Objective expertise evaluation of individuals,as a prerequisite stage for team formation,has been a long-term desideratum in large software development companies.With the rapid advancements in machine learning methods...Objective expertise evaluation of individuals,as a prerequisite stage for team formation,has been a long-term desideratum in large software development companies.With the rapid advancements in machine learning methods,based on reliable existing data stored in project management tools’datasets,automating this evaluation process becomes a natural step forward.In this context,our approach focuses on quantifying software developer expertise by using metadata from the task-tracking systems.For this,we mathematically formalize two categories of expertise:technology-specific expertise,which denotes the skills required for a particular technology,and general expertise,which encapsulates overall knowledge in the software industry.Afterward,we automatically classify the zones of expertise associated with each task a developer has worked on using Bidirectional Encoder Representations from Transformers(BERT)-like transformers to handle the unique characteristics of project tool datasets effectively.Finally,our method evaluates the proficiency of each software specialist across already completed projects from both technology-specific and general perspectives.The method was experimentally validated,yielding promising results.展开更多
In the Engine CAD application system engineering database management system (ECAD-EDBMS) is the kernel. ECAD-EDBMS can manage and process the multimedia such as graphics, data, text, sound, image and video. It provide...In the Engine CAD application system engineering database management system (ECAD-EDBMS) is the kernel. ECAD-EDBMS can manage and process the multimedia such as graphics, data, text, sound, image and video. It provides the integrated environment and more functions for many subsystems of ECAD and engine designers. So it improves the design efficiency.展开更多
The spatial database management system of China geological survey extent is a social service system. Its aim is to help the government and the whole social public to expediently use the spatial database, such as query...The spatial database management system of China geological survey extent is a social service system. Its aim is to help the government and the whole social public to expediently use the spatial database, such as querying, indexing, mapping and product outputting. The management system has been developed based on MAPGIS6.x SDK and Visual C++, considering the spatial database contents and structure and the requirements of users. This paper introduces the software structure, the data flow chart and some key techniques of software development.展开更多
Research into metamorphism plays a pivotal role in reconstructing the evolution of continent,particularly through the study of ancient rocks that are highly susceptible to metamorphic alterations due to multiple tecto...Research into metamorphism plays a pivotal role in reconstructing the evolution of continent,particularly through the study of ancient rocks that are highly susceptible to metamorphic alterations due to multiple tectonic activities.In the big data era,the establishment of new data platforms and the application of big data methods have become a focus for metamorphic rocks.Significant progress has been made in creating specialized databases,compiling comprehensive datasets,and utilizing data analytics to address complex scientific questions.However,many existing databases are inadequate in meeting the specific requirements of metamorphic research,resulting from a substantial amount of valuable data remaining uncollected.Therefore,constructing new databases that can cope with the development of the data era is necessary.This article provides an extensive review of existing databases related to metamorphic rocks and discusses data-driven studies in this.Accordingly,several crucial factors that need to be taken into consideration in the establishment of specialized metamorphic databases are identified,aiming to leverage data-driven applications to achieve broader scientific objectives in metamorphic research.展开更多
In order to design a new kind of mobile database management system (DBMS)more suitable for mobile computing than the existent DBMS, the essence of database systems in mobilecomputing is analyzed. An opinion is introdu...In order to design a new kind of mobile database management system (DBMS)more suitable for mobile computing than the existent DBMS, the essence of database systems in mobilecomputing is analyzed. An opinion is introduced that the mobile database is a kind of dynamicdistributed database, and the concept of virtual servers to translate the clients' mobility to theservers' mobility is proposed. Based on these opinions, a kind of architecture of mobile DBMS, whichis of versatility, is presented. The architecture is composed of a virtual server and a local DBMS,the virtual server is the kernel of the architecture and its functions are described. Eventually,the server kernel of a mobile DBMS prototype is illustrated.展开更多
With the deepening informationization of Resources & Environment Remote Sensing geological survey conducted,some potential problems and deficiency are:(1) shortage of unified-planed running environment;(2) inconsi...With the deepening informationization of Resources & Environment Remote Sensing geological survey conducted,some potential problems and deficiency are:(1) shortage of unified-planed running environment;(2) inconsistent methods of data integration;and(3) disadvantages of different performing ways of data integration.This paper solves the above problems through overall planning and design,constructs unified running environment, consistent methods of data integration and system structure in order to advance the informationization展开更多
