronic Devices, High_End General Chip, and Fundamental Software" Major Project (2013JH00103)
文摘Protecting the security of sensitive information has become a matter of great concern to everyone. Data hiding technique solves the problem to some extent, but still, some shortcomings remain for researching. To improve the capability of hiding huge data file in disk with high efficiency. In this paper, we propose a novel approach called CryptFS, which is achieved by utilizing the file access mechanism and modifying the cluster chain structure to hide data. CryptFS can quickly hide data file with G bytes size in less than 0.1s. The time used for hiding and recovering data is irrelevant to the size of data file, and the reliability of the hidden file is high, which will not be overlaid by new created file and disk defragment.
文摘With the reversible data hiding method based on pixel-value-ordering,data are embedded through the modification of the maximum and minimum values of a block.A significant relationship exists between the embedding performance and the block size.Traditional pixel-value-ordering methods utilize pixel blocks with a fixed size to embed data;the smaller the pixel blocks,greater is the embedding capacity.However,it tends to result in the deterioration of the quality of the marked image.Herein,a novel reversible data hiding method is proposed by incorporating a block merging strategy into Li et al.’s pixel-value-ordering method,which realizes the dynamic control of block size by considering the image texture.First,the cover image is divided into non-overlapping 2×2 pixel blocks.Subsequently,according to their complexity,similarity and thresholds,these blocks are employed for data embedding through the pixel-value-ordering method directly or after being emerged into 2×4,4×2,or 4×4 sized blocks.Hence,smaller blocks can be used in the smooth region to create a high embedding capacity and larger blocks in the texture region to maintain a high peak signal-to-noise ratio.Experimental results prove that the proposed method is superior to the other three advanced methods.It achieves a high embedding capacity while maintaining low distortion and improves the embedding performance of the pixel-value-ordering algorithm.
基金This work was supported in part by the National Natural Science Foundation of China under Grant 61762054,U1736215,61772573 and 61563022in part by the National Science Foundation for Distinguished Young Scholars of Jiangxi Province under Grant 20171BCB23072Many thanks to the anonymous reviewers for their insightful comments and valuable suggestions,which helped a lot to improve the paper quality.
文摘To measure the security for hot searched reversible data hiding(RDH)technique,especially for the common-used histogram-shifting based RDH(denoted as HS-RDH),several steganalysis schemes are designed to detect whether some secret data has been hidden in a normal-looking image.However,conventional steganalysis schemes focused on the previous RDH algorithms,i.e.,some early spatial/pixel domain-based histogram-shifting(HS)schemes,which might cause great changes in statistical characteristics and thus be easy to be detected.For recent improved methods,such as some adaptive prediction error(PE)based embedding schemes,those conventional schemes might be invalid,since those adaptive embedding mechanism would effectively reduce the embedding trace and thus increase the difficulty of steganalysis.Therefore,a novel steganalysis method is proposed in this paper to detect recent adaptive RDH schemes and provide a more effective detection tool for RDH.The contributions of this paper could be summarized as follows.(1)By analyzing the characteristics for those adaptive HS-RDH,an effective“flat ground”based detection method is designed to fast identify whether the given image is used to hide secret data;(2)According to the empirical statistical model,double check mechanism is provided to improve the detection accuracy;(3)In addition,to further improve detection ability,some detailed information for secret data,i.e.,its content and embedding location are further estimated.Compared with conventional steganalysis methods,experimental results indicate that our proposed algorithm could achieve a better detection accuracy and meanwhile acquire more detailed information on secret data.
基金the Research Program of Chongqing Education Commission(KJQN202001438,KJQN202001436)the Team Project Affiliated to Yangtze Normal University(2016XJTD01)。
文摘This paper proposes a novel reversible data hiding scheme for encrypted images with high payload based on homomorphic encryption. In this algorithm, each pixel of the original image is firstly divided into five parts, which are to be encrypted by applying the homomorphic application based on the Paillier algorithm. Then a serial of operations are carried out in the encrypted domain so as to embed the additional data into the encrypted image. Finally, the embedded additional data can be perfectly extracted, and the host image can be recovered without error when the marked image is decrypted directly. Security analysis, extensive experiment results and comparisons illustrate that it has high security, and the original image recovery is free of any error. Meanwhile, the embedding capacity of this algorithm is enhanced when compared with other literatures.
