By modeling the spatiotemporal data of the power grid, it is possible to better understand its operational status, identify potential issues and risks, and take timely measures to adjust and optimize the system. Compa...By modeling the spatiotemporal data of the power grid, it is possible to better understand its operational status, identify potential issues and risks, and take timely measures to adjust and optimize the system. Compared to the bus-branch model, the node-breaker model provides higher granularity in describing grid components and can dynamically reflect changes in equipment status, thus improving the efficiency of grid dispatching and operation. This paper proposes a spatiotemporal data modeling method based on a graph database. It elaborates on constructing graph nodes, graph ontology models, and graph entity models from grid dispatch data, describing the construction of the spatiotemporal node-breaker graph model and the transformation to the bus-branch model. Subsequently, by integrating spatiotemporal data attributes into the pre-built static grid graph model, a spatiotemporal evolving graph of the power grid is constructed. Furthermore, the concept of the “Power Grid One Graph” and its requirements in modern power systems are elucidated. Leveraging the constructed spatiotemporal node-breaker graph model and graph computing technology, the paper explores the feasibility of grid situational awareness. Finally, typical applications in an operational provincial grid are showcased, and potential scenarios of the proposed spatiotemporal graph model are discussed.展开更多
With increasingly complex website structure and continuously advancing web technologies,accurate user clicks recognition from massive HTTP data,which is critical for web usage mining,becomes more difficult.In this pap...With increasingly complex website structure and continuously advancing web technologies,accurate user clicks recognition from massive HTTP data,which is critical for web usage mining,becomes more difficult.In this paper,we propose a dependency graph model to describe the relationships between web requests.Based on this model,we design and implement a heuristic parallel algorithm to distinguish user clicks with the assistance of cloud computing technology.We evaluate the proposed algorithm with real massive data.The size of the dataset collected from a mobile core network is 228.7GB.It covers more than three million users.The experiment results demonstrate that the proposed algorithm can achieve higher accuracy than previous methods.展开更多
Enterprise applications utilize relational databases and structured business processes, requiring slow and expensive conversion of inputs and outputs, from business documents such as invoices, purchase orders, and rec...Enterprise applications utilize relational databases and structured business processes, requiring slow and expensive conversion of inputs and outputs, from business documents such as invoices, purchase orders, and receipts, into known templates and schemas before processing. We propose a new LLM Agent-based intelligent data extraction, transformation, and load (IntelligentETL) pipeline that not only ingests PDFs and detects inputs within it but also addresses the extraction of structured and unstructured data by developing tools that most efficiently and securely deal with respective data types. We study the efficiency of our proposed pipeline and compare it with enterprise solutions that also utilize LLMs. We establish the supremacy in timely and accurate data extraction and transformation capabilities of our approach for analyzing the data from varied sources based on nested and/or interlinked input constraints.展开更多
Outlier detection has very important applied value in data mining literature. Different outlier detection algorithms based on distinct theories have different definitions and mining processes. The three-dimensional sp...Outlier detection has very important applied value in data mining literature. Different outlier detection algorithms based on distinct theories have different definitions and mining processes. The three-dimensional space graph for constructing applied algorithms and an improved GridOf algorithm were proposed in terms of analyzing the existing outlier detection algorithms from criterion and theory. Key words outlier - detection - three-dimensional space graph - data mining CLC number TP 311. 13 - TP 391 Foundation item: Supported by the National Natural Science Foundation of China (70371015)Biography: ZHANG Jing (1975-), female, Ph. D, lecturer, research direction: data mining and knowledge discovery.展开更多