Mining sector in Indonesia faces many challenges including needed to support national economy, compliance to central and local government regulations, local community empowerment and environmental impact management. M...Mining sector in Indonesia faces many challenges including needed to support national economy, compliance to central and local government regulations, local community empowerment and environmental impact management. Mining companies are mandatory to perform the environmental management efforts to minimize the negative impact to the environment and pursue sustainability of post-mining land use and as much as possible to restore land to the initial conditions. There are many challenges on management multi parameter and multi temporal spatial data of environmental management. The aim of this research is to design the GIS database template for environmental management in Indonesia’s mining operation. This GIS database is designed using ArcCatalog ArcGIS 9.3 software, through following steps: inventory and assessment government regulations, inventory and assessment environmental quality standards, sorting and grouping parameters, design feature class and attribute, create GIS database, create GIS database dictionary. According to research result, GIS database template has many advantages for environmental management include integrated into a single database, avoid redundancy data, reduce volume data, uniformity data, easy to find and track data, integrated spatial and attribute data, can be used as an input for GIS analysis for decision-making and development strategies.展开更多
On October 18,2017,the 19th National Congress Report called for the implementation of the Healthy China Strategy.The development of biomedical data plays a pivotal role in advancing this strategy.Since the 18th Nation...On October 18,2017,the 19th National Congress Report called for the implementation of the Healthy China Strategy.The development of biomedical data plays a pivotal role in advancing this strategy.Since the 18th National Congress of the Communist Party of China,China has vigorously promoted the integration and implementation of the Healthy China and Digital China strategies.The National Health Commission has prioritized the development of health and medical big data,issuing policies to promote standardized applica-tions and foster innovation in"Internet+Healthcare."Biomedical data has significantly contributed to preci-sion medicine,personalized health management,drug development,disease diagnosis,public health monitor-ing,and epidemic prediction capabilities.展开更多
Geo-data is a foundation for the prediction and assessment of ore resources, so managing and making full use of those data, including geography database, geology database, mineral deposits database, aeromagnetics data...Geo-data is a foundation for the prediction and assessment of ore resources, so managing and making full use of those data, including geography database, geology database, mineral deposits database, aeromagnetics database, gravity database, geochemistry database and remote sensing database, is very significant. We developed national important mining zone database (NIMZDB) to manage 14 national important mining zone databases to support a new round prediction of ore deposit. We found that attention should be paid to the following issues: ① data accuracy: integrity, logic consistency, attribute, spatial and time accuracy; ② management of both attribute and spatial data in the same system;③ transforming data between MapGIS and ArcGIS; ④ data sharing and security; ⑤ data searches that can query both attribute and spatial data. Accuracy of input data is guaranteed and the search, analysis and translation of data between MapGIS and ArcGIS has been made convenient via the development of a checking data module and a managing data module based on MapGIS and ArcGIS. Using AreSDE, we based data sharing on a client/server system, and attribute and spatial data are also managed in the same system.展开更多
Thedeployment of the Internet of Things(IoT)with smart sensors has facilitated the emergence of fog computing as an important technology for delivering services to smart environments such as campuses,smart cities,and ...Thedeployment of the Internet of Things(IoT)with smart sensors has facilitated the emergence of fog computing as an important technology for delivering services to smart environments such as campuses,smart cities,and smart transportation systems.Fog computing tackles a range of challenges,including processing,storage,bandwidth,latency,and reliability,by locally distributing secure information through end nodes.Consisting of endpoints,fog nodes,and back-end cloud infrastructure,it provides advanced capabilities beyond traditional cloud computing.In smart environments,particularly within smart city transportation systems,the abundance of devices and nodes poses significant challenges related to power consumption and system reliability.To address the challenges of latency,energy consumption,and fault tolerance in these environments,this paper proposes a latency-aware,faulttolerant framework for resource scheduling and data management,referred to as the FORD framework,for smart cities in fog environments.This framework is designed to meet the demands of time-sensitive applications,such as those in smart transportation systems.The FORD framework incorporates latency-aware resource scheduling to optimize task execution in smart city environments,leveraging resources from both fog and cloud environments.Through simulation-based executions,tasks are allocated to the nearest available nodes with minimum latency.In the event of execution failure,a fault-tolerantmechanism is employed to ensure the successful completion of tasks.Upon successful execution,data is efficiently stored in the cloud data center,ensuring data integrity and reliability within the smart city ecosystem.展开更多
