Adipocyte-secreted extracellular vesicles(EVs)and adipose-derived stem cells(ADSCs)regulate physiological and pathological processes by delivering nucleic acids,proteins,and lipids.Both adipocyte-and ADSC-derived EVs ...Adipocyte-secreted extracellular vesicles(EVs)and adipose-derived stem cells(ADSCs)regulate physiological and pathological processes by delivering nucleic acids,proteins,and lipids.Both adipocyte-and ADSC-derived EVs regulate local inflammatory levels,tumor progression,and insulin sensitivity.These two types of EVs also have significant therapeutic effects on damage repair,including wound healing,angiogenesis,myocardial damage,vessel re-endothelialization,bone and cartilage regeneration,muscle repair,and nerve repair.With regard to wound healing,microRNA-21,microRNA-126,microRNA-31,and long non-coding RNA-H19 accelerate the proliferation and migration of fibroblasts,human immortalized keratinocytes,and endothelial cells via the PI3K/Akt/ERK pathway or fibrillin 1.ADSC-derived EVs contain various growth factors that are beneficial for wound healing.Numerous miRNAs in ADSC-derived EVs and β3-adrenergic receptors on brown adipocytes exhibit protective effects against myocardial infarction.Proteins in adipocyte-and ADSC-derived EVs play a role in promoting vessel re-endothelialization and regulating vasodilation.Angiogenesis is beneficial for the regeneration and repair of injured bone,cartilage,muscle,and nerves.Compared with adipocyte EVs,ADSC-EVs contain a greater variety of miRNAs and proteins that promote tissue regeneration.EV therapy is a promising cell-free therapy,and EV-loaded materials have been used for wound healing and myocardial damage.Future research will focus on identifying the molecules in EVs and the repair mechanisms that contribute to damage repair and regeneration.In addition,we aim to discover materials designed for slow release and specificity to facilitate tissue repair and optimize EV transportation.展开更多
Genome stability can be threatened by both endogenous and exogenous agents.Organisms have evolved numerous mechanisms to repair DNA damage,including homologous recombination(HR)and non-homologous end joining(NHEJ).Amo...Genome stability can be threatened by both endogenous and exogenous agents.Organisms have evolved numerous mechanisms to repair DNA damage,including homologous recombination(HR)and non-homologous end joining(NHEJ).Among the factors associated with DNA repair,the MRE11-RAD50-NBS1(MRN)complex(MRE11-RAD50-XRS2 in Saccharomyces cerevisiae)plays important roles not only in DNA damage recognition and signaling but also in subsequent HR or NHEJ repair.Upon detecting DNA damage,the MRN complex activates signaling molecules,such as the protein kinase ataxia-telangiectasia mutated(ATM),to trigger a broad DNA damage response,including cell cycle arrest.The nuclease activity of the MRN complex is responsible for DNA end resection,which guides DNA repair to HR in the presence of sister chromatids.The MRN complex is also involved in NHEJ,and has a species-specific role in hairpin repair.This review focuses on the structure of the MRN complex and its function in DNA damage repair.展开更多
Long non-coding RNAs(lncRNAs)have been implicated in cancer progression and drug resistance development.Moreover,there is evidence that lncRNA HOX transcript antisense intergenic RNA(HOTAIR)is involved in colorectal c...Long non-coding RNAs(lncRNAs)have been implicated in cancer progression and drug resistance development.Moreover,there is evidence that lncRNA HOX transcript antisense intergenic RNA(HOTAIR)is involved in colorectal cancer(CRC)progression.The present study aimed to examine the functional role of lncRNA HOTAIR in conferring radiotherapy resistance in CRC cells,as well as the underlying mechanism.The relative expression levels of HOTAIR were examined in 70 pairs of CRC tumor and para-cancerous tissues,as well as in radiosensitive and radioresistant samples.The correlations between HOTAIR expression levels and clinical features of patients with CRC were assessed using the Chi-square test.Functional assays such as cell proliferation,colony formation and apoptosis assays were conducted to determine the radiosensitivity in CRC cells with HOTAIR silencing after treatment with different doses of radiation.RNA pull-down assay andfluorescence in situ hybridization(FISH)were used to determine the interaction between HOTAIR and DNA damage response mediator ataxia-telangiectasia mutated-and Rad3-related(ATR).HOTAIR was significantly upregulated in CRC tumor tissues,especially in radioresistant tumor samples.The elevated expression of HOTAIR was correlated with more advanced histological grades,distance metastasis and the poor prognosis in patients with CRC.Silencing HOTAIR suppressed the proliferation and promoted apoptosis and radiosensitivity in CRC cells.HOTAIR knockdown also inhibited the tumorigenesis of CRC cells and enhanced the sensitivity to radiotherapy in a mouse xenograft model.Moreover,the data showed that HOTAIR could interact with ATR to regulate the DNA damage repair signaling pathway.Silencing HOTAIR impaired the ATR-ATR interacting protein(ATRIP)complex and signaling in cell cycle progression.Collectively,the present results indicate that lncRNA HOTAIR facilitates the DNA damage response pathway and promotes radioresistance in CRC cells by targeting ATR.展开更多
Dibromoacetonitrile(DBAN) is a disinfection byproduct(DBP) and linked with cancer in rodents, but the mechanism of its carcinogenicity has not been fully elucidated. We recently reported that DBAN induced inhibition o...Dibromoacetonitrile(DBAN) is a disinfection byproduct(DBP) and linked with cancer in rodents, but the mechanism of its carcinogenicity has not been fully elucidated. We recently reported that DBAN induced inhibition of nucleotide excision repair(NER). In this study, we investigated if glutathione(GSH) is involved in the DBAN-induced inhibition of NER. Human keratinocytes Ha Ca T were pretreated with L-buthionine-(S,R)-sulfoximine(BSO) to deplete intracellular GSH. BSO treatment markedly potentiated the DBAN-induced NER inhibition as well as intracellular oxidation. The recruitment of NER proteins(transcription factor IIH, and xeroderma pigmentosum complementation group G) to DNA damage sites was inhibited by DBAN, which was further exacerbated by BSO treatment. Our results suggest that intracellular GSH protects cells from DBAN-induced genotoxicity including inhibition of DNA damage repair.展开更多
The conserved DNA damage repair complex,MMS21-SMC5/6(Methyl methane sulfonate 21-Structural maintenance of chromosomes 5/6),has been extensively studied in yeast,animals,and plants.However,its role in phytopathogenic ...The conserved DNA damage repair complex,MMS21-SMC5/6(Methyl methane sulfonate 21-Structural maintenance of chromosomes 5/6),has been extensively studied in yeast,animals,and plants.However,its role in phytopathogenic fungi,particularly in the highly destructive rice blast fungus Magnaporthe oryzae,remains unknown.In this study,we functionally characterized the homologues of this complex,MoMMS21 and MoSMC5,in M.oryzae.We first demonstrated the importance of DNA damage repair in M.oryzae by showing that the DNA damage inducer phleomycin inhibited vegetative growth,infection-related development and pathogenicity in this fungus.Additionally,we discovered that MoMMS21 and MoSMC5 interacted in the nuclei,suggesting that they also function as a complex in M.oryzae.Gene deletion experiments revealed that both MoMMS21 and MoSMC5 are required for infection-related development and pathogenicity in M.oryzae,while only MoMMS21 deletion affected growth and sensitivity to phleomycin,indicating its specific involvement in DNA damage repair.Overall,our results provide insights into the roles of MoMMS21 and MoSMC5 in M.oryzae,highlighting their functions beyond DNA damage repair.展开更多