This paper proposes a Graph regularized Lpsmooth non-negative matrix factorization(GSNMF) method by incorporating graph regularization and L_p smoothing constraint, which considers the intrinsic geometric information ...This paper proposes a Graph regularized Lpsmooth non-negative matrix factorization(GSNMF) method by incorporating graph regularization and L_p smoothing constraint, which considers the intrinsic geometric information of a data set and produces smooth and stable solutions. The main contributions are as follows: first, graph regularization is added into NMF to discover the hidden semantics and simultaneously respect the intrinsic geometric structure information of a data set. Second,the Lpsmoothing constraint is incorporated into NMF to combine the merits of isotropic(L_2-norm) and anisotropic(L_1-norm)diffusion smoothing, and produces a smooth and more accurate solution to the optimization problem. Finally, the update rules and proof of convergence of GSNMF are given. Experiments on several data sets show that the proposed method outperforms related state-of-the-art methods.展开更多
Due to limitations in geometric representation and semantic description, the current pedestrian route analysis models are inadequate. To express the geometry of geographic entities in a micro-spatial environment accur...Due to limitations in geometric representation and semantic description, the current pedestrian route analysis models are inadequate. To express the geometry of geographic entities in a micro-spatial environment accurately, the concept of a grid is presented, and grid-based methods for modeling geospatial objects are described. The semantic constitution of a building environment and the methods for modeling rooms, corridors, and staircases with grid objects are described. Based on the topology relationship between grid objects, a grid-based graph for a building environment is presented, and the corresponding route algorithm for pedestrians is proposed. The main advantages of the graph model proposed in this paper are as follows: 1) consideration of both semantic and geometric information, 2) consideration of the need for accurate geometric representation of the micro-spatial environment and the efficiency of pedestrian route analysis, 3) applicability of the graph model to route analysis in both static and dynamic environments, and 4) ability of the multi-hierarchical route analysis to integrate the multiple levels of pedestrian decision characteristics, from the high to the low, to determine the optimal path.展开更多
In this paper, a new approach for visualizing multivariate categorical data is presented. The approach uses a graph to represent multivariate categorical data and draws the graph in such a way that we can identify pat...In this paper, a new approach for visualizing multivariate categorical data is presented. The approach uses a graph to represent multivariate categorical data and draws the graph in such a way that we can identify patterns, trends and relationship within the data. A mathematical model for the graph layout problem is deduced and a spectral graph drawing algorithm for visualizing multivariate categorical data is proposed. The experiments show that the drawings by the algorithm well capture the structures of multivariate categorical data and the computing speed is fast.展开更多
Integrating marketing and distribution businesses is crucial for improving the coordination of equipment and the efficient management of multi-energy systems.New energy sources are continuously being connected to dist...Integrating marketing and distribution businesses is crucial for improving the coordination of equipment and the efficient management of multi-energy systems.New energy sources are continuously being connected to distribution grids;this,however,increases the complexity of the information structure of marketing and distribution businesses.The existing unified data model and the coordinated application of marketing and distribution suffer from various drawbacks.As a solution,this paper presents a data model of"one graph of marketing and distribution"and a framework for graph computing,by analyzing the current trends of business and data in the marketing and distribution fields and using graph data theory.Specifically,this work aims to determine the correlation between distribution transformers and marketing users,which is crucial for elucidating the connection between marketing and distribution.In this manner,a novel identification algorithm is proposed based on the collected data for marketing and distribution.Lastly,a forecasting application is developed based on the proposed algorithm to realize the coordinated prediction and consumption of distributed photovoltaic power generation and distribution loads.Furthermore,an operation and maintenance(O&M)knowledge graph reasoning application is developed to improve the intelligent O&M ability of marketing and distribution equipment.展开更多