The basic frame and the design idea of J2EE-based Product Data Management (PDM) system are presented. This paper adopts the technology of Object-Oriented to realize the database design and builds the information model...The basic frame and the design idea of J2EE-based Product Data Management (PDM) system are presented. This paper adopts the technology of Object-Oriented to realize the database design and builds the information model of this PDM system. The integration key technology of PDM and CAD systems are discussed, the isomerous interface characteristics between CAD and PDM systems are analyzed, and finally, the integration mode of the PDM and CAD systems is given. Using these technologies, the integration of PDM and CAD systems is realized and the consistence of data in PDM and CAD systems is kept. Finally, the Product Data Management system is developed, which has been tested on development process of the hydraulic generator. The running process is stable and safety.展开更多
This paper presents a domain engineering approach to build a software product line that supports the change notification service in a Configuration Management Database (CMDB) according to the Information Technology In...This paper presents a domain engineering approach to build a software product line that supports the change notification service in a Configuration Management Database (CMDB) according to the Information Technology Infrastructure Library (ITIL) best practices. For the development of this product line, the proposed approach makes use of a construction of products methodology by analogy: this is a new notation which reports the variability of the products, obtaining metrics as important as the number of products and uses a language that enables, by means of the flexibilization of a product and the development of some generators, to build the rest of the product line. In addition the paper offers a standard for the analysis and design of the CMDB as well. Finally, the paper presents an economic model for the product line, where the profitability and productivity of the proposed solution are analyzed.展开更多
The efficiency and performance of Distributed Database Management Systems (DDBMS) is mainly measured by its proper design and by network communication cost between sites. Fragmentation and distribution of data are the...The efficiency and performance of Distributed Database Management Systems (DDBMS) is mainly measured by its proper design and by network communication cost between sites. Fragmentation and distribution of data are the major design issues of the DDBMS. In this paper, we propose new approach that integrates both fragmentation and data allocation in one strategy based on high performance clustering technique and transaction processing cost functions. This new approach achieves efficiently and effectively the objectives of data fragmentation, data allocation and network sites clustering. The approach splits the data relations into pair-wise disjoint fragments and determine whether each fragment has to be allocated or not in the network sites, where allocation benefit outweighs the cost depending on high performance clustering technique. To show the performance of the proposed approach, we performed experimental studies on real database application at different networks connectivity. The obtained results proved to achieve minimum total data transaction costs between different sites, reduced the amount of redundant data to be accessed between these sites and improved the overall DDBMS performance.展开更多
Pelvic floor dysfunction(PFD),including conditions such as stress urinary incontinence,pelvic organ prolapse,and fecal incontinence,significantly affects women's quality of life and their physical and mental healt...Pelvic floor dysfunction(PFD),including conditions such as stress urinary incontinence,pelvic organ prolapse,and fecal incontinence,significantly affects women's quality of life and their physical and mental health.With advancement of digital medicine,the systematic collection of data and the high-quality development of database platforms have increasingly become central pillars of PFD research and management.We systematically review the developmental stages of PFDrelated databases.We then conduct a comparative analysis of representative international and domestic platforms,examining key aspects including organizational structures and construction models,data sources and integration strategies,core functionalities,data quality control and standardization,data security and access management,and research applications.Finally,based on the current status of PFD database development both globally and in China,we offer recommendations to strengthen data infrastructure and guide future directions.The findings may serve as a valuable reference for the optimization of PFD databases worldwide.展开更多
In the context of the rapid development of digital education,the security of educational data has become an increasing concern.This paper explores strategies for the classification and grading of educational data,and ...In the context of the rapid development of digital education,the security of educational data has become an increasing concern.This paper explores strategies for the classification and grading of educational data,and constructs a higher educational data security management and control model centered on the integration of medical and educational data.By implementing a multi-dimensional strategy of dynamic classification,real-time authorization,and secure execution through educational data security levels,dynamic access control is applied to effectively enhance the security and controllability of educational data,providing a secure foundation for data sharing and openness.展开更多