Adenosine diphosphate(ADP)-ribosylation is a unique post-translational modification that regulates many biological processes,such as DNA damage repair.During DNA repair,ADP-ribosylation needs to be reversed by ADP-rib...Adenosine diphosphate(ADP)-ribosylation is a unique post-translational modification that regulates many biological processes,such as DNA damage repair.During DNA repair,ADP-ribosylation needs to be reversed by ADP-ribosylhydrolases.A group of ADP-ribosylhydrolases have a catalytic domain,namely the macrodomain,which is conserved in evolution from prokaryotes to humans.Not all macrodomains remove ADP-ribosylation.One set of macrodomains loses enzymatic activity and only binds to ADP-ribose(ADPR).Here,we summarize the biological functions of these macrodomains in DNA damage repair and compare the structure of enzymatically active and inactive macrodomains.Moreover,small molecular inhibitors have been developed that target macrodomains to suppress DNA damage repair and tumor growth.Macrodomain proteins are also expressed in pathogens,such as severe acute respiratory syndrome coronavirus 2(SARS-CoV-2).However,these domains may not be directly involved in DNA damage repair in the hosts or pathogens.Instead,they play key roles in pathogen replication.Thus,by targeting macrodomains it may be possible to treat pathogen-induced diseases,such as coronavirus disease 2019(COVID-19).展开更多
Esophageal cancer(EC)was an aggressive malignant neoplasm characterized by high morbidity and poor prognosis.Identifying the changes in DNA damage repair genes helps to better understand the mechanisms of carcinoma pr...Esophageal cancer(EC)was an aggressive malignant neoplasm characterized by high morbidity and poor prognosis.Identifying the changes in DNA damage repair genes helps to better understand the mechanisms of carcinoma progression.In this study,by comparing EC samples and normal samples,we found a total of 132 DDR expression with a significant difference.Moreover,we revealed higher expression of POLN,PALB2,ATM,PER1,TOP3B and lower expression of HMGB1,UBE2B were correlated to longer OS in EC.In addition,a prognostic risk score based on 7 DDR gene expression(POLN,HMGB1,TOP3B,PER1,UBE2B,ATM,PALB2)was constructed for the prognosis of EC.Meanwhile,EC cancer samples were divided into 3 subtypes based on 132 DDR genes expressions.Clinical profile analysis showed cluster C1 and C2 showed a similar frequency of T2,which was remarked higher than that in cluster 3.Moreover,we found the immune cell inflation levels were significantly changed in different subtypes of EC.The infiltration levels of T cell CD8+,B cell and NK cells were greatly higher in cluster 2 than that in cluster 1 and cluster 3.The results showed T cell CD4+infiltration levels were dramatically higher in cluster 1 than that in cluster 2 and cluster 3.Finally,we perform bioinformatics analysis of DEGs among 3 subtypes of EC and found DDR genes may be related to multiple signaling,such as Base excision repair,Cell cycle,Hedgehog signaling pathway,and Glycolysis/Gluconeogenesis.These results showed DDR genes may serve as new target for the prognosis of EC and prediction of the potential response of immune therapy in EC.展开更多
Maintenance of genome stability is crucial for the survival and reproduction of all organisms.However,various exogenous and endogenous factors frequently induce DNA damage,threatening genome stability.Therefore,all or...Maintenance of genome stability is crucial for the survival and reproduction of all organisms.However,various exogenous and endogenous factors frequently induce DNA damage,threatening genome stability.Therefore,all organisms have evolved complex and sophisticated DNA damage response(DDR)mechanisms including transcription reprogramming,cell cycle arrest,DNA repair,and cell death(Ciccia and Elledge,2010).Compared with the research in mammals and yeasts,the DDR mechanisms in plants are far less well-understood(Herbst et al.,2024).展开更多
The ATP-hydrolytic ectoenzyme ENPP1 has been implicated in the metastasis and recurrence in triple-negative breast cancer(TNBC),primarily by contributing to tumor cell survival and treatment resistance.However,the pre...The ATP-hydrolytic ectoenzyme ENPP1 has been implicated in the metastasis and recurrence in triple-negative breast cancer(TNBC),primarily by contributing to tumor cell survival and treatment resistance.However,the precise mechanisms remain unclear.In a model of local recurrence(LR),circulating tumor cells(CTC)engrafting in the post-resection tumor bed developed a radioresistant phenotype linked to an ENPP1+-gene signature which was also identified in TNBC patients,suggesting ENPP1´s role in genome integrity.Blockade of ENPP1 using a permeable ENPP1 inhibitor(AVA-NP-695)reduced radioresistance,mechanistically attributed to decreased homologous recombination(HR)resulting in persistent DNA damage,as evidenced by enhanced tail moment and sustainedγH2AX formation.This impaired DNA damage repair(DDR)sensitized tumor cells to ionizing radiation(IR).Notably,several DDR inhibitors(i)(including PARPi and ATMi)showed the highest synergy score in a targeted pharmacological screening.In vivo,dual ENPP1/ATM inhibition heightened radiosensitivity,compromised tumor cell survival and enhanced STINGTBK1 signaling by preventing ENPP1-mediated cGAMP hydrolysis.This resulted in robust innate and long-lasting adaptive antitumor immune memory responses,leading to significant tumor regression.Remarkably,combined treatment post-IR reduced spontaneous metastasis and local recurrence,and induced abscopal effects that impacted distant tumor spread in orthotopic tumor models.Thus,these findings position ENPP1 as a critical link between genome integrity and immunosuppression,offering promising translational opportunities for treating local or distant dissemination in TNBC.展开更多