The wide application of intelligent terminals in microgrids has fueled the surge of data amount in recent years.In real-world scenarios,microgrids must store large amounts of data efficiently while also being able to ...The wide application of intelligent terminals in microgrids has fueled the surge of data amount in recent years.In real-world scenarios,microgrids must store large amounts of data efficiently while also being able to withstand malicious cyberattacks.To meet the high hardware resource requirements,address the vulnerability to network attacks and poor reliability in the tradi-tional centralized data storage schemes,this paper proposes a secure storage management method for microgrid data that considers node trust and directed acyclic graph(DAG)consensus mechanism.Firstly,the microgrid data storage model is designed based on the edge computing technology.The blockchain,deployed on the edge computing server and combined with cloud storage,ensures reliable data storage in the microgrid.Secondly,a blockchain consen-sus algorithm based on directed acyclic graph data structure is then proposed to effectively improve the data storage timeliness and avoid disadvantages in traditional blockchain topology such as long chain construction time and low consensus efficiency.Finally,considering the tolerance differences among the candidate chain-building nodes to network attacks,a hash value update mechanism of blockchain header with node trust identification to ensure data storage security is proposed.Experimental results from the microgrid data storage platform show that the proposed method can achieve a private key update time of less than 5 milliseconds.When the number of blockchain nodes is less than 25,the blockchain construction takes no more than 80 mins,and the data throughput is close to 300 kbps.Compared with the traditional chain-topology-based consensus methods that do not consider node trust,the proposed method has higher efficiency in data storage and better resistance to network attacks.展开更多
Join operation is a critical problem when dealing with sliding window over data streams. There have been many optimization strategies for sliding window join in the literature, but a simple heuristic is always used fo...Join operation is a critical problem when dealing with sliding window over data streams. There have been many optimization strategies for sliding window join in the literature, but a simple heuristic is always used for selecting the join sequence of many sliding windows, which is ineffectively. The graph-based approach is proposed to process the problem. The sliding window join model is introduced primarily. In this model vertex represent join operator and edge indicated the join relationship among sliding windows. Vertex weight and edge weight represent the cost of join and the reciprocity of join operators respectively. Then good query plan with minimal cost can be found in the model. Thus a complete join algorithm combining setting up model, finding optimal query plan and executing query plan is shown. Experiments show that the graph-based approach is feasible and can work better in above environment.展开更多
以旅游大数据为基础,考虑长时间范围内的滞后效应以及不同搜索强度指数(Search Intensity Index,SII)之间的多任务影响,提出一种基于大数据的多任务旅游信息分析(Multi-tasking Tourism Information Analysis Based on Big Data,MTIABD...以旅游大数据为基础,考虑长时间范围内的滞后效应以及不同搜索强度指数(Search Intensity Index,SII)之间的多任务影响,提出一种基于大数据的多任务旅游信息分析(Multi-tasking Tourism Information Analysis Based on Big Data,MTIABD)框架。使用融合信息重排序技术预测旅游需求,具体根据图引导结构模拟历史变量对未来变量的滞后影响。每个变量通过时间维度上的卷积神经网络(Convolutional Neural Network,CNN)进行独立编码,利用二分图动态建模滞后效应,通过图聚合进行挖掘,实现对旅游需求的精准预测。基于上述技术,构建旅游需求预测系统,旅游者能够根据需求检索不同景点的信息。在真实数据集上进行大量实验,结果表明所提出的MTIABD框架在一步和多步预测方面均优于现有方法。在平均绝对百分比误差(Mean Absolute Percentage Error,MAPE)指标下,相较于基于实例的多变量时间序列图预测框架(Instance-wise Graph-rased Framework for Multivariate Time Series Forecasting,IGMTF),MTIABD在HK-2021数据集上的性能提高了16.75%,在MO-2021数据集上的性能提高了19.79%。展开更多