With the comprehensive development of modern information technology,big data technology has been integrated into various industries and has become a pillar technology supporting industrial upgrading and transformation...With the comprehensive development of modern information technology,big data technology has been integrated into various industries and has become a pillar technology supporting industrial upgrading and transformation.In enterprise human resource management,big data technology also has a broad application space and important application value.To gain higher market competitiveness and comprehensively improve the quality and efficiency of human resource management,enterprises need to rely on big data technology for comprehensive reform and optimization,thereby building an efficient,fair,open,and scientific human resource management model.This paper analyzes the problems and changes of enterprise human resource management in the era of big data,and then puts forward effective strategies for enterprise human resource management based on the era of big data.展开更多
In the era of big data,data has gradually become an important asset of enterprises,and the application of big data technology has gradually become the key to the optimization of enterprise marketing management mode.En...In the era of big data,data has gradually become an important asset of enterprises,and the application of big data technology has gradually become the key to the optimization of enterprise marketing management mode.Enterprises take the initiative to meet the development trend of the times,rely on big data technology to effectively process and analyze data,innovate decision-making methods and operation models,and achieve efficient marketing and fine management,which is an important way to improve their market competitiveness.Therefore,the author first analyzes the empowering role of big data technology on enterprise marketing management,and then discusses the difficulties faced by enterprise marketing management in the era of big data,and finally puts forward targeted improvement strategies,aiming to provide a reference for enterprises to innovate and change the marketing management mode.展开更多
With the gradual acceleration of information construction in colleges and universities,digital campus and smart campus have gradually become important means for colleges and universities to scientifically manage the c...With the gradual acceleration of information construction in colleges and universities,digital campus and smart campus have gradually become important means for colleges and universities to scientifically manage the campus.They have been applied to teaching,scientific research,student management,and other fields,improving the quality and efficiency of management.This paper mainly studies the intelligent educational administration management system based on data mining technology.Firstly,this paper introduces the application process of data mining technology,and builds an intelligent educational administration management system based on data mining technology.Then,this paper optimizes the application of the Apriori algorithm in educational administration management through transaction compression and frequent sampling.Compared with the traditional Apriori algorithm,the optimized Apriori algorithm in this paper has a shorter execution time under the same minimum support.展开更多
We propose a Cross-Chain Mapping Blockchain(CCMB)for scalable data management in massive Internet of Things(IoT)networks.Specifically,CCMB aims to improve the scalability of securely storing,tracing,and transmitting I...We propose a Cross-Chain Mapping Blockchain(CCMB)for scalable data management in massive Internet of Things(IoT)networks.Specifically,CCMB aims to improve the scalability of securely storing,tracing,and transmitting IoT behavior and reputation data based on our proposed cross-mapped Behavior Chain(BChain)and Reputation Chain(RChain).To improve off-chain IoT data storage scalability,we show that our lightweight CCMB architecture efficiently utilizes available fog-cloud resources.The scalability of on-chain IoT data tracing is enhanced using our Mapping Smart Contract(MSC)and cross-chain mapping design to perform rapid Reputation-to-Behavior(R2B)traceability queries between BChain and RChain blocks.To maximize off-chain to on-chain throughput,we optimize the CCMB block settings and producers based on a general Poisson Point Process(PPP)network model.The constrained optimization problem is formulated as a Markov Decision Process(MDP),and solved using a dual-network Deep Reinforcement Learning(DRL)algorithm.Simulation results validate CCMB’s scalability advantages in storage,traceability,and throughput.In specific massive IoT scenarios,CCMB can reduce the storage footprint by 50%and traceability query time by 90%,while improving system throughput by 55%compared to existing benchmarks.展开更多
For a transaction processing system to operate effectively and efficiently in cloud environments, it is important to distribute huge amount of data while guaranteeing the ACID (atomic, consistent, isolated, and dura...For a transaction processing system to operate effectively and efficiently in cloud environments, it is important to distribute huge amount of data while guaranteeing the ACID (atomic, consistent, isolated, and durable) properties. Moreover, database partition and migration tools can help transplanting conventional relational database systems to the cloud environment rather than rebuilding a new system. This paper proposes a database distribution management (DBDM) system, which partitions or replicates the data according to the transaction behaviors of the application system. The principle strategy of DBDM is to keep together the data used in a single transaction, and thus, avoiding massive transmission of records in join operations. The proposed system has been implemented successfully. The preliminary experiments show that the DBDM performs the database partition and migration effectively. Also, the DBDM system is modularly designed to adapt to different database management system (DBMS) or different partition algorithms.展开更多
基金supported by the project“Romanian Hub for Artificial Intelligence-HRIA”,Smart Growth,Digitization and Financial Instruments Program,2021–2027,MySMIS No.334906.
