An investigation is carried out on the problem involved in 4D variational data assimilation (VDA) with constraint conditions based on a finite-element shallow-water equation model. In the investigation, the adjoint te...An investigation is carried out on the problem involved in 4D variational data assimilation (VDA) with constraint conditions based on a finite-element shallow-water equation model. In the investigation, the adjoint technology, penalty method and augmented Lagrangian method are used in constraint optimization field to minimize the defined constraint objective functions. The results of the numerical experiments show that the optimal solutions are obtained if the functions reach the minima. VDA with constraint conditions controlling the growth of gravity oscillations is efficient to eliminate perturbation and produces optimal initial field. It seems that this method can also be applied to the problem in numerical weather prediction. Key words Variational data assimilation - Constraint conditions - Penalty methods - finite-element model This research is supported by National Natural Science Foundation of China (Grant No. 49575269) and by National Key Basic Research on the Formation Mechanism and Prediction Theory of Severe Synoptic Disasters (Grant No. G1998040910).展开更多
基金National Natural Science Foundation of China (Grant No. 49575269) National Key Basic Research on the Formation Mechanism and
文摘An investigation is carried out on the problem involved in 4D variational data assimilation (VDA) with constraint conditions based on a finite-element shallow-water equation model. In the investigation, the adjoint technology, penalty method and augmented Lagrangian method are used in constraint optimization field to minimize the defined constraint objective functions. The results of the numerical experiments show that the optimal solutions are obtained if the functions reach the minima. VDA with constraint conditions controlling the growth of gravity oscillations is efficient to eliminate perturbation and produces optimal initial field. It seems that this method can also be applied to the problem in numerical weather prediction. Key words Variational data assimilation - Constraint conditions - Penalty methods - finite-element model This research is supported by National Natural Science Foundation of China (Grant No. 49575269) and by National Key Basic Research on the Formation Mechanism and Prediction Theory of Severe Synoptic Disasters (Grant No. G1998040910).