设备运维是保障生产正常进行的重要基础,现有的智能运维技术主要依赖信号分析、数据挖掘或专家知识重用。然而,随着设备自动化和集成化程度的提高,其各类运行异常的表征信号、多源致因和维护方案之间的关系呈现出更高的模糊性和复杂性,...设备运维是保障生产正常进行的重要基础,现有的智能运维技术主要依赖信号分析、数据挖掘或专家知识重用。然而,随着设备自动化和集成化程度的提高,其各类运行异常的表征信号、多源致因和维护方案之间的关系呈现出更高的模糊性和复杂性,将信号、数据和知识进行融合分析是提高设备运维精度和效率的关键。为此,采用知识图谱技术将“人”、“机”、“物”三元数据融合来支撑复杂设备的异常诊断和维护方案决策,提高运维智能化程度、避免决策片面性。首先,对设备运维领域人机物三元数据进行定义并完成三元本体设计,指导知识图数据层的构建。其次,对人机物三元数据进行预处理并搭建了统一混合注意力机制联合抽取模型(Joint entity and relation extraction model with mixed attention,MAREL)从三元数据中自动抽取知识,并建立三元知识之间的关联关系,以此实现人机物三元数据的融合;MAREL模型将任务拆解为两个关联的解码模块来解决实体重叠问题,利用混合注意力机制增强模型的长文本处理能力,在中文数据集SKE上的测试证明MAREL具有优异的性能。最后,以某汽车生产机器人设备运维人机物知识图谱的构建为例,验证了所提方法的有效性,结果表明知识图谱能够将人机物三元数据有效融合,为工业设备的智能运维提供支持。展开更多
基金supported by the Project of China Southern Power Grid Digital Grid Research Institute Co.,Ltd.(210002KK52222026)。
文摘By modeling the spatiotemporal data of the power grid, it is possible to better understand its operational status, identify potential issues and risks, and take timely measures to adjust and optimize the system. Compared to the bus-branch model, the node-breaker model provides higher granularity in describing grid components and can dynamically reflect changes in equipment status, thus improving the efficiency of grid dispatching and operation. This paper proposes a spatiotemporal data modeling method based on a graph database. It elaborates on constructing graph nodes, graph ontology models, and graph entity models from grid dispatch data, describing the construction of the spatiotemporal node-breaker graph model and the transformation to the bus-branch model. Subsequently, by integrating spatiotemporal data attributes into the pre-built static grid graph model, a spatiotemporal evolving graph of the power grid is constructed. Furthermore, the concept of the “Power Grid One Graph” and its requirements in modern power systems are elucidated. Leveraging the constructed spatiotemporal node-breaker graph model and graph computing technology, the paper explores the feasibility of grid situational awareness. Finally, typical applications in an operational provincial grid are showcased, and potential scenarios of the proposed spatiotemporal graph model are discussed.
基金supported in part by the Fundamental Research Funds for the Central Universities under Grant No.2013RC0114111 Project of China under Grant No.B08004
文摘With increasingly complex website structure and continuously advancing web technologies,accurate user clicks recognition from massive HTTP data,which is critical for web usage mining,becomes more difficult.In this paper,we propose a dependency graph model to describe the relationships between web requests.Based on this model,we design and implement a heuristic parallel algorithm to distinguish user clicks with the assistance of cloud computing technology.We evaluate the proposed algorithm with real massive data.The size of the dataset collected from a mobile core network is 228.7GB.It covers more than three million users.The experiment results demonstrate that the proposed algorithm can achieve higher accuracy than previous methods.
文摘Enterprise applications utilize relational databases and structured business processes, requiring slow and expensive conversion of inputs and outputs, from business documents such as invoices, purchase orders, and receipts, into known templates and schemas before processing. We propose a new LLM Agent-based intelligent data extraction, transformation, and load (IntelligentETL) pipeline that not only ingests PDFs and detects inputs within it but also addresses the extraction of structured and unstructured data by developing tools that most efficiently and securely deal with respective data types. We study the efficiency of our proposed pipeline and compare it with enterprise solutions that also utilize LLMs. We establish the supremacy in timely and accurate data extraction and transformation capabilities of our approach for analyzing the data from varied sources based on nested and/or interlinked input constraints.
文摘Outlier detection has very important applied value in data mining literature. Different outlier detection algorithms based on distinct theories have different definitions and mining processes. The three-dimensional space graph for constructing applied algorithms and an improved GridOf algorithm were proposed in terms of analyzing the existing outlier detection algorithms from criterion and theory. Key words outlier - detection - three-dimensional space graph - data mining CLC number TP 311. 13 - TP 391 Foundation item: Supported by the National Natural Science Foundation of China (70371015)Biography: ZHANG Jing (1975-), female, Ph. D, lecturer, research direction: data mining and knowledge discovery.