基金supported by the National Natural Science Foundation of China(Grant No.61762060)Educational Commission of Gansu Province,China(Grant No.2017C-05)+2 种基金Foundation for the Key Research and Development Program of Gansu Province,China(Grant No.20YF3GA016)supported by King Saud University,Riyadh,Saudi Arabia,through Researchers Supporting Project No.RSP-2022/184The work of author Ayman Radwan was supported by FCT/MEC through Programa Operacional Regional do Centro and by the European Union through the European Social Fund(ESF)under Investigator FCT Grant(5G-AHEAD IF/FCT-IF/01393/2015/CP1310/CT0002).
文摘The authenticity and integrity of healthcare is the primary objective.Numerous reversible watermarking schemes have been developed to improve the primary objective but increasing the quantity of embedding data leads to covering image distortion and visual quality resulting in data security detection.A trade-off between robustness,imperceptibility,and embedded capacity is difficult to achieve with current algorithms due to limitations in their ability.Keeping this purpose insight,an improved reversibility watermarking methodology is proposed to maximize data embedding capacity and imperceptibility while maintaining data security as a primary concern.A key is generated by a random path with minimum bit flipping is selected in the 4 × 4 block to gain access to the data embedding patterns.The random path's complex structure ensures data security.Data of various sizes(8 KB,16 KB,32 KB)are used to analyze image imperceptibility and evaluate quality factors.The proposed reversible watermarking methodology performance is tested under standard structures PSNR,SSIM,and MSE.The results revealed that the MRI watermarked images are imperceptible,like the cover image when LSB is 3 bits plane.Our proposed reversible watermarking methodology outperforms other related techniques in terms of average PSNR(49.29).Experiment results show that the suggested reversible watermarking method improves data embedding capacity and imperceptibility compared to existing state-of-the-art approaches.
文摘A novel image reversible data-hiding scheme based on primitive and varying radix numerical model is presented in this article.Using varying radix,variable sum of data may be embedded in various pixels of images.This scheme is made adaptive using the correlation of the neighboring pixels.Messages are embedded as blocks of non-uniform length in the high-frequency regions of the rhombus mean interpolated image.A higher amount of data is embedded in the high-frequency regions and lesser data in the low-frequency regions of the image.The size of the embedded data depends on the statistics of the pixel distribution in the cover image.One of the major issues in reversible data embedding,the location map,is minimized because of the interpolation process.This technique,which is actually LSB matching,embeds only the residuals of modulo radix into the LSBs of each pixel.No attacks on this RDH technique will be able to decode the hidden content in the marked image.The proposed scheme delivers a prominent visual quality despite high embedding capacity.Experimental tests carried out on over 100 natural image data sets and medical images show an improvement in results compared to the existing schemes.Since the algorithm is based on the variable radix number system,it is more resistant to most of the steganographic attacks.The results were compared with a higher embedding capacity of up to 1.5 bpp reversible schemes for parameters like Peak Signal-to-Noise Ratio(PSNR),Embedding Capacity(EC)and Structural Similarity Index Metric(SSIM).
基金supported in part by the National Key R&D Program of China(2019YFB1406504)the National Natural Science Foundation of China(U1836108,U1936216,62002197).
文摘Reversible data hiding in encrypted image(RDHEI)is a widely used technique for privacy protection,which has been developed in many applications that require high confidentiality,authentication and integrity.Proposed RDHEI methods do not allow high embedding rate while ensuring losslessly recover the original image.Moreover,the ciphertext form of encrypted image in RDHEI framework is easy to cause the attention of attackers.This paper proposes a reversible data hiding algorithm based on image camouflage encryption and bit plane compression.A camouflage encryption algorithm is used to transform a secret image into another meaningful target image,which can cover both secret image and encryption behavior based on“plaintext to plaintext”transformation.An edge optimization method based on prediction algorithm is designed to improve the image camouflage encryption quality.The reversible data hiding based bit-plane level compression,which can improve the redundancy of the bit plane by Gray coding,is used to embed watermark in the camouflage image.The experimental results also show the superior performance of the method in terms of embedding capacity and image quality.