Objective: To investigate the effects of different concentrations of β-glucan on the repair of damaged vaginal mucosa, the expression of vascular endothelial growth factor (VEGF), and the inflammatory factor-6 (IL-6)...Objective: To investigate the effects of different concentrations of β-glucan on the repair of damaged vaginal mucosa, the expression of vascular endothelial growth factor (VEGF), and the inflammatory factor-6 (IL-6) in vaginal tissues. Methods: Thirty-six adult female specific pathogen free (SPF)-grade Wistar rats were randomly divided into 3 phase groups with 12 rats each. Vaginal inflammation rat models were established by injecting phenol gel into the vagina of each rat at a dose of 0.1 ml/100g body weight. After modeling, rats were divided into 4 groups based on different concentrations of the test agent. The control group was injected with 0.5 ml of saline, experimental group A was injected with 0.375 ml saline 0.125 ml β-glucan, experimental group B was injected with 0.25 ml saline 0.25 ml β-glucan, and experimental group C was injected with 0.50 ml β-glucan. The injection sites were selected at the 3 o’clock and 9 o’clock positions of the vagina. Rats were sacrificed at 7-, 14-, and 28-days post-injection, and tissue samples were collected from the injection sites and prepared for histological analysis. New blood vessels and fibroblast numbers in the tissues were observed after Hematoxylin-eosin (HE) staining. The expression levels of VEGF and IL-6 in the tissues were measured using quantificational reverse transcription polymerase chain reaction (qRT-PCR). Results: Histological examination of vaginal tissue specimens at 7-, 14-, and 28-days post-injection showed that on day 7, there were no significant changes in the experimental groups compared to the control group. However, on days 14 and 28, the experimental groups showed more new blood vessels, macrophages, and fibroblasts with increased activity compared to the control group. The expression levels of VEGF in vaginal tissues were elevated on days 14 and 28 in the experimental groups. The comparison of IL-6 levels in vaginal tissues on day 28 showed that serum IL-6 levels returned to normal, and there was no statistically significant difference between the experimental and control groups. Conclusion: In the 3 experimental phases, the increase in VEGF levels in vaginal tissues on day 14 post-injection was more pronounced with higher concentrations of β-glucan, and IL-6 levels returned to normal on day 28. β-Glucan can enhance VEGF levels in damaged vaginal tissues, promote the repair of damaged vaginal tissues, and higher concentrations of β-glucan have a better effect.展开更多
A Ni-based solder BNi-5 was adopted as the repair agent to repair the prefabricated defects on the car-bon/carbon(C/C)composites.The effects of different heat-treatment(HT)temperatures and pre-oxidation on the chemica...A Ni-based solder BNi-5 was adopted as the repair agent to repair the prefabricated defects on the car-bon/carbon(C/C)composites.The effects of different heat-treatment(HT)temperatures and pre-oxidation on the chemical composition,microstructure,and mechanical behavior of the repaired C/C composites were investigated,and the repair mechanism was studied by finite element analysis methods.The repair agent and C/C composites were tightly bonded through mechanical interlocking and chemical reactions,and the flexural properties of the damaged C/C composites were significantly improved after repair.The products at the interface formed a gradient distribution structure of the thermal expansion coefficient when the HT temperature was 1300°C,which is beneficial to relieve the residual thermal stress at the interface.Meanwhile,the porosity of the surface of the C/C composites was higher after pre-oxidation,which led to more diffusion channels for the repair agent and enhanced the interface bonding ability.The flexural strength was the highest with a recovery rate of 85.2%when the C/C composites were pre-oxidized at 600°C and the HT temperature was 1300°C.This work provides a strategy for the engineering application of the damage repair of C/C composites.展开更多
Objective:To investigate the impact of SWI/SNF complex on heterochromatin DNA damage repair after exposure to X-ray irradiation,in order to explore the underlying mechanism.Methods:NIH3T3 and MRC5 cells were treated w...Objective:To investigate the impact of SWI/SNF complex on heterochromatin DNA damage repair after exposure to X-ray irradiation,in order to explore the underlying mechanism.Methods:NIH3T3 and MRC5 cells were treated with 50 nmol/L siRNA targeting SWI/SNF complex subunits(BRM,ARID1A,BRG1 and SNF5),and YAP/TAZ.At 24 h after transfection,the cells were irradiated with 0.5 and 1 Gy of X-rays.At 20,60 and 240 min post-irradiation,γH2AX assay was performed to evaluate the radiation response in total or heterochromatin.Comet assay was used to determine the role of YAP/TAZ in DNA damage when the cells were irradiated with 4 Gy of X-rays.NIH3T3 were treated with 50 nmol/L siRNA targeting BRM/BRG1 and YAP/TAZ to determine their relationship on heterochromatin DNA damage repair.Results:In NIH3T3,SWI/SNF complex subunits(BRM,ARID1A and BRG1)knock-down increasedγH2AX in total and heterochromatin at 1 Gy 60 min post-irradiation(P<0.05),while SNF5 knock-down decreased heterochromatinγH2AX at 1 Gy 20 min post-irradiation(P<0.05).In MRC5,BRM and BRG1 knock-down increasedγH2AX in total and heterochromatin at 1 Gy 60 min post-irradiation(P<0.05).Inconsistently,ARID1A knockdown did not affect it,and SNF5 knock-down increased heterochromatinγH2AX at 1 Gy 60 min post-irradiation(P<0.05).Moreover,YAP/TAZ knock-down decreased heterochromatinγH2AX in NIH3T3 and MRC5(P<0.05).Meanwhile,YAP/TAZ knock-down decreased Tail Moment in comet assay at 4 Gy 60 min post-irradiation(P<0.05).BRM/BRG1 combining with YAP/TAZ knock-down significantly decreased heterochromatinγH2AX compared with single BRM/BRG1 knock-down at 0.5 Gy 60 min post-irradiation(P<0.05).Conclusions:The SWI/SNF complex subunits exhibited varying effects on DNA damage repair.BRM/BRG1 knockdown promotedγH2AX accumulation in heterochromatin through YAP/TAZ.This study provides a novel direction for DNA damage repair and sheds light on the role of SWI/SNF complex in response to DNA damage repair in heterochromatin.展开更多
Malignant insulinomas are rare neuroendocrine tumors that require management for both symptomatic control and tumor reduction.It is clinically challenging to optimize treatment strategies for refractory malignant insu...Malignant insulinomas are rare neuroendocrine tumors that require management for both symptomatic control and tumor reduction.It is clinically challenging to optimize treatment strategies for refractory malignant insulinoma.We report a case of metastatic grade 3 insulinoma presented with recurrent hypoglycemia in a 23-year-old female with RAD51D p.Q192 germline mutation.During the disease course of 5 years,the tumor has continuously progressed despite locoregional therapy and multiple lines of systemic treatment.However,oxaliplatin-based chemotherapy achieved a partial response,which was maintained for 2 years.The hypoglycemic symptoms were controlled after the treatment response and did not recur.The platinum-based regimen could be a feasible therapeutic strategy for malignant insulinoma.The relationship between germline mutation in the DNA damage repair pathway and treatment response to platinum-based regimens in neuroendocrine tumors warrants further investigation.展开更多
Small nucleolar RNAs(snoRNAs)were previously regarded as a class of functionally conserved housekeeping genes,primarily involved in the regulation of ribosome biogenesis by ribosomal RNA(rRNA)modification.However,some...Small nucleolar RNAs(snoRNAs)were previously regarded as a class of functionally conserved housekeeping genes,primarily involved in the regulation of ribosome biogenesis by ribosomal RNA(rRNA)modification.However,some of them are involved in several biological processes via complex molecular mechanisms.DNA damage response(DDR)is a conserved mechanism for maintaining genomic stability to prevent the occurrence of various human diseases.It has recently been revealed that snoRNAs are involved in DDR at multiple levels,indicating their relevant theoretical and clinical significance in this field.The present review systematically addresses four main points,including the biosynthesis and classification of snoRNAs,the mechanisms through which snoRNAs regulate target molecules,snoRNAs in the process of DDR,and the significance of snoRNA in disease diagnosis and treatment.It focuses on the potential functions of snoRNAs in DDR to help in the discovery of the roles of snoRNAs in maintaining genome stability and pathological processes.展开更多