基金supported by the National Natural Science Foundation of China(61702251,61363049,11571011)the State Scholarship Fund of China Scholarship Council(CSC)(201708360040)+3 种基金the Natural Science Foundation of Jiangxi Province(20161BAB212033)the Natural Science Basic Research Plan in Shaanxi Province of China(2018JM6030)the Doctor Scientific Research Starting Foundation of Northwest University(338050050)Youth Academic Talent Support Program of Northwest University
文摘This paper proposes a Graph regularized Lpsmooth non-negative matrix factorization(GSNMF) method by incorporating graph regularization and L_p smoothing constraint, which considers the intrinsic geometric information of a data set and produces smooth and stable solutions. The main contributions are as follows: first, graph regularization is added into NMF to discover the hidden semantics and simultaneously respect the intrinsic geometric structure information of a data set. Second,the Lpsmoothing constraint is incorporated into NMF to combine the merits of isotropic(L_2-norm) and anisotropic(L_1-norm)diffusion smoothing, and produces a smooth and more accurate solution to the optimization problem. Finally, the update rules and proof of convergence of GSNMF are given. Experiments on several data sets show that the proposed method outperforms related state-of-the-art methods.
基金supported by National Natural Science Foundation of China(Nos.41571387,41201375 and 41501440)Tianjin Research Program of Application Foundation and Advanced Technology(No.14JCQNJC07900)+1 种基金Tianjin Science and Technology Planning Project(Nos.15ZCZDSF00390 and 14TXGCCX00015)Opening Fund of Tianjin Engineering Research Center of Geospatial Information Technology"Modeling and analysis of path graph in 3D indoor spatial environment"
文摘Due to limitations in geometric representation and semantic description, the current pedestrian route analysis models are inadequate. To express the geometry of geographic entities in a micro-spatial environment accurately, the concept of a grid is presented, and grid-based methods for modeling geospatial objects are described. The semantic constitution of a building environment and the methods for modeling rooms, corridors, and staircases with grid objects are described. Based on the topology relationship between grid objects, a grid-based graph for a building environment is presented, and the corresponding route algorithm for pedestrians is proposed. The main advantages of the graph model proposed in this paper are as follows: 1) consideration of both semantic and geometric information, 2) consideration of the need for accurate geometric representation of the micro-spatial environment and the efficiency of pedestrian route analysis, 3) applicability of the graph model to route analysis in both static and dynamic environments, and 4) ability of the multi-hierarchical route analysis to integrate the multiple levels of pedestrian decision characteristics, from the high to the low, to determine the optimal path.
基金Supported by the National Natural Science Foundation of China (601133010)
文摘In this paper, a new approach for visualizing multivariate categorical data is presented. The approach uses a graph to represent multivariate categorical data and draws the graph in such a way that we can identify patterns, trends and relationship within the data. A mathematical model for the graph layout problem is deduced and a spectral graph drawing algorithm for visualizing multivariate categorical data is proposed. The experiments show that the drawings by the algorithm well capture the structures of multivariate categorical data and the computing speed is fast.
基金This work was supported by the National Key R&D Program of China(2020YFB0905900).
文摘Integrating marketing and distribution businesses is crucial for improving the coordination of equipment and the efficient management of multi-energy systems.New energy sources are continuously being connected to distribution grids;this,however,increases the complexity of the information structure of marketing and distribution businesses.The existing unified data model and the coordinated application of marketing and distribution suffer from various drawbacks.As a solution,this paper presents a data model of"one graph of marketing and distribution"and a framework for graph computing,by analyzing the current trends of business and data in the marketing and distribution fields and using graph data theory.Specifically,this work aims to determine the correlation between distribution transformers and marketing users,which is crucial for elucidating the connection between marketing and distribution.In this manner,a novel identification algorithm is proposed based on the collected data for marketing and distribution.Lastly,a forecasting application is developed based on the proposed algorithm to realize the coordinated prediction and consumption of distributed photovoltaic power generation and distribution loads.Furthermore,an operation and maintenance(O&M)knowledge graph reasoning application is developed to improve the intelligent O&M ability of marketing and distribution equipment.
