We construct uniform expressions of such dark soliton solutions encompassing both single-valley and double-valley dark solitons for the defocusing coupled Hirota equation with high-order nonlinear effects utilizing th...We construct uniform expressions of such dark soliton solutions encompassing both single-valley and double-valley dark solitons for the defocusing coupled Hirota equation with high-order nonlinear effects utilizing the uniform Darboux transformation,in addition to proposing a sufficient condition for the existence of the above dark soliton solutions.Furthermore,the asymptotic analysis we perform reveals that collisions for single-valley dark solitons typically exhibit elastic behavior;however,collisions for double-valley dark solitons are generally inelastic.In light of this,we further propose a sufficient condition for the elastic collisions of double-valley dark soliton solutions.Our results offer valuable insights into the dynamics of dark soliton solutions in the defocusing coupled Hirota equation and can contribute to the advancement of studies in nonlinear optics.展开更多
In this article, a modified version of the Differential Transform Method (DTM) is employed to examine soliton pulse propagation in a weakly non-local parabolic law medium and wave propagation in optical fibers. This s...In this article, a modified version of the Differential Transform Method (DTM) is employed to examine soliton pulse propagation in a weakly non-local parabolic law medium and wave propagation in optical fibers. This semi-analytic method has the advantage of overcoming the obstacle of the hardest nonlinear terms and is used to explain the origin of the bright and dark soliton solutions through the Schrödinger equation in its non-local form and the Radhakrishnan-Kundu-Laksmannan (RKL) equation. Numerical examples demonstrate the effectiveness of this method.展开更多
For the Davey-Stewartson system,the exact dark solitary wave solutions,solitary wave solutions,kink wave solution and periodic wave solutions are studied.To guarantee the existence of the above solutions,all parameter...For the Davey-Stewartson system,the exact dark solitary wave solutions,solitary wave solutions,kink wave solution and periodic wave solutions are studied.To guarantee the existence of the above solutions,all parameter conditions are determined.The persistence of dark solitary wave solutions to the perturbed Davey-Stewartson system is proved.展开更多
基金supported by the National Natural Science Foundation of China(No.12122105).
文摘We construct uniform expressions of such dark soliton solutions encompassing both single-valley and double-valley dark solitons for the defocusing coupled Hirota equation with high-order nonlinear effects utilizing the uniform Darboux transformation,in addition to proposing a sufficient condition for the existence of the above dark soliton solutions.Furthermore,the asymptotic analysis we perform reveals that collisions for single-valley dark solitons typically exhibit elastic behavior;however,collisions for double-valley dark solitons are generally inelastic.In light of this,we further propose a sufficient condition for the elastic collisions of double-valley dark soliton solutions.Our results offer valuable insights into the dynamics of dark soliton solutions in the defocusing coupled Hirota equation and can contribute to the advancement of studies in nonlinear optics.
文摘In this article, a modified version of the Differential Transform Method (DTM) is employed to examine soliton pulse propagation in a weakly non-local parabolic law medium and wave propagation in optical fibers. This semi-analytic method has the advantage of overcoming the obstacle of the hardest nonlinear terms and is used to explain the origin of the bright and dark soliton solutions through the Schrödinger equation in its non-local form and the Radhakrishnan-Kundu-Laksmannan (RKL) equation. Numerical examples demonstrate the effectiveness of this method.
基金supported by the National Natural Science Foundation of China(10831003)
文摘For the Davey-Stewartson system,the exact dark solitary wave solutions,solitary wave solutions,kink wave solution and periodic wave solutions are studied.To guarantee the existence of the above solutions,all parameter conditions are determined.The persistence of dark solitary wave solutions to the perturbed Davey-Stewartson system is proved.