文摘Objective expertise evaluation of individuals,as a prerequisite stage for team formation,has been a long-term desideratum in large software development companies.With the rapid advancements in machine learning methods,based on reliable existing data stored in project management tools’datasets,automating this evaluation process becomes a natural step forward.In this context,our approach focuses on quantifying software developer expertise by using metadata from the task-tracking systems.For this,we mathematically formalize two categories of expertise:technology-specific expertise,which denotes the skills required for a particular technology,and general expertise,which encapsulates overall knowledge in the software industry.Afterward,we automatically classify the zones of expertise associated with each task a developer has worked on using Bidirectional Encoder Representations from Transformers(BERT)-like transformers to handle the unique characteristics of project tool datasets effectively.Finally,our method evaluates the proficiency of each software specialist across already completed projects from both technology-specific and general perspectives.The method was experimentally validated,yielding promising results.
文摘In the Engine CAD application system engineering database management system (ECAD-EDBMS) is the kernel. ECAD-EDBMS can manage and process the multimedia such as graphics, data, text, sound, image and video. It provides the integrated environment and more functions for many subsystems of ECAD and engine designers. So it improves the design efficiency.
文摘The spatial database management system of China geological survey extent is a social service system. Its aim is to help the government and the whole social public to expediently use the spatial database, such as querying, indexing, mapping and product outputting. The management system has been developed based on MAPGIS6.x SDK and Visual C++, considering the spatial database contents and structure and the requirements of users. This paper introduces the software structure, the data flow chart and some key techniques of software development.
基金funded by the National Natural Science Foundation of China(No.42220104008)。
文摘Research into metamorphism plays a pivotal role in reconstructing the evolution of continent,particularly through the study of ancient rocks that are highly susceptible to metamorphic alterations due to multiple tectonic activities.In the big data era,the establishment of new data platforms and the application of big data methods have become a focus for metamorphic rocks.Significant progress has been made in creating specialized databases,compiling comprehensive datasets,and utilizing data analytics to address complex scientific questions.However,many existing databases are inadequate in meeting the specific requirements of metamorphic research,resulting from a substantial amount of valuable data remaining uncollected.Therefore,constructing new databases that can cope with the development of the data era is necessary.This article provides an extensive review of existing databases related to metamorphic rocks and discusses data-driven studies in this.Accordingly,several crucial factors that need to be taken into consideration in the establishment of specialized metamorphic databases are identified,aiming to leverage data-driven applications to achieve broader scientific objectives in metamorphic research.
文摘In order to design a new kind of mobile database management system (DBMS)more suitable for mobile computing than the existent DBMS, the essence of database systems in mobilecomputing is analyzed. An opinion is introduced that the mobile database is a kind of dynamicdistributed database, and the concept of virtual servers to translate the clients' mobility to theservers' mobility is proposed. Based on these opinions, a kind of architecture of mobile DBMS, whichis of versatility, is presented. The architecture is composed of a virtual server and a local DBMS,the virtual server is the kernel of the architecture and its functions are described. Eventually,the server kernel of a mobile DBMS prototype is illustrated.