One of the main factors of laser induced damage is the modulation to incident laser which is caused by the defect in the subsurface of the fused silica. In this work, the repaired damage site irradiated by CO2 laser i...One of the main factors of laser induced damage is the modulation to incident laser which is caused by the defect in the subsurface of the fused silica. In this work, the repaired damage site irradiated by CO2 laser is simplified to a Gaussian rotation according to the corresponding experimental results. Then, the three-dimensional finite-difference time-domain method is employed to simulate the electric field intensity distribution in the vicinity of this kind of defect in fused silica front subsurface. The simulated results show that the modulation is notable, the Emax is about 2.6 times the irradiated electric field intensity in the fused silica with the damage site (the width is 1.5 μm and depth is 2.3 μm) though the damage site is repaired by CO2 laser. The phenomenon and the theoretical result of the annular laser enhancement existed on the rear surface are first verified effectively, which agrees well with the corresponding experimental results. The relations between the maximal electric field intensity in fused silica with defect depth and width are given respectively. Meanwhile, the corresponding physical mechanism is analysed theoretically in detail.展开更多
Our study explored the dynamic changes in andthe relationship between the DNA damage marker8-hydroxy-2'-deoxyguanosine (8-OHdG) and theDNA repair marker 8-hydroxyguanine DNAglycosidase 1 (hOGG1) according to the ...Our study explored the dynamic changes in andthe relationship between the DNA damage marker8-hydroxy-2'-deoxyguanosine (8-OHdG) and theDNA repair marker 8-hydroxyguanine DNAglycosidase 1 (hOGG1) according to the length ofoccupational employment in nickel smeltingworkers. One hundred forty nickel-exposedsmelting workers and 140 age-matched unexposedoffice workers were selected from the Jinchangcohort. The 8-OHdG levels in smelting workers wassignificantly higher than in office workers (Z=-8.688,P〈0.05) and the 8-OHdG levels among nickelsmelting workers in the 10-14 y employment lengthcategory was significantly higher than among allpeers. The hOGG1 levels among smelting workerswere significantly lower than those of non-exposedworkers (Z=-8.948, P〈0.05). There were significantdifferences between employment length andhOGG1 levels, with subjects employed in nickelsmelting for 10-14 y showing the highest levels ofhOGG1. Correlation analysis showed positivecorrelations between 8-OHdG and hOGG1 levels(r=0.413; P〈0.01). DNA damage was increased withemployment length among nickel smelting workersand was related to the inhibition of hOGG1 repaircapacity.展开更多
For the mammalian brain to process and decipher the rich panoply of sounds that abound in the world, nature has evolved an elegant collection of neural circuits dedicated to this task. Indeed, the complexity, variety ...For the mammalian brain to process and decipher the rich panoply of sounds that abound in the world, nature has evolved an elegant collection of neural circuits dedicated to this task. Indeed, the complexity, variety and number of neural pathways devoted to computing auditory information is unique among sensory modalities (Kaas, 2008). After the initial sensorineural encoding of sound at the level of the cochlea, auditory information is processed in several lower brainstem centers and eventually converges in the midbrain, at the level of the inferior colliculus (Wenstrup, 2005), Subsequently, auditory information is transferred through the thalamus, the medial geniculate body, and then the auditory cortex (Winer et al., 2005; Razak and Fuzessery, 2010; Hackett, 2011; Lee and Sherman, 2011; Lee and Winer, 2011;展开更多
This paper deals with the repair of damaged, plain concrete and polymer cement concrete by impregnation with methyl methacrylate (MMA) or sulfur. The stress-strain (σ-ε) curves of the unaxial compression of the conc...This paper deals with the repair of damaged, plain concrete and polymer cement concrete by impregnation with methyl methacrylate (MMA) or sulfur. The stress-strain (σ-ε) curves of the unaxial compression of the concrete before and after repairing were given. The results indicate that the strength of damaged concrete can be reinstated and even improved after the concrete is impregnated with MMA or sulfur. The main mechanism of repairing is that the cracks, the original pores and microcracks are filled with MMA or sulfur, and the im-pregnant plays role in adhesion enhancement and reinforcement.展开更多
The paper deals with temporary repairs. Applying a different technology, using a reproduction part, or performing a repair by a serviceman without the competence is typical features of temporary repairs. Temporary rep...The paper deals with temporary repairs. Applying a different technology, using a reproduction part, or performing a repair by a serviceman without the competence is typical features of temporary repairs. Temporary repair makes possible for an object to fulfil its function for a limited time, until regular repairs can be made. The complexity perplex modern vehicles their reparability. It is necessary to look for the new procedures of the implementation so-called temporary repairs. The authors suggested procedure battle damage assessment and repair, which they expressed in the form of diagrams. There is also description of new technological procedures, which could be possibly applied in field of temporary repairs. These new procedures are applied on land (wheeled and tracked) vehicles parts and their sufficiency for Czech Army conditions is tested. The main purpose of the thesis is defining operating procedures of the most useful methods, including their verifications and proposal of tools needed for repairs. These tools should be included in equipment of vehicles operated in Czech Army. The thesis is primarily focused on repairs of mechanical parts and units and also of reparation of fuel, hydraulic and high pressure systems.展开更多
Overview of the DNA damage response(DDR)in tumor cells.DDR is a highly coordinated signaling network that repairs DNA damage caused by intrinsic cellular processes and extrinsic insults,thereby preventing genome insta...Overview of the DNA damage response(DDR)in tumor cells.DDR is a highly coordinated signaling network that repairs DNA damage caused by intrinsic cellular processes and extrinsic insults,thereby preventing genome instability.Depending on the type of damage,distinct DNA damage repair and DNA damage tolerance(DDT)pathways are involved and coordinately regulated.展开更多
基金supported by the National Natural Science Foundation of China(grant no.82272287).