文摘The wide application of intelligent terminals in microgrids has fueled the surge of data amount in recent years.In real-world scenarios,microgrids must store large amounts of data efficiently while also being able to withstand malicious cyberattacks.To meet the high hardware resource requirements,address the vulnerability to network attacks and poor reliability in the tradi-tional centralized data storage schemes,this paper proposes a secure storage management method for microgrid data that considers node trust and directed acyclic graph(DAG)consensus mechanism.Firstly,the microgrid data storage model is designed based on the edge computing technology.The blockchain,deployed on the edge computing server and combined with cloud storage,ensures reliable data storage in the microgrid.Secondly,a blockchain consen-sus algorithm based on directed acyclic graph data structure is then proposed to effectively improve the data storage timeliness and avoid disadvantages in traditional blockchain topology such as long chain construction time and low consensus efficiency.Finally,considering the tolerance differences among the candidate chain-building nodes to network attacks,a hash value update mechanism of blockchain header with node trust identification to ensure data storage security is proposed.Experimental results from the microgrid data storage platform show that the proposed method can achieve a private key update time of less than 5 milliseconds.When the number of blockchain nodes is less than 25,the blockchain construction takes no more than 80 mins,and the data throughput is close to 300 kbps.Compared with the traditional chain-topology-based consensus methods that do not consider node trust,the proposed method has higher efficiency in data storage and better resistance to network attacks.
文摘Join operation is a critical problem when dealing with sliding window over data streams. There have been many optimization strategies for sliding window join in the literature, but a simple heuristic is always used for selecting the join sequence of many sliding windows, which is ineffectively. The graph-based approach is proposed to process the problem. The sliding window join model is introduced primarily. In this model vertex represent join operator and edge indicated the join relationship among sliding windows. Vertex weight and edge weight represent the cost of join and the reciprocity of join operators respectively. Then good query plan with minimal cost can be found in the model. Thus a complete join algorithm combining setting up model, finding optimal query plan and executing query plan is shown. Experiments show that the graph-based approach is feasible and can work better in above environment.
文摘以旅游大数据为基础,考虑长时间范围内的滞后效应以及不同搜索强度指数(Search Intensity Index,SII)之间的多任务影响,提出一种基于大数据的多任务旅游信息分析(Multi-tasking Tourism Information Analysis Based on Big Data,MTIABD)框架。使用融合信息重排序技术预测旅游需求,具体根据图引导结构模拟历史变量对未来变量的滞后影响。每个变量通过时间维度上的卷积神经网络(Convolutional Neural Network,CNN)进行独立编码,利用二分图动态建模滞后效应,通过图聚合进行挖掘,实现对旅游需求的精准预测。基于上述技术,构建旅游需求预测系统,旅游者能够根据需求检索不同景点的信息。在真实数据集上进行大量实验,结果表明所提出的MTIABD框架在一步和多步预测方面均优于现有方法。在平均绝对百分比误差(Mean Absolute Percentage Error,MAPE)指标下,相较于基于实例的多变量时间序列图预测框架(Instance-wise Graph-rased Framework for Multivariate Time Series Forecasting,IGMTF),MTIABD在HK-2021数据集上的性能提高了16.75%,在MO-2021数据集上的性能提高了19.79%。
文摘设备运维是保障生产正常进行的重要基础,现有的智能运维技术主要依赖信号分析、数据挖掘或专家知识重用。然而,随着设备自动化和集成化程度的提高,其各类运行异常的表征信号、多源致因和维护方案之间的关系呈现出更高的模糊性和复杂性,将信号、数据和知识进行融合分析是提高设备运维精度和效率的关键。为此,采用知识图谱技术将“人”、“机”、“物”三元数据融合来支撑复杂设备的异常诊断和维护方案决策,提高运维智能化程度、避免决策片面性。首先,对设备运维领域人机物三元数据进行定义并完成三元本体设计,指导知识图数据层的构建。其次,对人机物三元数据进行预处理并搭建了统一混合注意力机制联合抽取模型(Joint entity and relation extraction model with mixed attention,MAREL)从三元数据中自动抽取知识,并建立三元知识之间的关联关系,以此实现人机物三元数据的融合;MAREL模型将任务拆解为两个关联的解码模块来解决实体重叠问题,利用混合注意力机制增强模型的长文本处理能力,在中文数据集SKE上的测试证明MAREL具有优异的性能。最后,以某汽车生产机器人设备运维人机物知识图谱的构建为例,验证了所提方法的有效性,结果表明知识图谱能够将人机物三元数据有效融合,为工业设备的智能运维提供支持。