文摘With the deepening informationization of Resources & Environment Remote Sensing geological survey conducted,some potential problems and deficiency are:(1) shortage of unified-planed running environment;(2) inconsistent methods of data integration;and(3) disadvantages of different performing ways of data integration.This paper solves the above problems through overall planning and design,constructs unified running environment, consistent methods of data integration and system structure in order to advance the informationization
文摘Mining sector in Indonesia faces many challenges including needed to support national economy, compliance to central and local government regulations, local community empowerment and environmental impact management. Mining companies are mandatory to perform the environmental management efforts to minimize the negative impact to the environment and pursue sustainability of post-mining land use and as much as possible to restore land to the initial conditions. There are many challenges on management multi parameter and multi temporal spatial data of environmental management. The aim of this research is to design the GIS database template for environmental management in Indonesia’s mining operation. This GIS database is designed using ArcCatalog ArcGIS 9.3 software, through following steps: inventory and assessment government regulations, inventory and assessment environmental quality standards, sorting and grouping parameters, design feature class and attribute, create GIS database, create GIS database dictionary. According to research result, GIS database template has many advantages for environmental management include integrated into a single database, avoid redundancy data, reduce volume data, uniformity data, easy to find and track data, integrated spatial and attribute data, can be used as an input for GIS analysis for decision-making and development strategies.
文摘On October 18,2017,the 19th National Congress Report called for the implementation of the Healthy China Strategy.The development of biomedical data plays a pivotal role in advancing this strategy.Since the 18th National Congress of the Communist Party of China,China has vigorously promoted the integration and implementation of the Healthy China and Digital China strategies.The National Health Commission has prioritized the development of health and medical big data,issuing policies to promote standardized applica-tions and foster innovation in"Internet+Healthcare."Biomedical data has significantly contributed to preci-sion medicine,personalized health management,drug development,disease diagnosis,public health monitor-ing,and epidemic prediction capabilities.
基金This paper is financially supported by the National I mportant MiningZone Database ( No .200210000004)Prediction and Assessment ofMineral Resources and Social Service (No .1212010331402) .
文摘Geo-data is a foundation for the prediction and assessment of ore resources, so managing and making full use of those data, including geography database, geology database, mineral deposits database, aeromagnetics database, gravity database, geochemistry database and remote sensing database, is very significant. We developed national important mining zone database (NIMZDB) to manage 14 national important mining zone databases to support a new round prediction of ore deposit. We found that attention should be paid to the following issues: ① data accuracy: integrity, logic consistency, attribute, spatial and time accuracy; ② management of both attribute and spatial data in the same system;③ transforming data between MapGIS and ArcGIS; ④ data sharing and security; ⑤ data searches that can query both attribute and spatial data. Accuracy of input data is guaranteed and the search, analysis and translation of data between MapGIS and ArcGIS has been made convenient via the development of a checking data module and a managing data module based on MapGIS and ArcGIS. Using AreSDE, we based data sharing on a client/server system, and attribute and spatial data are also managed in the same system.
基金supported by the Deanship of Scientific Research and Graduate Studies at King Khalid University under research grant number(R.G.P.2/93/45).
文摘Thedeployment of the Internet of Things(IoT)with smart sensors has facilitated the emergence of fog computing as an important technology for delivering services to smart environments such as campuses,smart cities,and smart transportation systems.Fog computing tackles a range of challenges,including processing,storage,bandwidth,latency,and reliability,by locally distributing secure information through end nodes.Consisting of endpoints,fog nodes,and back-end cloud infrastructure,it provides advanced capabilities beyond traditional cloud computing.In smart environments,particularly within smart city transportation systems,the abundance of devices and nodes poses significant challenges related to power consumption and system reliability.To address the challenges of latency,energy consumption,and fault tolerance in these environments,this paper proposes a latency-aware,faulttolerant framework for resource scheduling and data management,referred to as the FORD framework,for smart cities in fog environments.This framework is designed to meet the demands of time-sensitive applications,such as those in smart transportation systems.The FORD framework incorporates latency-aware resource scheduling to optimize task execution in smart city environments,leveraging resources from both fog and cloud environments.Through simulation-based executions,tasks are allocated to the nearest available nodes with minimum latency.In the event of execution failure,a fault-tolerantmechanism is employed to ensure the successful completion of tasks.Upon successful execution,data is efficiently stored in the cloud data center,ensuring data integrity and reliability within the smart city ecosystem.