文摘Adipocyte-secreted extracellular vesicles(EVs)and adipose-derived stem cells(ADSCs)regulate physiological and pathological processes by delivering nucleic acids,proteins,and lipids.Both adipocyte-and ADSC-derived EVs regulate local inflammatory levels,tumor progression,and insulin sensitivity.These two types of EVs also have significant therapeutic effects on damage repair,including wound healing,angiogenesis,myocardial damage,vessel re-endothelialization,bone and cartilage regeneration,muscle repair,and nerve repair.With regard to wound healing,microRNA-21,microRNA-126,microRNA-31,and long non-coding RNA-H19 accelerate the proliferation and migration of fibroblasts,human immortalized keratinocytes,and endothelial cells via the PI3K/Akt/ERK pathway or fibrillin 1.ADSC-derived EVs contain various growth factors that are beneficial for wound healing.Numerous miRNAs in ADSC-derived EVs and β3-adrenergic receptors on brown adipocytes exhibit protective effects against myocardial infarction.Proteins in adipocyte-and ADSC-derived EVs play a role in promoting vessel re-endothelialization and regulating vasodilation.Angiogenesis is beneficial for the regeneration and repair of injured bone,cartilage,muscle,and nerves.Compared with adipocyte EVs,ADSC-EVs contain a greater variety of miRNAs and proteins that promote tissue regeneration.EV therapy is a promising cell-free therapy,and EV-loaded materials have been used for wound healing and myocardial damage.Future research will focus on identifying the molecules in EVs and the repair mechanisms that contribute to damage repair and regeneration.In addition,we aim to discover materials designed for slow release and specificity to facilitate tissue repair and optimize EV transportation.
基金supported by the National Key Research and Development Program of China(No.2018YFC2000100)the National Natural Science Foundation of China(Nos.31730021,31971220,and 31961160725)+1 种基金the Fok Ying Tung Education Foundationthe China’s Fundamental Research Funds for the Central Universities。
文摘Genome stability can be threatened by both endogenous and exogenous agents.Organisms have evolved numerous mechanisms to repair DNA damage,including homologous recombination(HR)and non-homologous end joining(NHEJ).Among the factors associated with DNA repair,the MRE11-RAD50-NBS1(MRN)complex(MRE11-RAD50-XRS2 in Saccharomyces cerevisiae)plays important roles not only in DNA damage recognition and signaling but also in subsequent HR or NHEJ repair.Upon detecting DNA damage,the MRN complex activates signaling molecules,such as the protein kinase ataxia-telangiectasia mutated(ATM),to trigger a broad DNA damage response,including cell cycle arrest.The nuclease activity of the MRN complex is responsible for DNA end resection,which guides DNA repair to HR in the presence of sister chromatids.The MRN complex is also involved in NHEJ,and has a species-specific role in hairpin repair.This review focuses on the structure of the MRN complex and its function in DNA damage repair.
基金This study was supported by the Inner Mongolia Science and Technology Department Science and Technology Research Project(No.2021GG0270)National Natural Science Foundation of China(81860534)+5 种基金Natural Science Foundation of Inner Mongolia(2021MS08152)Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region(NJYT22004)Scientific and Technological Innovative Research Team for Inner Mongolia Medical University of Transformation Application of Organoid in Medical and Industrial Interdiscipline(YKD2022TD002)Major Project of Inner Mongolia Medical University(YKD2022 ZD002)Radiobiology System and Team Construction of Radiotherapy for Inner Mongolia Medical University(YKD2022XK014)Key Laboratoy of Radiation Physics and Biology of Inner Mongolia Medical University(PIKY2023030).
文摘Long non-coding RNAs(lncRNAs)have been implicated in cancer progression and drug resistance development.Moreover,there is evidence that lncRNA HOX transcript antisense intergenic RNA(HOTAIR)is involved in colorectal cancer(CRC)progression.The present study aimed to examine the functional role of lncRNA HOTAIR in conferring radiotherapy resistance in CRC cells,as well as the underlying mechanism.The relative expression levels of HOTAIR were examined in 70 pairs of CRC tumor and para-cancerous tissues,as well as in radiosensitive and radioresistant samples.The correlations between HOTAIR expression levels and clinical features of patients with CRC were assessed using the Chi-square test.Functional assays such as cell proliferation,colony formation and apoptosis assays were conducted to determine the radiosensitivity in CRC cells with HOTAIR silencing after treatment with different doses of radiation.RNA pull-down assay andfluorescence in situ hybridization(FISH)were used to determine the interaction between HOTAIR and DNA damage response mediator ataxia-telangiectasia mutated-and Rad3-related(ATR).HOTAIR was significantly upregulated in CRC tumor tissues,especially in radioresistant tumor samples.The elevated expression of HOTAIR was correlated with more advanced histological grades,distance metastasis and the poor prognosis in patients with CRC.Silencing HOTAIR suppressed the proliferation and promoted apoptosis and radiosensitivity in CRC cells.HOTAIR knockdown also inhibited the tumorigenesis of CRC cells and enhanced the sensitivity to radiotherapy in a mouse xenograft model.Moreover,the data showed that HOTAIR could interact with ATR to regulate the DNA damage repair signaling pathway.Silencing HOTAIR impaired the ATR-ATR interacting protein(ATRIP)complex and signaling in cell cycle progression.Collectively,the present results indicate that lncRNA HOTAIR facilitates the DNA damage response pathway and promotes radioresistance in CRC cells by targeting ATR.
基金supported by the Kurita Water and Environment Foundation (No. 18E030)JSPS KAKENHI Grant Number 19K15793。
文摘Dibromoacetonitrile(DBAN) is a disinfection byproduct(DBP) and linked with cancer in rodents, but the mechanism of its carcinogenicity has not been fully elucidated. We recently reported that DBAN induced inhibition of nucleotide excision repair(NER). In this study, we investigated if glutathione(GSH) is involved in the DBAN-induced inhibition of NER. Human keratinocytes Ha Ca T were pretreated with L-buthionine-(S,R)-sulfoximine(BSO) to deplete intracellular GSH. BSO treatment markedly potentiated the DBAN-induced NER inhibition as well as intracellular oxidation. The recruitment of NER proteins(transcription factor IIH, and xeroderma pigmentosum complementation group G) to DNA damage sites was inhibited by DBAN, which was further exacerbated by BSO treatment. Our results suggest that intracellular GSH protects cells from DBAN-induced genotoxicity including inhibition of DNA damage repair.
基金Research and Development Program of China(2023YFD1400200)the Natural Science Foundation of Fujian Province,China(2022J01125)+2 种基金the Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests,China(MIMCP-202301)the Fujian Provincial Science and Technology Key Project,China(2022NZ030014)the National Natural Science Foundation of China(NSFC31871914).