基金Sponsored by Scientific Technology Development Project of Heilongjiang (Grant No.WH05A01) and Scientific Research Foundation of Harbin Institute of Technology(Grant No.HIT.MD2003.21).
文摘The basic frame and the design idea of J2EE-based Product Data Management (PDM) system are presented. This paper adopts the technology of Object-Oriented to realize the database design and builds the information model of this PDM system. The integration key technology of PDM and CAD systems are discussed, the isomerous interface characteristics between CAD and PDM systems are analyzed, and finally, the integration mode of the PDM and CAD systems is given. Using these technologies, the integration of PDM and CAD systems is realized and the consistence of data in PDM and CAD systems is kept. Finally, the Product Data Management system is developed, which has been tested on development process of the hydraulic generator. The running process is stable and safety.
文摘This paper presents a domain engineering approach to build a software product line that supports the change notification service in a Configuration Management Database (CMDB) according to the Information Technology Infrastructure Library (ITIL) best practices. For the development of this product line, the proposed approach makes use of a construction of products methodology by analogy: this is a new notation which reports the variability of the products, obtaining metrics as important as the number of products and uses a language that enables, by means of the flexibilization of a product and the development of some generators, to build the rest of the product line. In addition the paper offers a standard for the analysis and design of the CMDB as well. Finally, the paper presents an economic model for the product line, where the profitability and productivity of the proposed solution are analyzed.
文摘The efficiency and performance of Distributed Database Management Systems (DDBMS) is mainly measured by its proper design and by network communication cost between sites. Fragmentation and distribution of data are the major design issues of the DDBMS. In this paper, we propose new approach that integrates both fragmentation and data allocation in one strategy based on high performance clustering technique and transaction processing cost functions. This new approach achieves efficiently and effectively the objectives of data fragmentation, data allocation and network sites clustering. The approach splits the data relations into pair-wise disjoint fragments and determine whether each fragment has to be allocated or not in the network sites, where allocation benefit outweighs the cost depending on high performance clustering technique. To show the performance of the proposed approach, we performed experimental studies on real database application at different networks connectivity. The obtained results proved to achieve minimum total data transaction costs between different sites, reduced the amount of redundant data to be accessed between these sites and improved the overall DDBMS performance.
文摘Pelvic floor dysfunction(PFD),including conditions such as stress urinary incontinence,pelvic organ prolapse,and fecal incontinence,significantly affects women's quality of life and their physical and mental health.With advancement of digital medicine,the systematic collection of data and the high-quality development of database platforms have increasingly become central pillars of PFD research and management.We systematically review the developmental stages of PFDrelated databases.We then conduct a comparative analysis of representative international and domestic platforms,examining key aspects including organizational structures and construction models,data sources and integration strategies,core functionalities,data quality control and standardization,data security and access management,and research applications.Finally,based on the current status of PFD database development both globally and in China,we offer recommendations to strengthen data infrastructure and guide future directions.The findings may serve as a valuable reference for the optimization of PFD databases worldwide.
基金supported by:the 2023 Basic Public Welfare Research Project of the Wenzhou Science and Technology Bureau“Research on Multi-Source Data Classification and Grading Standards and Intelligent Algorithms for Higher Education Institutions”(Project No.G2023094)Major Humanities and Social Sciences Research Projects in Zhejiang higher education institutions(Grant/Award Number:2024QN061)2023 Basic Public Welfare Research Project of Wenzhou(No.:S2023014).
文摘In the context of the rapid development of digital education,the security of educational data has become an increasing concern.This paper explores strategies for the classification and grading of educational data,and constructs a higher educational data security management and control model centered on the integration of medical and educational data.By implementing a multi-dimensional strategy of dynamic classification,real-time authorization,and secure execution through educational data security levels,dynamic access control is applied to effectively enhance the security and controllability of educational data,providing a secure foundation for data sharing and openness.
文摘With the comprehensive development of modern information technology,big data technology has been integrated into various industries and has become a pillar technology supporting industrial upgrading and transformation.In enterprise human resource management,big data technology also has a broad application space and important application value.To gain higher market competitiveness and comprehensively improve the quality and efficiency of human resource management,enterprises need to rely on big data technology for comprehensive reform and optimization,thereby building an efficient,fair,open,and scientific human resource management model.This paper analyzes the problems and changes of enterprise human resource management in the era of big data,and then puts forward effective strategies for enterprise human resource management based on the era of big data.
文摘In the era of big data,data has gradually become an important asset of enterprises,and the application of big data technology has gradually become the key to the optimization of enterprise marketing management mode.Enterprises take the initiative to meet the development trend of the times,rely on big data technology to effectively process and analyze data,innovate decision-making methods and operation models,and achieve efficient marketing and fine management,which is an important way to improve their market competitiveness.Therefore,the author first analyzes the empowering role of big data technology on enterprise marketing management,and then discusses the difficulties faced by enterprise marketing management in the era of big data,and finally puts forward targeted improvement strategies,aiming to provide a reference for enterprises to innovate and change the marketing management mode.
文摘With the gradual acceleration of information construction in colleges and universities,digital campus and smart campus have gradually become important means for colleges and universities to scientifically manage the campus.They have been applied to teaching,scientific research,student management,and other fields,improving the quality and efficiency of management.This paper mainly studies the intelligent educational administration management system based on data mining technology.Firstly,this paper introduces the application process of data mining technology,and builds an intelligent educational administration management system based on data mining technology.Then,this paper optimizes the application of the Apriori algorithm in educational administration management through transaction compression and frequent sampling.Compared with the traditional Apriori algorithm,the optimized Apriori algorithm in this paper has a shorter execution time under the same minimum support.
基金supported in part by the National Key Research and Development Program of China under Grant 2023YFB3106900the National Natural Science Foundation of China under Grant 62171113the China Scholarship Council under Grant 202406080100.
文摘We propose a Cross-Chain Mapping Blockchain(CCMB)for scalable data management in massive Internet of Things(IoT)networks.Specifically,CCMB aims to improve the scalability of securely storing,tracing,and transmitting IoT behavior and reputation data based on our proposed cross-mapped Behavior Chain(BChain)and Reputation Chain(RChain).To improve off-chain IoT data storage scalability,we show that our lightweight CCMB architecture efficiently utilizes available fog-cloud resources.The scalability of on-chain IoT data tracing is enhanced using our Mapping Smart Contract(MSC)and cross-chain mapping design to perform rapid Reputation-to-Behavior(R2B)traceability queries between BChain and RChain blocks.To maximize off-chain to on-chain throughput,we optimize the CCMB block settings and producers based on a general Poisson Point Process(PPP)network model.The constrained optimization problem is formulated as a Markov Decision Process(MDP),and solved using a dual-network Deep Reinforcement Learning(DRL)algorithm.Simulation results validate CCMB’s scalability advantages in storage,traceability,and throughput.In specific massive IoT scenarios,CCMB can reduce the storage footprint by 50%and traceability query time by 90%,while improving system throughput by 55%compared to existing benchmarks.
基金supported by the Taiwan Ministry of Economic Affairs and Institute for Information Industry under the project titled "Fundamental Industrial Technology Development Program (1/4)"
文摘For a transaction processing system to operate effectively and efficiently in cloud environments, it is important to distribute huge amount of data while guaranteeing the ACID (atomic, consistent, isolated, and durable) properties. Moreover, database partition and migration tools can help transplanting conventional relational database systems to the cloud environment rather than rebuilding a new system. This paper proposes a database distribution management (DBDM) system, which partitions or replicates the data according to the transaction behaviors of the application system. The principle strategy of DBDM is to keep together the data used in a single transaction, and thus, avoiding massive transmission of records in join operations. The proposed system has been implemented successfully. The preliminary experiments show that the DBDM performs the database partition and migration effectively. Also, the DBDM system is modularly designed to adapt to different database management system (DBMS) or different partition algorithms.