文摘The conserved DNA damage repair complex,MMS21-SMC5/6(Methyl methane sulfonate 21-Structural maintenance of chromosomes 5/6),has been extensively studied in yeast,animals,and plants.However,its role in phytopathogenic fungi,particularly in the highly destructive rice blast fungus Magnaporthe oryzae,remains unknown.In this study,we functionally characterized the homologues of this complex,MoMMS21 and MoSMC5,in M.oryzae.We first demonstrated the importance of DNA damage repair in M.oryzae by showing that the DNA damage inducer phleomycin inhibited vegetative growth,infection-related development and pathogenicity in this fungus.Additionally,we discovered that MoMMS21 and MoSMC5 interacted in the nuclei,suggesting that they also function as a complex in M.oryzae.Gene deletion experiments revealed that both MoMMS21 and MoSMC5 are required for infection-related development and pathogenicity in M.oryzae,while only MoMMS21 deletion affected growth and sensitivity to phleomycin,indicating its specific involvement in DNA damage repair.Overall,our results provide insights into the roles of MoMMS21 and MoSMC5 in M.oryzae,highlighting their functions beyond DNA damage repair.
基金supported by the National Natural Science Foundation of China(No.81874160)the Foundation of Hebei Educational Committee(No.ZD2020183)+2 种基金the Ministry of Education Chunhui Projectthe Hebei Province Foundation for Returned Overseas Chinese Scholars(No.C20200303)the research funds from Westlake University,Hangzhou,China。
文摘Adenosine diphosphate(ADP)-ribosylation is a unique post-translational modification that regulates many biological processes,such as DNA damage repair.During DNA repair,ADP-ribosylation needs to be reversed by ADP-ribosylhydrolases.A group of ADP-ribosylhydrolases have a catalytic domain,namely the macrodomain,which is conserved in evolution from prokaryotes to humans.Not all macrodomains remove ADP-ribosylation.One set of macrodomains loses enzymatic activity and only binds to ADP-ribose(ADPR).Here,we summarize the biological functions of these macrodomains in DNA damage repair and compare the structure of enzymatically active and inactive macrodomains.Moreover,small molecular inhibitors have been developed that target macrodomains to suppress DNA damage repair and tumor growth.Macrodomain proteins are also expressed in pathogens,such as severe acute respiratory syndrome coronavirus 2(SARS-CoV-2).However,these domains may not be directly involved in DNA damage repair in the hosts or pathogens.Instead,they play key roles in pathogen replication.Thus,by targeting macrodomains it may be possible to treat pathogen-induced diseases,such as coronavirus disease 2019(COVID-19).
文摘Esophageal cancer(EC)was an aggressive malignant neoplasm characterized by high morbidity and poor prognosis.Identifying the changes in DNA damage repair genes helps to better understand the mechanisms of carcinoma progression.In this study,by comparing EC samples and normal samples,we found a total of 132 DDR expression with a significant difference.Moreover,we revealed higher expression of POLN,PALB2,ATM,PER1,TOP3B and lower expression of HMGB1,UBE2B were correlated to longer OS in EC.In addition,a prognostic risk score based on 7 DDR gene expression(POLN,HMGB1,TOP3B,PER1,UBE2B,ATM,PALB2)was constructed for the prognosis of EC.Meanwhile,EC cancer samples were divided into 3 subtypes based on 132 DDR genes expressions.Clinical profile analysis showed cluster C1 and C2 showed a similar frequency of T2,which was remarked higher than that in cluster 3.Moreover,we found the immune cell inflation levels were significantly changed in different subtypes of EC.The infiltration levels of T cell CD8+,B cell and NK cells were greatly higher in cluster 2 than that in cluster 1 and cluster 3.The results showed T cell CD4+infiltration levels were dramatically higher in cluster 1 than that in cluster 2 and cluster 3.Finally,we perform bioinformatics analysis of DEGs among 3 subtypes of EC and found DDR genes may be related to multiple signaling,such as Base excision repair,Cell cycle,Hedgehog signaling pathway,and Glycolysis/Gluconeogenesis.These results showed DDR genes may serve as new target for the prognosis of EC and prediction of the potential response of immune therapy in EC.
基金supported by the National Natural Science Foundation of China(32270306 and 32070312)HZAU-AGIS Cooperation Fund(SZYJY2022004)Huazhong Agricultural University Scientific&Technological Self-innovation Foundation(2662024PY019).
文摘Maintenance of genome stability is crucial for the survival and reproduction of all organisms.However,various exogenous and endogenous factors frequently induce DNA damage,threatening genome stability.Therefore,all organisms have evolved complex and sophisticated DNA damage response(DDR)mechanisms including transcription reprogramming,cell cycle arrest,DNA repair,and cell death(Ciccia and Elledge,2010).Compared with the research in mammals and yeasts,the DDR mechanisms in plants are far less well-understood(Herbst et al.,2024).
基金supported the Fondo de Investigación Sanitaria-Fondo Europeo de Desarrollo Regional“Una manera de hacer Europa”to RMM(PI 19/01884 and PI22/01506)by the Government of Navarra(34/2021)/50%FEDER 2014-2020 and by the Foundation AECC(PRYES211377MART)+7 种基金funded by Cancer Research Thematic Network of the Instituto de Salud Carlos III(RTICC RD12/0036/0066)SAF2015-71606R,RTI2018-094507B-100 financed by MCIN/AEI/10.13039/501100011033/and by FEDER“Una manera de hacer Europa”MICIU PID2021-1226380B-100 and PID2024-156335OB-100supported by FIS(PI22/01253)supported by the Foundation for Applied Medical Research(FIMA)and CIBERONC(CB16/12/00443)funded by the Government of Navarra of the I+D 2022-25,GEMA(GRANATE:Grupo de Radioterapia Avanzada de Navarra,0011-1411-2022-000066 and 0011-1411-2022-000073)supported by a Project PID2023-152755OB-I00 funded by MICIU/AEI/10.13039/501100011033 and by FEDER,EU.K.Vsupported by an Investigator grant from AECC.F.L.and S.V.report research funding from Roche.F.L.and R.M.-M.report consulting fees from Ellipses Life.No potential conflicts of interest were disclosed by the other authors.
文摘The ATP-hydrolytic ectoenzyme ENPP1 has been implicated in the metastasis and recurrence in triple-negative breast cancer(TNBC),primarily by contributing to tumor cell survival and treatment resistance.However,the precise mechanisms remain unclear.In a model of local recurrence(LR),circulating tumor cells(CTC)engrafting in the post-resection tumor bed developed a radioresistant phenotype linked to an ENPP1+-gene signature which was also identified in TNBC patients,suggesting ENPP1´s role in genome integrity.Blockade of ENPP1 using a permeable ENPP1 inhibitor(AVA-NP-695)reduced radioresistance,mechanistically attributed to decreased homologous recombination(HR)resulting in persistent DNA damage,as evidenced by enhanced tail moment and sustainedγH2AX formation.This impaired DNA damage repair(DDR)sensitized tumor cells to ionizing radiation(IR).Notably,several DDR inhibitors(i)(including PARPi and ATMi)showed the highest synergy score in a targeted pharmacological screening.In vivo,dual ENPP1/ATM inhibition heightened radiosensitivity,compromised tumor cell survival and enhanced STINGTBK1 signaling by preventing ENPP1-mediated cGAMP hydrolysis.This resulted in robust innate and long-lasting adaptive antitumor immune memory responses,leading to significant tumor regression.Remarkably,combined treatment post-IR reduced spontaneous metastasis and local recurrence,and induced abscopal effects that impacted distant tumor spread in orthotopic tumor models.Thus,these findings position ENPP1 as a critical link between genome integrity and immunosuppression,offering promising translational opportunities for treating local or distant dissemination in TNBC.
文摘Objective: To investigate the effects of different concentrations of β-glucan on the repair of damaged vaginal mucosa, the expression of vascular endothelial growth factor (VEGF), and the inflammatory factor-6 (IL-6) in vaginal tissues. Methods: Thirty-six adult female specific pathogen free (SPF)-grade Wistar rats were randomly divided into 3 phase groups with 12 rats each. Vaginal inflammation rat models were established by injecting phenol gel into the vagina of each rat at a dose of 0.1 ml/100g body weight. After modeling, rats were divided into 4 groups based on different concentrations of the test agent. The control group was injected with 0.5 ml of saline, experimental group A was injected with 0.375 ml saline 0.125 ml β-glucan, experimental group B was injected with 0.25 ml saline 0.25 ml β-glucan, and experimental group C was injected with 0.50 ml β-glucan. The injection sites were selected at the 3 o’clock and 9 o’clock positions of the vagina. Rats were sacrificed at 7-, 14-, and 28-days post-injection, and tissue samples were collected from the injection sites and prepared for histological analysis. New blood vessels and fibroblast numbers in the tissues were observed after Hematoxylin-eosin (HE) staining. The expression levels of VEGF and IL-6 in the tissues were measured using quantificational reverse transcription polymerase chain reaction (qRT-PCR). Results: Histological examination of vaginal tissue specimens at 7-, 14-, and 28-days post-injection showed that on day 7, there were no significant changes in the experimental groups compared to the control group. However, on days 14 and 28, the experimental groups showed more new blood vessels, macrophages, and fibroblasts with increased activity compared to the control group. The expression levels of VEGF in vaginal tissues were elevated on days 14 and 28 in the experimental groups. The comparison of IL-6 levels in vaginal tissues on day 28 showed that serum IL-6 levels returned to normal, and there was no statistically significant difference between the experimental and control groups. Conclusion: In the 3 experimental phases, the increase in VEGF levels in vaginal tissues on day 14 post-injection was more pronounced with higher concentrations of β-glucan, and IL-6 levels returned to normal on day 28. β-Glucan can enhance VEGF levels in damaged vaginal tissues, promote the repair of damaged vaginal tissues, and higher concentrations of β-glucan have a better effect.
基金supported by the National Key R&D Program of China(Nos.2021YFA0715800,2021YFA0715803)the Science Center for Gas Turbine Project(No.P2021-A-IV-003-001)the National Natural Science Foundation of China(No.52125203).
文摘A Ni-based solder BNi-5 was adopted as the repair agent to repair the prefabricated defects on the car-bon/carbon(C/C)composites.The effects of different heat-treatment(HT)temperatures and pre-oxidation on the chemical composition,microstructure,and mechanical behavior of the repaired C/C composites were investigated,and the repair mechanism was studied by finite element analysis methods.The repair agent and C/C composites were tightly bonded through mechanical interlocking and chemical reactions,and the flexural properties of the damaged C/C composites were significantly improved after repair.The products at the interface formed a gradient distribution structure of the thermal expansion coefficient when the HT temperature was 1300°C,which is beneficial to relieve the residual thermal stress at the interface.Meanwhile,the porosity of the surface of the C/C composites was higher after pre-oxidation,which led to more diffusion channels for the repair agent and enhanced the interface bonding ability.The flexural strength was the highest with a recovery rate of 85.2%when the C/C composites were pre-oxidized at 600°C and the HT temperature was 1300°C.This work provides a strategy for the engineering application of the damage repair of C/C composites.
基金supported by grants from National Natural Science Foundation of China(31971165 and 82173465)Leading Talents Program of Gusu District(ZXL2022454)Jiangsu Provincial Outstanding Postdoctoral Program(2023ZB254),China.
文摘Objective:To investigate the impact of SWI/SNF complex on heterochromatin DNA damage repair after exposure to X-ray irradiation,in order to explore the underlying mechanism.Methods:NIH3T3 and MRC5 cells were treated with 50 nmol/L siRNA targeting SWI/SNF complex subunits(BRM,ARID1A,BRG1 and SNF5),and YAP/TAZ.At 24 h after transfection,the cells were irradiated with 0.5 and 1 Gy of X-rays.At 20,60 and 240 min post-irradiation,γH2AX assay was performed to evaluate the radiation response in total or heterochromatin.Comet assay was used to determine the role of YAP/TAZ in DNA damage when the cells were irradiated with 4 Gy of X-rays.NIH3T3 were treated with 50 nmol/L siRNA targeting BRM/BRG1 and YAP/TAZ to determine their relationship on heterochromatin DNA damage repair.Results:In NIH3T3,SWI/SNF complex subunits(BRM,ARID1A and BRG1)knock-down increasedγH2AX in total and heterochromatin at 1 Gy 60 min post-irradiation(P<0.05),while SNF5 knock-down decreased heterochromatinγH2AX at 1 Gy 20 min post-irradiation(P<0.05).In MRC5,BRM and BRG1 knock-down increasedγH2AX in total and heterochromatin at 1 Gy 60 min post-irradiation(P<0.05).Inconsistently,ARID1A knockdown did not affect it,and SNF5 knock-down increased heterochromatinγH2AX at 1 Gy 60 min post-irradiation(P<0.05).Moreover,YAP/TAZ knock-down decreased heterochromatinγH2AX in NIH3T3 and MRC5(P<0.05).Meanwhile,YAP/TAZ knock-down decreased Tail Moment in comet assay at 4 Gy 60 min post-irradiation(P<0.05).BRM/BRG1 combining with YAP/TAZ knock-down significantly decreased heterochromatinγH2AX compared with single BRM/BRG1 knock-down at 0.5 Gy 60 min post-irradiation(P<0.05).Conclusions:The SWI/SNF complex subunits exhibited varying effects on DNA damage repair.BRM/BRG1 knockdown promotedγH2AX accumulation in heterochromatin through YAP/TAZ.This study provides a novel direction for DNA damage repair and sheds light on the role of SWI/SNF complex in response to DNA damage repair in heterochromatin.
文摘Malignant insulinomas are rare neuroendocrine tumors that require management for both symptomatic control and tumor reduction.It is clinically challenging to optimize treatment strategies for refractory malignant insulinoma.We report a case of metastatic grade 3 insulinoma presented with recurrent hypoglycemia in a 23-year-old female with RAD51D p.Q192 germline mutation.During the disease course of 5 years,the tumor has continuously progressed despite locoregional therapy and multiple lines of systemic treatment.However,oxaliplatin-based chemotherapy achieved a partial response,which was maintained for 2 years.The hypoglycemic symptoms were controlled after the treatment response and did not recur.The platinum-based regimen could be a feasible therapeutic strategy for malignant insulinoma.The relationship between germline mutation in the DNA damage repair pathway and treatment response to platinum-based regimens in neuroendocrine tumors warrants further investigation.
基金supported by the National Natural Science Foundation of China(32071240,82373526).
文摘Small nucleolar RNAs(snoRNAs)were previously regarded as a class of functionally conserved housekeeping genes,primarily involved in the regulation of ribosome biogenesis by ribosomal RNA(rRNA)modification.However,some of them are involved in several biological processes via complex molecular mechanisms.DNA damage response(DDR)is a conserved mechanism for maintaining genomic stability to prevent the occurrence of various human diseases.It has recently been revealed that snoRNAs are involved in DDR at multiple levels,indicating their relevant theoretical and clinical significance in this field.The present review systematically addresses four main points,including the biosynthesis and classification of snoRNAs,the mechanisms through which snoRNAs regulate target molecules,snoRNAs in the process of DDR,and the significance of snoRNA in disease diagnosis and treatment.It focuses on the potential functions of snoRNAs in DDR to help in the discovery of the roles of snoRNAs in maintaining genome stability and pathological processes.
基金Project supported by the National High Technology Research and Development Program of China (Grant No.2008AA8040508)the Youth Foundation of University of Science and Technology of China (Grant Nos.L08010401JX0834 and L08010401JX0806)the Fundamental Research Funds for the Central Universities of China
文摘One of the main factors of laser induced damage is the modulation to incident laser which is caused by the defect in the subsurface of the fused silica. In this work, the repaired damage site irradiated by CO2 laser is simplified to a Gaussian rotation according to the corresponding experimental results. Then, the three-dimensional finite-difference time-domain method is employed to simulate the electric field intensity distribution in the vicinity of this kind of defect in fused silica front subsurface. The simulated results show that the modulation is notable, the Emax is about 2.6 times the irradiated electric field intensity in the fused silica with the damage site (the width is 1.5 μm and depth is 2.3 μm) though the damage site is repaired by CO2 laser. The phenomenon and the theoretical result of the annular laser enhancement existed on the rear surface are first verified effectively, which agrees well with the corresponding experimental results. The relations between the maximal electric field intensity in fused silica with defect depth and width are given respectively. Meanwhile, the corresponding physical mechanism is analysed theoretically in detail.
基金supported by grants from the National Major Special Project of Cancer Early Detection and Treatment in Jinchang City(No.CZB20120064)the Project of Employees Health Status and Disease Burden Trend Study in Nonferrous Metals Corporation(No.JKB20120013)
文摘Our study explored the dynamic changes in andthe relationship between the DNA damage marker8-hydroxy-2'-deoxyguanosine (8-OHdG) and theDNA repair marker 8-hydroxyguanine DNAglycosidase 1 (hOGG1) according to the length ofoccupational employment in nickel smeltingworkers. One hundred forty nickel-exposedsmelting workers and 140 age-matched unexposedoffice workers were selected from the Jinchangcohort. The 8-OHdG levels in smelting workers wassignificantly higher than in office workers (Z=-8.688,P〈0.05) and the 8-OHdG levels among nickelsmelting workers in the 10-14 y employment lengthcategory was significantly higher than among allpeers. The hOGG1 levels among smelting workerswere significantly lower than those of non-exposedworkers (Z=-8.948, P〈0.05). There were significantdifferences between employment length andhOGG1 levels, with subjects employed in nickelsmelting for 10-14 y showing the highest levels ofhOGG1. Correlation analysis showed positivecorrelations between 8-OHdG and hOGG1 levels(r=0.413; P〈0.01). DNA damage was increased withemployment length among nickel smelting workersand was related to the inhibition of hOGG1 repaircapacity.
文摘For the mammalian brain to process and decipher the rich panoply of sounds that abound in the world, nature has evolved an elegant collection of neural circuits dedicated to this task. Indeed, the complexity, variety and number of neural pathways devoted to computing auditory information is unique among sensory modalities (Kaas, 2008). After the initial sensorineural encoding of sound at the level of the cochlea, auditory information is processed in several lower brainstem centers and eventually converges in the midbrain, at the level of the inferior colliculus (Wenstrup, 2005), Subsequently, auditory information is transferred through the thalamus, the medial geniculate body, and then the auditory cortex (Winer et al., 2005; Razak and Fuzessery, 2010; Hackett, 2011; Lee and Sherman, 2011; Lee and Winer, 2011;
文摘This paper deals with the repair of damaged, plain concrete and polymer cement concrete by impregnation with methyl methacrylate (MMA) or sulfur. The stress-strain (σ-ε) curves of the unaxial compression of the concrete before and after repairing were given. The results indicate that the strength of damaged concrete can be reinstated and even improved after the concrete is impregnated with MMA or sulfur. The main mechanism of repairing is that the cracks, the original pores and microcracks are filled with MMA or sulfur, and the im-pregnant plays role in adhesion enhancement and reinforcement.
文摘The paper deals with temporary repairs. Applying a different technology, using a reproduction part, or performing a repair by a serviceman without the competence is typical features of temporary repairs. Temporary repair makes possible for an object to fulfil its function for a limited time, until regular repairs can be made. The complexity perplex modern vehicles their reparability. It is necessary to look for the new procedures of the implementation so-called temporary repairs. The authors suggested procedure battle damage assessment and repair, which they expressed in the form of diagrams. There is also description of new technological procedures, which could be possibly applied in field of temporary repairs. These new procedures are applied on land (wheeled and tracked) vehicles parts and their sufficiency for Czech Army conditions is tested. The main purpose of the thesis is defining operating procedures of the most useful methods, including their verifications and proposal of tools needed for repairs. These tools should be included in equipment of vehicles operated in Czech Army. The thesis is primarily focused on repairs of mechanical parts and units and also of reparation of fuel, hydraulic and high pressure systems.
基金the National Natural Science Foundation of China(Grant No.82330090 and Grant No.82341006 to C.G.)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA0460403 to C.G.)the Natural Science Foundation of Shanxi Province(Grant No.202203021211155 to X.M.).
文摘Overview of the DNA damage response(DDR)in tumor cells.DDR is a highly coordinated signaling network that repairs DNA damage caused by intrinsic cellular processes and extrinsic insults,thereby preventing genome instability.Depending on the type of damage,distinct DNA damage repair and DNA damage tolerance(DDT)pathways are involved and coordinately regulated.